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Abstract 

The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot 

is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in 

stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, 

and background clutter, so an accurate tracker should employ the appropriate visual features to identify target. In this 

paper, we propose using the histogram of oriented gradient (HOG), as an important descriptor. The descriptor simulates 

the performance of the complex cells in the primary visual cortex (V1) and it has low sensitivity to the illumination changes. 

In the proposed method, firstly, an object model is generated by training the HOG of multi first frames via an SVM 

classifier. Then, in order to track a new frame, the HOG descriptors are extracted from the surrounding areas of the target 

in the previous frame and convolved with the object model. Finally, the location with the highest score is defined as the 

target. The experimental results demonstrate the proposed method has significant performance compare to the state-of-the-

art methods. Furthermore, we apply our algorithm to the mobile robot built by the robotics team to ensure its performance 

in a real environment. 
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1. Introduction 

An intelligent mobile robot is an automatic multi-

purpose machine that acts like human activities, even 

against unknown environments. The robot should 

simulate human prominent traits in its behavior, moving, 

intelligence and communication [1], so that it can play the 

role of a human partner such as servant robots, nursing 

robots, submarine robots, and vacuum cleaner robots. In 

the first step, the function of such robots depends on the 

hardware equipment, for instance, sensors, to recognize 

the environment. Next, they employ image processing 

algorithms to accurately detect a target. In dynamic 

environments, directing and controlling robot are both 

very complex, due to the target similarity with the 

background objects in terms of color and shape. The 

purpose of directing is to create an ability through which 

a robot can coordinate itself with the environment, for 

instance, recognition of a particular object and tracking it 

in an uncertain environment. Visual tracking has an 

important role in some machine vision applications such 

as human-computer interaction and video surveillance. It 
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deals with challenges such as occlusion, deformation and 

illumination change and background clutter [2]. Figure 1 

shows the result of proposed method on challenging 

sequences. 

 

Fig. 1. Tracking results of the proposed method on challenging 

sequences. challenging factors include (a) illumination variation, (b) 

occlusion, (c) background clutter and (d) apperance change. 

An accurate tracker should use the suitable visual 

descriptors which are not sensitive to the illumination, 

occlusion, clutter, and etc. Some trackers [3]–[6] apply 

color histogram that represents a distribution of colors by 

counting the number of pixels in each of given color 

ranges. BKG [3] method utilized color histogram in hue, 

saturation, and value (HSV) color space to calculate the 

background confidence map. Also, SPT [4] method used 

the histogram in the HSV color space for each superpixel 

of the sequence. Zoidi et al. [5] discarded candidate 

objects by color histogram similarity to the target object, 

While ACT [7] and FRT [6] methods employed intensity 

histogram which represents a histogram of the pixel 

intensity values in grayscale. ACT algorithm applied gray 

level histogram of visual parts to describe the target’s 

local appearance. Using histogram will cause the spatial 

information to be ignored, whereas the information is 

required for tracking algorithms. In addition, other 

descriptors have been adopted in tracking methods such 

as speeded up robust features (SURF) in FBT [8] method, 

Haar gradients in MIT [9] algorithm, optical flow in 

PROST [10] model and covariance descriptor in [11]. 

SURF descriptor is achieved by detecting interest points 

by Hessian matrix approximation and constructing square 

regions around them using sum of Haar wavelet 

responses. Optical flow estimate motion of target object 

by computing brightness variations between frames. 

Recently, the histogram of oriented gradients (HOG) is 

added making more appropriate descriptors. Henriques et 

al. [12] proposed kernel correlation filter (KCF) and dual 

correlation filter (DCF) trackers on HOG descriptor. The 

HOG works like complex cells in the primary visual 

cortex (V1) [13] and due to its low sensitivity to the 

illumination changes, it has been the mainstay of 

researchers. The HOG is an effective descriptor applied 

in some applications such as object detection [14], face 

recognition [15], [16] and pedestrian detection [17]. 

Mostly, the HOG descriptor is learned using a support 

vector machine (SVM) classifier that is named 

HOG+SVM. 

Most tracking methods [5], [6], [18] are model-based 

that first create an object model using prior information 

of the object and then search the most similar image 

regions to the model. Zoidi et al. [5] generated an object 

appearance model by storing the transformation of the 

object image such as rotation and scaling as object 

instances. Frag [6] tracker represented template model by 

selecting multiple image fragments arbitrarily. DML 

tracking algorithm [18] utilized a collection of templates 

as a template library to capture the object’s appearance. 

Then the template library is updated if its similarity with 

the new appearance of the current frame is less than the 

similarity obtained from the previous frame. 

This paper presents a method that firstly an object 

model is created by learning the HOG descriptors 

extracted from a few first frames via the SVM. Then, in 

order to track the new frame, the HOG descriptors are 

extracted from surrounding areas of the bounding box of 

the previous frame and convolved with the object model. 

Finally, we measure this algorithm on our robot, assistant 

robot, which has significant results. 

2. Robot Technical Features 

A robot consists of different parts which are described 

here. 
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2.1. Mechanic Infrastructures 

Mobile robots have different mechanic 

infrastructures such as Chassis and propulsion systems 

and auxiliary devices. Producing appropriately-featured 

motion is the most important responsibility of the 

mechanic section. Therefore, different mechanisms such 

as wheels or feet are used. Each of such mechanisms is 

selected based on needed power, and cost and 

appropriate mobile features and the surface where robot 

moves. Wheels are favoured due to ease, cheapness, 

compatibility with the environment, high energy 

efficiency and good power. There is a different 

configuration for wheeled- robots. The difference is in 

location and wheels' role. There are three kinds of 

wheels in wheeled-mobile robots. Moveable wheels, to 

which engine propulsion is connected. Steering wheels 

cause the robot rotation and freewheels which help the 

robot retain its static balance without any connection to 

any engine or operator. Three-wheel mobile robot with 

propulsion differential system is a mobile robot. Figure 

2 illustrates the mechanic infrastructure of the mobile 

robot. This robot is equipped with two DC electric 

motors horizontally located on the chassis, connected to 

the robot rear wheels. A particular mechanism has been 

used guiding robot front wheels to left and right. Its 

motor system is similar to real machines. This robot 

chassis is made of rubber which has been selected due 

to being available and economical. 

 

Fig. 2. Mechanic infrastructure of mobile robot. 

 

2.2. Robot Electric and Electronic Infrastructure 

This part includes processing units, interface circuit, 

DC Motor controllers in order to direct and control robot, 

and stepper motor controllers in order to control the 

camera. The mobile robot is connected to a notebook 

without a wire interface and only through the wireless 

network. Sending movies and receiving commands are 

occurred through the wireless gateway with bandwidth 

2400 Hz. After receiving commands from the system, 

Interface circuit transmits them to DC motor drivers using 

micro 8051. Control system of DC motors is open- loop. 

This controller receives a command from an interface 

circuit and sends it to the motor drive. In order to ensure 

the accuracy of the commands received by the robot, all 

commands are displayed on Robot LCD. 

2.3. Visual Unit 

This robot is equipped with a CCD camera, IP camera, 

which transmits the received image through access 

wireless to the processor and it can be used for detecting 

the objects in a competition environment. The camera is 

controlled through two stepper motors with the capability 

of 270 rotations towards XY axis and 120 rotations 

towards Z axis. Since the circuit used for controlling 

motors is open, circuit for simulating motors needs to 

guarantee simulated motor coils in an appropriate order 

without any pulse. The object is detected through this 

camera after a series of processing operations, the 

minimal cadre surrounding the object is determined. 

2.4. Communication Unit 

Since this robot makes decisions individually and 

completely intelligently, it doesn’t require any specified 

communicational unit, but in order to be able to control 

and direct it in unavailable environments, a software 

interface has been developed so that manual 

communications are established if needed. Graphic 

interface and the robot appearance are shown in figure 3 

and figure 4, respectively. 
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Fig. 3. Robot graphic interface. 

 

 

Fig. 4. Robot appearance. 

3. Proposed Method 

Overview of the proposed method is illustrated in 

figure 5. First, an object model is learned by the k first 

frames which will be described in section A. Then, the 

target object of new frame is detected by the object model 

which will be described in section B. 

 

Fig. 5. Overview of the proposed method 

3.1. Construction of Object Model 

Given the bounding box of the target object in the first 

frame, the areas inside it in K first frames (figure 5-A) are 

assumed as the positive training set (figure 5-B). Each of 

the positive training instances is resized to 64×64 pixels 

(figure 5-C), and its HOG descriptor [19] is extracted 

(figure 5-D). 

Figure 6 demonstrates the HOG calculation scheme. 

To compute HOG descriptor of an image, first, the 

gradient directions of the image is achieved (figure 6-b). 

Then, the image gradient is divided into small square 

areas termed cells (e.g. yellow squares shown in figure 6-

b). Each cell is 4×4 as figure 6-d and a group of adjacent 

cells is called block (e.g. the block is 2×2 in figure 6-c). 

Afterward, for all pixels within each cell, a histogram of 

gradient directions are calculated (figure 6-e) and finally 
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the gathered histograms are normalized (figure 6-f). The 

HOG descriptor is considered as positive samples. On the 

other hand, the last frame (frame K) is segmented into 

patches 128×128 pixels (figure 5-E), and patches without 

target object are assumed as the negative training set 

(figure 5-F). Due to a large number of negative examples, 

we use hard negative mining [14] to find a set of key 

negative samples, (figure 2-G). This technique starts 

training a model without negative samples using 1-class 

SVM model [20]. The following steps are performed for 

T iterations: 

 

Fig. 6. Calculation scheme of the HOG descriptor. For a sample image (a), the gradient directions (b) is obtained and histogram of gradient 
directions (f) is computed after dividing the gradient into cells and blocks. In figure, blocks and cells are 2 × 2 and 4 × 4, respectively. 

a) An SVM model is trained by the positive and 

negative samples and their labels (+1 for positives 

and -1 for negatives) as shown in figure 5-G (a). 

Then, an Mw×Mh template model is generated. In 

the first iteration, there are no negative samples. 

b) Negative samples are extracted as shown in figure 5-

G (b). In this way, each instance of the negative 

training set is resized in multi-scale and for each of 

them: 

 The HOG is computed (figure 5-G (b.1)). 

 It is convolved with the template model and a 

response map are achieved (figure 5-G (b.2)). 

 Some bounding boxes are generated as 

follows: 

����	�
� = [��

� − �.�	.	��
� − �.�	.	��

� + �� ×��× �

− �.�	.��
� + �� ×�� × � − �.�] (1) 

Where ����	�
�	denotes the bounding box � of the 

resizing instance with scale �, HS indicates HOG cell 

size, and �� and �ℎ refer the model width and height, 

respectively. Also, (��
�, ��

�) indicates the instance pixel 

coordinates computed by units of HOG cell (ℎ��
�, ℎ��

�) as 

follows: 

��
� = (���

� − �) × �� × � + � (2) 

��
� = (���

� − �) × �� × � + � (3) 

A ������
� is defined for each bounding box (����	�

�) 

that refer to the value of (ℎ��
�, ℎ��

�) position in the map. 

For each resized instance, 100 top bounding boxes are 

selected. Next, the non-maximum suppression algorithm 

is applied to ignore those overlapped bounding boxes 

greater than a threshold (here, 0.5). Then, 10 top bounding 

boxes are kept (figure 5-G (b.3)) to efficiency and their 

HOG are considered as negative samples (figure 5-G 

(b.4)). 
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c) The negative samples are concatenated into the former 

negative samples. Then, the duplicate samples are 

removed (figure 5-G (c)). 

After applying hard negative mining technique for T 

iteration, the last template model is considered an object 

model (w ) (figure 5-H). 

3.2. Tracking 

To determine the bounding box in the new frame(�), 

we first extract a square window centered at ����
�  with 

dimensions of 2 × max(����, ℎ���) where ����, ℎ��� 

and ����
� 	are width, height, and center position of the 

bounding box in frame � − 1 respectively (figure 5-J). 

Second, we resize the window in multi-scale (figure 5-K) 

and compute the HOG for each of them (figure 5-L). 

Third, we convolve each HOG with the model w  and 

obtain a response map (figure 5-M). Finally, from among 

the response maps, a point with the maximum value is 

chosen (figure 5-N) and a bounding box (�����) is 

generated as Eq. 1 (figure 5-O). Since the ����� is a 

square bounding box, the following conditions are 

applying to change its width or height: 

�� = �� × �
����

����
� �			��	���� > ����

�� = �� × �
����

����
� �				���������			

 (4) 

Where �� and ℎ� denote width and height of the 

bounding box in frame t. 

Logically, the size and position of ����� are close to 

the bounding box in the previous frame (�������). 

according to this principle, incorrect bounding boxes are 

replaced with ������� as follows: 

����� = �������			��	� (�� + ����)
� + (�� + ����)

� >
	

										��	� (�� + ����)
� 	 > ������

(5) 

Where  

����� = [��, ��, ��, ℎ�],������� = [����, ����, ����, ℎ���]. 

 �� = �� × ℎ�   and  ���� = ���� × ℎ���  

refer the areas of bounding boxes in the frame � and 

� − 1, respectively. �ℎ��� = 0.25 × window width and 

�ℎ���� = 0.5 × ����. 

After creation of the bounding box in the frame �, the 

object model � is updated in two ways: (1), in each frame, 

the ����� is resized to 64 × 64 pixels and its HOG is 

concatenated into positive samples. The model � is 

updated by training the SVM model. (2), after the U 

frame, the negative samples are changed by applying the 

hard negative mining technique, and the model � is 

updated by training the SVM model. The main steps of 

the proposed method are summarized in Algorithm 1. 

Algorithm 1: main step of the proposed method 

Construction of object model: 

�=1 (frame) 

for �=1 to � 

1) extract areas inside the target bounding box (in the first 

frame) from the frame � manually and resize it to 64×64 

2) compute the HOG descriptor and consider it as a positive 

sample 

end 

Segment the frame � into patches 128×128, and consider the 

patches without the target object as the negative training set. 

Apply the hard negative mining to extract the negative samples: 

for �=1 to � 

1) generate a template model by training an SVM (if � = �, 

SVM is 1-class) 

2) for each instance of the negative training set: 

a) for �=1 to � 

- resize it to scale 
�

�
 and compute the HOG  

- convolve with the template model and create a 

response map 

- generate some bounding boxes by Eq. 1 

- define a score for each bounding box  

  end 

b) select 100 top bounding boxes 

c) apply the non-maximum suppression algorithm 

d) consider the HOG of 10 top bounding boxes as 

negative samples 

end 

3) Concatenate the obtained negative samples with the 

former negatives and eliminate the duplicate samples. 
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end 

Consider the last template model as object model (�) 

Tracking: 

for �=2 to the end of the video 

1) extract a window around the bounding box of the frame � −

� 

2) Resize it into multi-scale and compute the HOG for each 

of them.  

3) Convolve each HOG with the model � to obtain a 

response map. 

4) choose ����� with maximum value in the maps 

5) replace ����� with ������� according to Eq. 5 

6) update the model �  

   a) add the HOG of ����� to the positive samples for each 

frame 

   b) change the negative samples after � frame 

end 

4. Experimental Results 

In this section, we discuss in detail the experiments 

carried out to evaluate the proposed method. 

4.1. Experimental Setup 

Our results have been achieved on 1.80 GHz Core i5 

CPU with 6 GB RAM in MATLAB. We used The VLFeat 

[21] to compute the HOG and SVM. Furthermore, we 

applied SDCA Solver with parameters of  

� = 1 (������	��	�������)⁄  and � = 0.01 in SVM.  

In order to generate the object model, we used 5 first 

frames (� = 5) in our experiments. Also, the object 

model has been set to 8 × 8	(�� = �ℎ = 8) 

dimensions. In hard negative mining technique, each 

instance of the negative training set was resized to 15 

scales (0.5, 0.6, 0.74, 0.9, 1.1, 1.34, 1.64, 2, 2.43, 2.97, 

3.62, 4.41, 5.38, 6.56, 8). The negative samples are 

changed at every 20 frames (� = 20) in order to update 

the model �. 

4.2. Quantitative Evaluation 

For quantitative assessments, two measures of center 

location error and success rate are adopted. The first 

measure, center location error, can be computed by the 

Euclidean distance between the center of the tracked 

object and that of ground truth. The second measure, 

success rate, is calculated based on evaluation metrics of 

the PASCAL VOC challenge [22]. Given the ground truth 

bounding box ������ and the tracked bounding box 

����� of the frame �, the success rate (��) is defined as 

follows: 

�� =
����	(����� ∩ ������)

����	(����� ∪ ������)
 (6) 

The tracking result of one frame is successful when �� 

is above 0.5. To assess the performance of tracker using 

this measure, we compute the average success rate on the 

whole frames of each sequence. 

We evaluate the proposed method against the state-of-

the-art trackers including fragmented-based (Frag) 

method [6], online adaptive boosting (OAB) method [23], 

tracking by detection (TLD) method [24] and real-time 

compressive tracking (RTCT) method [25] on 5 

sequences. The sequences of FaceOcc1, FaceOcc2 from 

[26], Trellis from [27], football from [28] and Shaking are 

used in the experiments.  

To compare the proposed method with the state-of-the-

art trackers, we exploit the mentioned measures. Table I 

and II show average success rate and average center 

location errors of trackers on the sequences, respectively. 

As can be seen, our method has obtained the best or 

second best results in more sequences. Although table I 

shows the Frag and OAB trackers on the FaceOcc1 

sequence and the OAB and TLD methods on the 

FaceOcc2 sequence have achieved better results than our 

method, table II indicates the average center location 

errors of these trackers in the aforementioned sequences 

are more than our method. By considering the results 

average on the entire sequences, our method achieves 

lower average center location error (12.28) than other 

trackers. Furthermore, our method (0.47) and the Frag 
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tracker (0.50) attain higher average success rate than the 

others. 

Table. 1. Average success rate of trackers on 5 sequences. 

 Frag OAB TLD RTCT ours 

football 0.59 0.23 0.60 0.02 0.60 

Shaking 0.41 0.01 0.33 0.02 0.40 

FaceOcc1 0.87 0.77 0.57 0.73 0.58 

FaceOcc2 0.38 0.59 0.57 0.54 0.47 

Trellis 0.29 0.46 0.21 0.22 0.32 

average 0.50 0.41 0.45 0.30 0.47 

For each sequence, bold text indicates the best result 

and underlined one indicates the second best. 

Table. 2. Average center location errors of trackers on 5 sequences. 

 Frag OAB TLD RTCT ours 

football 6.3 53.3 6.0 123.3 6.3 

Shaking 15.3 100.3 21.0 86.6 14.7 

FaceOcc1 17.9 17.2 14.8 19.0 12.3 

FaceOcc2 48.2 20.8 13.3 6.0 11.9 

Trellis 55.7 41.5 50.9 42.4 16.2 

average 28.6 46.6 21.2 55.4 12.28 

For each sequence, bold text indicates the best result 

and underlined one indicates the second best. 

4.3. Qualitative Evaluation 

Figure 7 illustrates the tracking precision of our 

method against the other trackers on four sequences. The 

football sequence contains scenes with cluttered 

background and objects similar to the target object. The 

Frag, OAB and RTCT methods fail to track the target 

object at different frames as shown in figure 7a, while the 

proposed method tracks it successfully. In the Shaking 

sequence, the target appearance changes significantly due 

to illumination variation. Moreover, background clutter 

and partial occlusion are the challenging factors on this 

sequence, as shown in Figure 7b. Figure 7c presents some 

tracking results on the FaceOcc1 sequence that the target 

object is occluded by a book. When a heavy occlusion 

occurs in the sequence, the OAB and RTCT methods drift 

away from the target face, whereas the other methods 

track the target well. In addition, the FaceOcc2 sequence 

deals with the occlusion challenging and pose variation. 

The trellis sequence results in figure 7d illustrate the 

challenging factors such as illumination variation and 

changing the appearance of the target. Due to these 

challenges, some methods provide poor performance. 

 
Fig. 7. Tracking resulats of five methods (ours is the proposed method) on four sequences. The name of sequences are shown in first row. 
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Fig. 8. Tracking results of the mobile robot in the graphic interface and deciding to move it. After object detecion, the robot moves to forward (a) 
or right (b) or left (c) and it will stop if it is so close to target. 

 

 
Fig. 9. The results of tracking by the robot. 

One of the most important problems in robotics is the 

ability of online image processing. Most of studied 

tracking methods have evaluated their experiments solely 

on recorded sequences. 

In addition to applying the proposed method on the 

sequences used in the state-of-the-art methods, we 

assessed the performance of our method on a mobile robot 

built by the robotic team. Tracking results of the mobile 

robot in the graphical interface are shown in figure 8. 

After target detection, the direction of robot movement 

(left, right and forward) is identified relative to the center 

of the detected bounding box, and then the robot moves 

toward it. Whenever the robot is very close to the target 

(as figure 8d), it stops. The proximity of the target is 

determined by its size. Furthermore, figure 9 and table III 

provide the results of robot tracking on toy bear and owlet 

objects in a dynamic environment. In this case, among 

1950 test frames on both sequences 1541 frames were 

correctly detected with 79% accuracy. 
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Table. 3. Robot performance on 2 sequences. 

 
# of 

frames 

# of frames 
detected 
correctly 

Accuracy (# of frames 
detected correctly / # of 

frames) 

Toy bear 930 715 0.77 

Toy owlet 1020 826 0.81 

Average 1950 1541 0.79 

5. Conclusion 

In this paper, we proposed a method using an object 

model constructed by training the HOG descriptor from 

few first frames via SVM. The HOG descriptor is similar 

to the performance of complex cells in the primary visual 

cortex which is not sensitive to the illumination changes. 

In order to track the new frame, object model was 

convolved with the extracted descriptor from surrounding 

areas of the bounding box of the previous frame. 

Experimental results demonstrate the proposed method 

can achieve comparable performance with the other 

trackers and successfully track the target object. In 

addition, we applied our method to a mobile robot to 

evaluate the performance in dynamic environments. 
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