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Abstract 

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of 
noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  
the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt and 
pepper noise. In order to enhance the performance of the designed CA for noise removal, a parallel programming approach has been 
adopted and implemented on GPU. The results obtained show that the proposed CA models implemented on general purpose processor and 
GPU are able to suppress noise in high noise intensity up to 90 percents. The proposed CA implemented on GPU has successfully 
outperformed the method implemented on CPU by factor of 2 for gray scale image and factor of 10 for color images. 
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1. Introduction 

One of the common and significant image processing 
operations is image de-noising. Noise can befall from 
innumerable sources and present in almost any image 
processing system. Two fundamental types of noise are 
produced during image acquisition process (i.e.Sensor 
noise) and image transmission process (i.e., channel noise). 
Noise filtering is the process of extracting the original 
image information from noisy data. It is an essential part of 
many image processing systems before subsequent image 
processing techniques such as edge detection, segmentation 
and pattern recognition can take place. It is also important 
to remove the impulse noise in the images while at the 
same time preserving the image integrity. The main 
primacy of the noise removal method is its high 
computational speed, which provides efficient filtering of 
images for real-time applications [1]. Many existing noise 
removal methods have been investigated but majority of 
them are facing the problem of losing details which created 
blurring effects and they require high computational 
resources.  

Due to the complexity in conventional image processing 
methods, there has been much interest in using the large 
scale homogeneous CAto execute parallel image. 

CA is a powerful tool with inherent features that well-
match to run on parallel processors. This feature is 
completely compatible with the data-parallel processing 
platform such as GPU. 

Dedicated GPU is becoming an integrated component in 
computer system which is designed to operate on the large 
amount of parallel data. Nowadays Open GL ES becomes 
as a standard to support various embedded systems in 
recent consumer market [2]. Processing speed is a 
definitive factor in computer vision operators, particularly 
for real-time applications [3]. By mapping computer vision 
algorithms to the parallel architecture of GPU, execution 
speed has been considerably increased[4].The 
programming capabilities which have been incorporated in 
these advanced processors increase the motivation for 
utilizing GPU in image processing tasks. 

In this paper, we proposed an ultra fast CA framework 
that is inspired by presented method in [5] for impulse 
noise removal in high density noise level of gray scale and 
color images.We proposed on extending the method for 
parallel execution on the GPU for salt and pepper noise 
removal of color images. The proposed method is 
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compared with CA de-noising framework implemented on 
general purpose processor or commonly referred as Central 
Processor Unit(CPU).The presented method will be 
compared with other existing noise removal methods such 
as Standard Median Filter (SMF), Decision Based 
Algorithm (DBA) [6] for gray scale image and Bit-Mixing 
Median Filter (BMMF) [7] and Scalar Median Filter (SMF) 
[8] for color image. DBA method finds out the corrupted 
pixels by check the values in selected window and 
exchange detected pixel by median value of the 
neighboring pixels. The weakness of this method is in high 
noise densities which the median value may be a corrupted 
pixel that used for substitution. 

The rest of this paper is organized as follows. Section 2 
introduces the image de-noising method and presents the 
preliminary concept of GPU and CA. Section 3 describes 
the implementation of the proposed CA de-noising model 
on CPU and GPU. Section 4 discusses the experimental 
results of the proposed framework on different platforms 
and concluding remarks are given in section 5. 

2. Background 

2.1. Image De-Noising 

The impulsive noise that produces extreme within gray 
scale or color plane pixels values incompatible with their 
neighborhood is considered as salt and pepper noise in our 
paper. The salt and pepper noise introduce extreme bright 
value (positive pulse noise) and dark value (negative pulse 
noise) in the image. 

Filtering is the main approach for image de-noising, 
which consists of linear filters and non-linear filters. The 
most common non-linear method for removal of salt and 
pepper noise are standard median filters and several 
modified median filter [9, 10]. This filter ranks the 
neighborhood pixel intensities within a filtering window 
and replaces the center pixel with the median value. All 
pixels even uncorrupted pixels are treated by median filter, 
as a consequence alteration of desirable pixel by this filter 
is the main cause for smoothing and blurring of the output 
image [11]. Therefore, noise detection algorithms which 
distinguish noise-free and corrupted pixels is required. For 
the case of high density salt and pepper noise, a decision 
based algorithm [6] has been proposed. In this method, the 
corrupted pixels are exchanged by median value of the 
neighboring pixels. The weakness of this method is in high 
noise density scenario, which the median value may use a 
corrupted pixel for substitution. 

Extending the median operator to color images is a 
complex task since the color vectors have to be sorted 
according to an order. Some classical different approaches 
have been proposed during the last years to extend median 
filters for color image processing. These methods include 
Vector Median Filter [12], Bit-mixing Median Filter [7], 
Adaptive Scalar Median Filter [12] and Color Difference 
map [7]. Some of these methods require pre-processing 

such as calculation of distance, angle and Euclidean 
distance between the color vectors to function properly. 
These additional processes increase the complexity of the 
algorithm and computational time for these noise filters. 
The major drawback of these vector filters is the failure to 
preserve texture of the resulting image which is usually 
smoothed and blurred. 

The basic requirement to develop a parallel system 
includes the support of multiple processing data with an 
availability of suitable parallel hardware. CA is well known 
as a powerful tool for modelling parallel phenomena. 
Support of parallel paradigm by CA and GPU allows these 
tools to implement parallel algorithms [13, 14]. 

In recent years, there has been much interest in using a 
large scale homogeneous cellular array to a variety of 
image processing problems. Several work on CPU-based 
CA models include edge detection [15], pattern recognition 
[9, 16] and image enhancement [15] have been reported. In 
our research, we focus on non-linear filters for salt and 
pepper noise removal based on CA method and then 
compare its performance with other existing methods. The 
main advantage of the presented CA filter is, if that the 
more iteration it performs, the CA filter is able to remove 
completely high-intensity noise while preserving the image 
[5]. The performance of the filtering algorithm is analyzed 
in terms of mean square error (MSE) [7], peak-signal- to- 
noise ratio (PSNR) [17, 18] and mean absolute error 
(MAE)[8].  

 

2.2. Graphic Processor Unit (GPU) 

GPU are fast, inexpensive data-parallel arithmetic 
architecture specialized for computation of an array of 
image. In recent years, flexible programming pipeline on 
modern GPUs is introduced. The programmable stages 
called shaders are embedded in new generation of GPU that 
includes vertex shader and fragment or pixel shader. The 
fragment processor of the GPU is powerful and 
programmable, which operates in single instruction 
multiple data (SIMD) parallel processing architecture [19-
21]. There are various image processing tasks that have 
been implemented on GPU which produced significant 
performance in speeding up the complex task such as 
watershed operation and image filtering [22, 23]. 

The GPU programming can be performed through a 
common application programming interface (API) such as 
DirectX and OpenGL by different shading language such as 
GLSlang (GLSL), C for Graphics (CG) and high level 
shading language (HLSL). In this work GLSL [24, 25] is 
used to implement the CA framework on GPU. GLSL 
shaders are small code string, which is transmitted to GPU 
hardware for compile, interpretation and execution. These 
short codes will be applicable on equipment that supports 
GLSL API structure such as cell phones, gaming consoles, 
laptop and personal computers [26]. 
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2.3. Cellular Automata (CA) 

CA is a dynamical system whose action in time and 
space is discrete. A CA can be arranged as uniform grid of 
cells, each includes a few bits of data and a single rule is 
operated at each discrete time step [19]. The structure of 
CA consists of state of cell (S), cell space neighborhood 
(N) and local rules (R). The local rules define the operation 
of CA and the CA's rule is applied repetitively throughout 
the system and new states can be calculated. This feature is 
suitable for parallel processing implementation [27].  

3. Implementation of CA Framework for Noise 
Removal  

A digital image is a 2-dimensional array of m×n pixels. 
Each pixel can be characterized by (i; j; k) where (i; j) 
indicate its position in an array and k represent the intensity 
of pixel. In the gray scale digital image deal with intensity 
information that is stored in an 8-bit integer, giving 
possible 256 gray levels in the interval [0, 255]. In this 
interval, salt and pepper noise can be represented with 
intensity of 255 and 0 in both gray scale and color image 
plane respectively. A cell state is affected by the states of 
its neighboring cell. When a pixel is identified as noise, its 
state is changed based on its neighborhood condition. The 
algorithm for noise elimination is presented in Algorithm 1. 
Moore neighborhood is used in the CA rule for noise 
removal on the gray scale and color image. In the CA rule, 
the state of the evolving cell at time t+1 depends on the 
state of itself and neighbor cells in the Moore neighborhood 
at time t. In this work, the next state of a pixel is 
determined by taking the average of its immediate neighbor 
except the noisy pixels. The iteration feature of CA is 
considered in achieving stability in presented algorithm. In 
proposed method based on CPU, S Threshold shows the 
stability factor. In each iteration Mean Square Error (MSE) 
value compute and compare to old MSE value. The CA 
framework is repeated to absolute difference value of these 
errors achieve to stability factor. 

In order to accelerate the performance of the proposed 
CA de-noising rule, a fragment shader is designed for 
execution on the GPU. The steps required for executing 
image processing tasks on GPU is illustrated in Figure 1. 
The images were stored as texture image in texture memory 
and texture data were allocated in consecutive sampler 
stages. The sampler stages are processed by designed 
fragment shader in parallel. Results of fragment shader 
transfer through the gl_FragColor [24, 25] to the frame 
buffer for display.  

 

 
 

Algorithm1 - Cellular Automata Filter for de-noising salt and pepper 
noise 
Require: m×n window image 
For all plane of (R, G, B) do 
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The steps of the fragment shader implemented for salt 

and pepper noise elimination is shown in Algorithm 2.  The 
fragment shader has been designed for a nine pixels 
neighborhood of an array of texture image. Due to the 
parallel processing capabilities of GPU, proposed fragment 
shader process all sampler stages in parallel. The iteration 
attribute of cellular automata will be covered by parallel 
processing ability of GPU. 
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Figure1. Steps of image processing execution on GPUs 

 

Algorithm 2. Fragment shader for impulse noise elimination of image 

1. initialize uniform variables to access texture location  
2. Map texture coordinates as a sampler 2D 
3. Find the impulse noise value in defined sampler 2D value If the value 

match with 0 or 255 go to step 4, otherwise go to step 6 
4. compute mean value of pixels in Moore neighborhood except noisy 

pixel 
5. replace the value of noisy pixel with obtained value Transfer the 

output to Frame Buffer to display in screen 

4. Evaluation of CA Framework for Noise Removal 

Evaluation of the image processing approach depends 
on applications and implementation requirements. In order 
to demonstrate the performance of the proposed technique, 
this section will provide both quantitative and qualitative 
assessment. Experimental results for the proposed method 
implemented on GPU and CPU will be presented in the 
following sections. 

Visual perceptions are proportional with qualitative 
criterion’s standards. In this paper, in addition to subjective 
evaluation of the proposed method, the quantitative 
measurement is also described to prove the superiority of 
the presented method. The quantitative evaluation are 
measured by following factors such as mean square error 
(MSE), peak signal-to-noise ratio (PSNR) and mean 
absolute error (MAE).Those are defined as:  
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Where the f(x, y) represents the original image, f; 
(x, y)is the restored image and M × Nis the size  of image. 
MSE is used  
to evaluate the ability of noise removal; PSNR is a term 
which is utilized for quality measurement of reconstruction 
process and MAE shows the ability of detail preservation.  
The performance of our proposed method in suppressing 
salt and pepper impulse noise are evaluated based on 

subjective and quantitative criterions for gray scale and 
color images in high density noise level. The CA de-
noising model presented is implemented on GPU and CPU. 
These methods were applied on standard Lena and Mandrill 
images (gray scale and color), which are contaminated by 
salt and pepper noise with noise ratio ranging from 10% to 
90%. 

4.1. Subjective Assessment 

Subjective evaluation of the proposed method for noise 
removal on Lena image with size of 512×512 at 8 and 24 
bitper pixel for gray scale and color are performed. In order 
to test the proposed algorithms on gray scale and color 
images, in the first experiment, the Lena image has been 
contaminated by salt-and-pepper noise where the noise 
ratios are 30, 50 and 70 percent. The performance of the 
proposed CA methods on CPU and GPU are compared 
with standard median filter (SMF) and decision based 
algorithm (DBA) [6] for gray scale images and scalar 
median filter (SMF) [12] and bit-mixing median filter 
(BMMF) [7] for color images. The visual quality results are 
illustrated in Figure 2 and Figure 3* with different filtering 
approaches on gray scale and color images. The column (a) 
in Figure 2 and Figure 3 show the original images, column 
(b) show the noisy images with noise level of 30, 50 and 70 
respectively. 

Figure 2 (c) show reconstructed image by standard 
median filter. The results demonstrate that SMF is suitable 
for low noise density omission. For high noise density 
image, even repetition of algorithms is not capable of 
completely eliminate the noise. 

The results show that the quality of the reconstructed 
image by DBA method declined in noise level higher than 
50% and output image is blurred. Column (e) and (f) in 
Figure 2 demonstrate the outcome of CA method on CPU 
and the proposed CA on GPU respectively. The results 
show that visual quality of the proposed method is better 
than the other compared methods. Science the proposed 
fragment shader processes all sampler stage in parallel; the 
proposed CA method on GPU is able to suppress high noise 
density just in one iteration while the proposed CA method 
on CPU requires repeating until achieving to stability 
factor. 

Column (c) of Figure 3 demonstrates the output of SMF 
method on color image. The restored images show this 
method is suitable for noise level lower than 50%. The 
results of BMMF are illustrated in column (d).  

 

                                                           
* For viewing Fig. 2, Fig 3 and Fig 4, make an inquiry to the 
corresponding author 
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The results show that this method is also applicable for 
image degraded by salt and pepper noise lower than 50% 
ratio. Column (e) and (f) of Figure 3 are shown the 
outcome of CA framework on CPU and GPU. The results 
clearly show that the proposed method is much better than 
the other compared methods.  

The consequences of CA proposed method on CPU and 
GPU for eradication of high density salt and pepper noises 
(90 percent) are shown in Figure 4 . The proposed CA 
method on CPU is able to remove completely high intensity 
of noise by repetition while the GPU based CA method is 
able to suppress high noise density just in one iteration.  

 

4.2. Subjective Assessment 

The results of quantitative criterions on gray scale 
Lenain different noise ratio of 10% to 70% are indicated in 
Figure 5. Figure 5 (a) shows that MSE values in DBA 
method in noise density lower than 40% is smaller than our 
proposed method, however in higher noise intensity the 
proposed method have more desirable MSE value 
compared with other method. Ascan be seen in Figure 5,(a) 
the MSE value in DBA algorithm in noise density higher 
than 50% has increased significantly.  

As can be observed in Figure 5 (c), the proposed 
method isable to preserve detail of image in high noise ratio 
better than other evaluated methods. The results illustrate 
proposed method is suitable for suppression of high level of 
salt and pepper noise. 

Figure 6 shows the results of measured quality 
criterions color Lena image in different noise ratio from 
10% to 70%. Figure 6 (a) shows that MSE values for the 
proposed method is smaller than other compared method in 
all experiments. Figure 6 (b) shows that proposed method 
has the best PSNR valuecompared to other methods. As can 
be observed in the proposed method outperformed other 
methods in preservation of detail in corrupted images. The 
results illustrate that our proposed method is performed 
well even for high level salt and pepper noise in color 
image. 
 

4.3. Time Computational Assessment 

The performance comparison is presented in term of 
therequired time for noise elimination. Noise suppression 
usinggray scale and color Lena and Mandrill images are 
performed at different noise level. All experiments are 
performed on a system equipped with Intel 1.66GHZ CPU, 
1GB RAM memory and NVIDIA GeForce 7400 GPU. 

Figure 7 (a) shows the required execution time for noise 
suppression on gray scale Lena image. As can be seen, the 
DBA method spent fixed time in all experiments. TheSMF 
is not capable to noise elimination in higher than 40% noise 
ratios; therefore the time has not increased. Increased noise 
density for the CPU based proposed CA method is repeated 

for full-noise suppression, therefore computation time 
increase.  

 

 

 

 
Figure 5. MSE, PSNR and MAE for gray scale Lena image 
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Figure 6. MSE, PSNR and MAE for color Lena image 

 
 
The GPU based proposed CA is applied in parallel 

onthe image and eradicates high noise density just in 
oneiteration. As you can be seen in the Figure 7 (a), the 
GPU implementation provides significant acceleration 
about 2.5 times fastercompared to CPU on gray scale 
image. Figure 7 (b) demonstrates the execution time for 
noise omission on color Lenaimage. As can be observed, 

the BMMF method has fixed time throughout the 
experiments. This method is unable to remove noise higher 
than 30%. The SMF is not capable to eliminate noisein 
higher than 40% noise ratios; therefore the time has not 
increased. The computation time of CPU based proposed 
CA in high noiseratio has increased due to the method is 
repeated for full-noise suppression. While the GPU based 
de-noising CA model is executedin parallel which increases 
the speed of execution. For comparing the GPU to the CPU 
execution time, the experiment is performed on Lena and 
Mandrill test image with different noise ratios using the 
proposed CA method. The results shown in Figure 7 (b) 
clearly indicate that the GPU implementation provides 
significant acceleration compared to CPU in color image. 
The proposed method on CPU requires iteration for noise 
reduction completely, while the proposed method on GPU 
is able to perform noise suppression in high noiseintensity 
just in single iteration of CA model. 

 

 
(a) 

 
(b) 

 
Figure 7. Computation time for noise elimination onLena image,  

(a) gray scale image and (b) Color image 
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methods are the fundamental parts for subsequent image 
processing. In this paper, CA is applied for low level image 
processing operations such as impulse noise filtering. In 
order to accelerate CA computations, we implemented the 
CA model on the GPU. This is possible due to the 
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flexibility of graphic pipeline and programming ability on 
Graphic Processor Units (GPUs).  
The CA de-noising filter executes well on gray scale and 
color image. Common filtering algorithms perform well 
with noise ratio lower than 30%; however these methods 
failed to remove noise in high noise density. The results 
show that the proposed method is able to eliminate high 
density noise that restored the corrupted image in highest 
quality and detail preserving capability compared to other 
assessed methods. The proposed methods on CPU and 
GPU are able to remove noise from images with 90% noise 
density in gray scale and color image. Comparison of 
execution time in GPU and CPU for noise elimination of 
corrupted image indicated that a factor of 2.5 times 
performance speed for gray scale image and 10 times 
performance speed for color image can be achieved. 
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