
 Journal of Computer & Robotics 7 (2), 2014 21-28

* Corresponding author. Email: jalalian.afsaneh@gmail.com

21

Fast Cellular Automata Implementation on Graphic Processor Unit
(GPU) for Salt and Pepper Noise Removal

Afsaneh Jalaliana*, Babak Karasfi b,Khairulmizam Samsudina, M.Iqbal Saripana, Syamsiah
Mashohora

a Department of Computer and Communication Systems engineering, Faculty of Engineering, Universiti Putra, Malaysia
bFaculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

 Received 14 September 2012; accepted 22 July 2013January 2012; accepted January

Abstract

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of
noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of
the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt and
pepper noise. In order to enhance the performance of the designed CA for noise removal, a parallel programming approach has been
adopted and implemented on GPU. The results obtained show that the proposed CA models implemented on general purpose processor and
GPU are able to suppress noise in high noise intensity up to 90 percents. The proposed CA implemented on GPU has successfully
outperformed the method implemented on CPU by factor of 2 for gray scale image and factor of 10 for color images.

Keywords: Cellular Automata; Graphic Processing Units; Salt and pepper noise

1. Introduction

One of the common and significant image processing
operations is image de-noising. Noise can befall from
innumerable sources and present in almost any image
processing system. Two fundamental types of noise are
produced during image acquisition process (i.e.Sensor
noise) and image transmission process (i.e., channel noise).
Noise filtering is the process of extracting the original
image information from noisy data. It is an essential part of
many image processing systems before subsequent image
processing techniques such as edge detection, segmentation
and pattern recognition can take place. It is also important
to remove the impulse noise in the images while at the
same time preserving the image integrity. The main
primacy of the noise removal method is its high
computational speed, which provides efficient filtering of
images for real-time applications [1]. Many existing noise
removal methods have been investigated but majority of
them are facing the problem of losing details which created
blurring effects and they require high computational
resources.

Due to the complexity in conventional image processing
methods, there has been much interest in using the large
scale homogeneous CAto execute parallel image.

CA is a powerful tool with inherent features that well-
match to run on parallel processors. This feature is
completely compatible with the data-parallel processing
platform such as GPU.

Dedicated GPU is becoming an integrated component in
computer system which is designed to operate on the large
amount of parallel data. Nowadays Open GL ES becomes
as a standard to support various embedded systems in
recent consumer market [2]. Processing speed is a
definitive factor in computer vision operators, particularly
for real-time applications [3]. By mapping computer vision
algorithms to the parallel architecture of GPU, execution
speed has been considerably increased[4].The
programming capabilities which have been incorporated in
these advanced processors increase the motivation for
utilizing GPU in image processing tasks.

In this paper, we proposed an ultra fast CA framework
that is inspired by presented method in [5] for impulse
noise removal in high density noise level of gray scale and
color images.We proposed on extending the method for
parallel execution on the GPU for salt and pepper noise
removal of color images. The proposed method is

22 A.Jalalian et al. / Fast Cellular automata implementation on Graphic Processor Unit (GPU) for Salt and pepper noise removal

compared with CA de-noising framework implemented on
general purpose processor or commonly referred as Central
Processor Unit(CPU).The presented method will be
compared with other existing noise removal methods such
as Standard Median Filter (SMF), Decision Based
Algorithm (DBA) [6] for gray scale image and Bit-Mixing
Median Filter (BMMF) [7] and Scalar Median Filter (SMF)
[8] for color image. DBA method finds out the corrupted
pixels by check the values in selected window and
exchange detected pixel by median value of the
neighboring pixels. The weakness of this method is in high
noise densities which the median value may be a corrupted
pixel that used for substitution.

The rest of this paper is organized as follows. Section 2
introduces the image de-noising method and presents the
preliminary concept of GPU and CA. Section 3 describes
the implementation of the proposed CA de-noising model
on CPU and GPU. Section 4 discusses the experimental
results of the proposed framework on different platforms
and concluding remarks are given in section 5.

2. Background

2.1. Image De-Noising

The impulsive noise that produces extreme within gray
scale or color plane pixels values incompatible with their
neighborhood is considered as salt and pepper noise in our
paper. The salt and pepper noise introduce extreme bright
value (positive pulse noise) and dark value (negative pulse
noise) in the image.

Filtering is the main approach for image de-noising,
which consists of linear filters and non-linear filters. The
most common non-linear method for removal of salt and
pepper noise are standard median filters and several
modified median filter [9, 10]. This filter ranks the
neighborhood pixel intensities within a filtering window
and replaces the center pixel with the median value. All
pixels even uncorrupted pixels are treated by median filter,
as a consequence alteration of desirable pixel by this filter
is the main cause for smoothing and blurring of the output
image [11]. Therefore, noise detection algorithms which
distinguish noise-free and corrupted pixels is required. For
the case of high density salt and pepper noise, a decision
based algorithm [6] has been proposed. In this method, the
corrupted pixels are exchanged by median value of the
neighboring pixels. The weakness of this method is in high
noise density scenario, which the median value may use a
corrupted pixel for substitution.

Extending the median operator to color images is a
complex task since the color vectors have to be sorted
according to an order. Some classical different approaches
have been proposed during the last years to extend median
filters for color image processing. These methods include
Vector Median Filter [12], Bit-mixing Median Filter [7],
Adaptive Scalar Median Filter [12] and Color Difference
map [7]. Some of these methods require pre-processing

such as calculation of distance, angle and Euclidean
distance between the color vectors to function properly.
These additional processes increase the complexity of the
algorithm and computational time for these noise filters.
The major drawback of these vector filters is the failure to
preserve texture of the resulting image which is usually
smoothed and blurred.

The basic requirement to develop a parallel system
includes the support of multiple processing data with an
availability of suitable parallel hardware. CA is well known
as a powerful tool for modelling parallel phenomena.
Support of parallel paradigm by CA and GPU allows these
tools to implement parallel algorithms [13, 14].

In recent years, there has been much interest in using a
large scale homogeneous cellular array to a variety of
image processing problems. Several work on CPU-based
CA models include edge detection [15], pattern recognition
[9, 16] and image enhancement [15] have been reported. In
our research, we focus on non-linear filters for salt and
pepper noise removal based on CA method and then
compare its performance with other existing methods. The
main advantage of the presented CA filter is, if that the
more iteration it performs, the CA filter is able to remove
completely high-intensity noise while preserving the image
[5]. The performance of the filtering algorithm is analyzed
in terms of mean square error (MSE) [7], peak-signal- to-
noise ratio (PSNR) [17, 18] and mean absolute error
(MAE)[8].

2.2. Graphic Processor Unit (GPU)

GPU are fast, inexpensive data-parallel arithmetic
architecture specialized for computation of an array of
image. In recent years, flexible programming pipeline on
modern GPUs is introduced. The programmable stages
called shaders are embedded in new generation of GPU that
includes vertex shader and fragment or pixel shader. The
fragment processor of the GPU is powerful and
programmable, which operates in single instruction
multiple data (SIMD) parallel processing architecture [19-
21]. There are various image processing tasks that have
been implemented on GPU which produced significant
performance in speeding up the complex task such as
watershed operation and image filtering [22, 23].

The GPU programming can be performed through a
common application programming interface (API) such as
DirectX and OpenGL by different shading language such as
GLSlang (GLSL), C for Graphics (CG) and high level
shading language (HLSL). In this work GLSL [24, 25] is
used to implement the CA framework on GPU. GLSL
shaders are small code string, which is transmitted to GPU
hardware for compile, interpretation and execution. These
short codes will be applicable on equipment that supports
GLSL API structure such as cell phones, gaming consoles,
laptop and personal computers [26].

23 Journal of Computer & Robotics 7 (2), 2014 21-28

2.3. Cellular Automata (CA)

CA is a dynamical system whose action in time and
space is discrete. A CA can be arranged as uniform grid of
cells, each includes a few bits of data and a single rule is
operated at each discrete time step [19]. The structure of
CA consists of state of cell (S), cell space neighborhood
(N) and local rules (R). The local rules define the operation
of CA and the CA's rule is applied repetitively throughout
the system and new states can be calculated. This feature is
suitable for parallel processing implementation [27].

3. Implementation of CA Framework for Noise
Removal

A digital image is a 2-dimensional array of m×n pixels.
Each pixel can be characterized by (i; j; k) where (i; j)
indicate its position in an array and k represent the intensity
of pixel. In the gray scale digital image deal with intensity
information that is stored in an 8-bit integer, giving
possible 256 gray levels in the interval [0, 255]. In this
interval, salt and pepper noise can be represented with
intensity of 255 and 0 in both gray scale and color image
plane respectively. A cell state is affected by the states of
its neighboring cell. When a pixel is identified as noise, its
state is changed based on its neighborhood condition. The
algorithm for noise elimination is presented in Algorithm 1.
Moore neighborhood is used in the CA rule for noise
removal on the gray scale and color image. In the CA rule,
the state of the evolving cell at time t+1 depends on the
state of itself and neighbor cells in the Moore neighborhood
at time t. In this work, the next state of a pixel is
determined by taking the average of its immediate neighbor
except the noisy pixels. The iteration feature of CA is
considered in achieving stability in presented algorithm. In
proposed method based on CPU, S Threshold shows the
stability factor. In each iteration Mean Square Error (MSE)
value compute and compare to old MSE value. The CA
framework is repeated to absolute difference value of these
errors achieve to stability factor.

In order to accelerate the performance of the proposed
CA de-noising rule, a fragment shader is designed for
execution on the GPU. The steps required for executing
image processing tasks on GPU is illustrated in Figure 1.
The images were stored as texture image in texture memory
and texture data were allocated in consecutive sampler
stages. The sampler stages are processed by designed
fragment shader in parallel. Results of fragment shader
transfer through the gl_FragColor [24, 25] to the frame
buffer for display.

Algorithm1 - Cellular Automata Filter for de-noising salt and pepper
noise
Require: m×n window image
For all plane of (R, G, B) do

)(
max

planeMAXpixel
t



)(
min

planeMINpixel
t



 For all pixel of plane do

 If
tt

ji

t
pixelpixelpixel

max,min
 then

t

ji

t

ji
pixelpixel

,

1

,




 Else

 If
tt

pixelpixel
maxmin

 then

 If 0
min


t

pixel then

tt

ji
pixelpixel

min

1

,




 End if

 If 255
max


t

pixel then

tt

ji
pixelpixel

max

1

,




 End if
 Else

)(
1

PlaneMEANpixel
t

mean




 If Thresholdpixelpixel
t

mean

t

ji


,
then

t

ji

t

ji
pixelpixel

,

1

,




Else
t

mean

t

ji
pixelpixel 

1

,

 End if
 End if

 End for
 End for

The steps of the fragment shader implemented for salt

and pepper noise elimination is shown in Algorithm 2. The
fragment shader has been designed for a nine pixels
neighborhood of an array of texture image. Due to the
parallel processing capabilities of GPU, proposed fragment
shader process all sampler stages in parallel. The iteration
attribute of cellular automata will be covered by parallel
processing ability of GPU.

24 A.Jalalian et al. / Fast Cellular automata implementation on Graphic Processor Unit (GPU) for Salt and pepper noise removal

Figure1. Steps of image processing execution on GPUs

Algorithm 2. Fragment shader for impulse noise elimination of image

1. initialize uniform variables to access texture location
2. Map texture coordinates as a sampler 2D
3. Find the impulse noise value in defined sampler 2D value If the value

match with 0 or 255 go to step 4, otherwise go to step 6
4. compute mean value of pixels in Moore neighborhood except noisy

pixel
5. replace the value of noisy pixel with obtained value Transfer the

output to Frame Buffer to display in screen

4. Evaluation of CA Framework for Noise Removal

Evaluation of the image processing approach depends
on applications and implementation requirements. In order
to demonstrate the performance of the proposed technique,
this section will provide both quantitative and qualitative
assessment. Experimental results for the proposed method
implemented on GPU and CPU will be presented in the
following sections.

Visual perceptions are proportional with qualitative
criterion’s standards. In this paper, in addition to subjective
evaluation of the proposed method, the quantitative
measurement is also described to prove the superiority of
the presented method. The quantitative evaluation are
measured by following factors such as mean square error
(MSE), peak signal-to-noise ratio (PSNR) and mean
absolute error (MAE).Those are defined as:

 
2

1 1

1),(ˆ),(
 

 
N

i

M

j
NM yxfyxfMSE (1)

  






2
)),(ˆmax()),,(max(maxlog10 MSE

yxfyxfPSNR (2)

2

1 1

1),(ˆ),(
 

 
N

i

M

j
NM yxfyxfMAE (3)

Where the f(x, y) represents the original image, f;
(x, y)is the restored image and M × Nis the size of image.
MSE is used
to evaluate the ability of noise removal; PSNR is a term
which is utilized for quality measurement of reconstruction
process and MAE shows the ability of detail preservation.
The performance of our proposed method in suppressing
salt and pepper impulse noise are evaluated based on

subjective and quantitative criterions for gray scale and
color images in high density noise level. The CA de-
noising model presented is implemented on GPU and CPU.
These methods were applied on standard Lena and Mandrill
images (gray scale and color), which are contaminated by
salt and pepper noise with noise ratio ranging from 10% to
90%.

4.1. Subjective Assessment

Subjective evaluation of the proposed method for noise
removal on Lena image with size of 512×512 at 8 and 24
bitper pixel for gray scale and color are performed. In order
to test the proposed algorithms on gray scale and color
images, in the first experiment, the Lena image has been
contaminated by salt-and-pepper noise where the noise
ratios are 30, 50 and 70 percent. The performance of the
proposed CA methods on CPU and GPU are compared
with standard median filter (SMF) and decision based
algorithm (DBA) [6] for gray scale images and scalar
median filter (SMF) [12] and bit-mixing median filter
(BMMF) [7] for color images. The visual quality results are
illustrated in Figure 2 and Figure 3* with different filtering
approaches on gray scale and color images. The column (a)
in Figure 2 and Figure 3 show the original images, column
(b) show the noisy images with noise level of 30, 50 and 70
respectively.

Figure 2 (c) show reconstructed image by standard
median filter. The results demonstrate that SMF is suitable
for low noise density omission. For high noise density
image, even repetition of algorithms is not capable of
completely eliminate the noise.

The results show that the quality of the reconstructed
image by DBA method declined in noise level higher than
50% and output image is blurred. Column (e) and (f) in
Figure 2 demonstrate the outcome of CA method on CPU
and the proposed CA on GPU respectively. The results
show that visual quality of the proposed method is better
than the other compared methods. Science the proposed
fragment shader processes all sampler stage in parallel; the
proposed CA method on GPU is able to suppress high noise
density just in one iteration while the proposed CA method
on CPU requires repeating until achieving to stability
factor.

Column (c) of Figure 3 demonstrates the output of SMF
method on color image. The restored images show this
method is suitable for noise level lower than 50%. The
results of BMMF are illustrated in column (d).

* For viewing Fig. 2, Fig 3 and Fig 4, make an inquiry to the
corresponding author

Journal of Computer & Robotics 7 (2), 2014 21-28

25

The results show that this method is also applicable for
image degraded by salt and pepper noise lower than 50%
ratio. Column (e) and (f) of Figure 3 are shown the
outcome of CA framework on CPU and GPU. The results
clearly show that the proposed method is much better than
the other compared methods.

The consequences of CA proposed method on CPU and
GPU for eradication of high density salt and pepper noises
(90 percent) are shown in Figure 4 . The proposed CA
method on CPU is able to remove completely high intensity
of noise by repetition while the GPU based CA method is
able to suppress high noise density just in one iteration.

4.2. Subjective Assessment

The results of quantitative criterions on gray scale
Lenain different noise ratio of 10% to 70% are indicated in
Figure 5. Figure 5 (a) shows that MSE values in DBA
method in noise density lower than 40% is smaller than our
proposed method, however in higher noise intensity the
proposed method have more desirable MSE value
compared with other method. Ascan be seen in Figure 5,(a)
the MSE value in DBA algorithm in noise density higher
than 50% has increased significantly.

As can be observed in Figure 5 (c), the proposed
method isable to preserve detail of image in high noise ratio
better than other evaluated methods. The results illustrate
proposed method is suitable for suppression of high level of
salt and pepper noise.

Figure 6 shows the results of measured quality
criterions color Lena image in different noise ratio from
10% to 70%. Figure 6 (a) shows that MSE values for the
proposed method is smaller than other compared method in
all experiments. Figure 6 (b) shows that proposed method
has the best PSNR valuecompared to other methods. As can
be observed in the proposed method outperformed other
methods in preservation of detail in corrupted images. The
results illustrate that our proposed method is performed
well even for high level salt and pepper noise in color
image.

4.3. Time Computational Assessment

The performance comparison is presented in term of
therequired time for noise elimination. Noise suppression
usinggray scale and color Lena and Mandrill images are
performed at different noise level. All experiments are
performed on a system equipped with Intel 1.66GHZ CPU,
1GB RAM memory and NVIDIA GeForce 7400 GPU.

Figure 7 (a) shows the required execution time for noise
suppression on gray scale Lena image. As can be seen, the
DBA method spent fixed time in all experiments. TheSMF
is not capable to noise elimination in higher than 40% noise
ratios; therefore the time has not increased. Increased noise
density for the CPU based proposed CA method is repeated

for full-noise suppression, therefore computation time
increase.

Figure 5. MSE, PSNR and MAE for gray scale Lena image

0

500

1000

1500

2000

10 20 30 40 50 60 70

M
SE

Noise level (%)

(a) MSE for different noise level on gray scale Lena
image

SMF

DBA

proposed CA

Noisy image

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70

P
SN

R
 (
d
b
)

Noise level (%)
(b) PSNR for different noise level on gray scale Lena

image

SMF

DBA

proposed CA

Noisy image

0

5

10

15

20

10 20 30 40 50 60 70

M
A
E

Noise level (%)

(c) MAE for different noise level on gray scale Lena
image

SMF

DBA

proposed CA

Noisy image

26 A.Jalalian et al. / Fast Cellular automata implementation on Graphic Processor Unit (GPU) for Salt and pepper noise removal

Figure 6. MSE, PSNR and MAE for color Lena image

The GPU based proposed CA is applied in parallel

onthe image and eradicates high noise density just in
oneiteration. As you can be seen in the Figure 7 (a), the
GPU implementation provides significant acceleration
about 2.5 times fastercompared to CPU on gray scale
image. Figure 7 (b) demonstrates the execution time for
noise omission on color Lenaimage. As can be observed,

the BMMF method has fixed time throughout the
experiments. This method is unable to remove noise higher
than 30%. The SMF is not capable to eliminate noisein
higher than 40% noise ratios; therefore the time has not
increased. The computation time of CPU based proposed
CA in high noiseratio has increased due to the method is
repeated for full-noise suppression. While the GPU based
de-noising CA model is executedin parallel which increases
the speed of execution. For comparing the GPU to the CPU
execution time, the experiment is performed on Lena and
Mandrill test image with different noise ratios using the
proposed CA method. The results shown in Figure 7 (b)
clearly indicate that the GPU implementation provides
significant acceleration compared to CPU in color image.
The proposed method on CPU requires iteration for noise
reduction completely, while the proposed method on GPU
is able to perform noise suppression in high noiseintensity
just in single iteration of CA model.

(a)

(b)

Figure 7. Computation time for noise elimination onLena image,

(a) gray scale image and (b) Color image

5. Conclusion
Low level image processing tasks such as noise removal

methods are the fundamental parts for subsequent image
processing. In this paper, CA is applied for low level image
processing operations such as impulse noise filtering. In
order to accelerate CA computations, we implemented the
CA model on the GPU. This is possible due to the

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70

M
SE

Noise level (%)

(a) MSE for different noise level on color Lena image

SMF

BMMF

proposed CA

Noisy image

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70

P
SN

R
 (
d
b
)

Noise level (%)
(b) PSNR for different noise level on color Lena image

SMF

BMMF

proposed CA

Noisy image

0

5

10

15

20

25

30

10 20 30 40 50 60 70

M
A
E

Noise level (%)

(c) MAE for different noise level on color Lena image

SMF

BMMF

proposed CA

Noisy image

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70

Ti
m
e
 (
m
s)

Noise level (%)

SMF

DBAIN

CPU base
proposed CA

GPU base
proposed CA

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70

Ti
m
e
 (
m
s)

Noise level (%)

SMF

BMMF

CPU base
proposed CA

GPU base
proposed CA

Journal of Computer & Robotics 7 (2), 2014 21-28

27

flexibility of graphic pipeline and programming ability on
Graphic Processor Units (GPUs).
The CA de-noising filter executes well on gray scale and
color image. Common filtering algorithms perform well
with noise ratio lower than 30%; however these methods
failed to remove noise in high noise density. The results
show that the proposed method is able to eliminate high
density noise that restored the corrupted image in highest
quality and detail preserving capability compared to other
assessed methods. The proposed methods on CPU and
GPU are able to remove noise from images with 90% noise
density in gray scale and color image. Comparison of
execution time in GPU and CPU for noise elimination of
corrupted image indicated that a factor of 2.5 times
performance speed for gray scale image and 10 times
performance speed for color image can be achieved.

References

[1] Smolka, B., R. Lukac, and K. Plataniotis. Fast noise
reduction in cdna microarray images. in 23rd
Biennial Symposium on Communications. 2006.

[2] Lee, H. and N. Baek. Implementing OpenGL ES on
OpenGL. in 13th International Symposium on
Consumer Electronics. 2009.

[3] Fung, J. and S. Mann. Computer vision signal
processing on graphics processing units. in IEEE
International Conference on Acoustics, Speech, and
Signal Processing. 2004.

[4] Castaño-Díez, D., et al., Performance evaluation of
image processing algorithms on the GPU. Journal of
structural biology, 2008. 164(1): pp. 153-160.

[5] Liu, S., H. Chen, and S. Yang. An Effective Filtering
Algorithm for Image Salt-pepper Noises Based on
Cellular Automata. in Congress on Image and Signal
Processing. 2008.

[6] Srinivasan, K. and D. Ebenezer, A new fast and
efficient decision-based algorithm for removal of
high-density impulse noises. IEEE Signal Processing
Letters, 2007. 14(3): pp. 189-192.

[7] Dinet, E. and F. Robert-Inacio. Color median
filtering: a spatially adaptive filter. in Proceedings of
Image and Vision Computing New Zealand. 2007.

[8] Vijaykumar, V., et al., Robust statistics based
algorithm to remove salt and pepper noise in images.
International Journal of Information and
Communication Engineering, 2009. 5(3): pp. 164-173.

[9] Sun, T. and Y. Neuvo, Detail-preserving median
based filters in image processing. Pattern Recognition
Letters, 1994. 15(4): pp. 341-347.

[10] Zhang, S. and M.A. Karim, A new impulse detector
for switching median filters. IEEE Signal Processing
Letters, 2002. 9(11): pp. 360-363.

[11] Xu, Q., R. Zhang, and M. Sbert. A New Approach to
Salt-and-Pepper Noise Removal for Color Image. in
Fifth International Joint Conference on INC, IMS and
IDC. 2009.

[12] Koschan, A. and M. Abidi. A comparison of median
filter techniques for noise removal in color images. in
7th German workshop on color image processing.
2001.

[13] Tran, J., D. Jordan, and D. Luebke, New challenges
for cellular automata simulation on the GPU. Poster
SIGGRAPH, 2004.

[14] Gobron, S., H. Bonafos, and D. Mestre, GPU
accelerated computation and visualization of
hexagonal cellular automata, in Cellular
Automata2008. pp. 512-521.

[15] Rosin, P.L., Training cellular automata for image
processing. IEEE Transactions on Image Processing,
2006. 15(7): pp. 2076-2087.

[16] Kehtarnavaz, N. and M. Gamadia, Real-time image
and video processing: from research to reality.
Synthesis Lectures on Image, Video & Multimedia
Processing, 2006. 2(1): pp. 1-108.

[17] Toh, K.K.V., H. Ibrahim, and M.N. Mahyuddin, Salt-
and-pepper noise detection and reduction using fuzzy
switching median filter. IEEE Transactions on
Consumer Electronics, 2008. 54(4): pp. 1956-1961.

[18] Wang, H. and L. Guoming. A New Image Filter for
Impulsive Noise Based on Rough Sets. in Congress on
Image and Signal Processing. 2008.

[19] Babenko, P. and M. Shah, MinGPU: a minimum GPU
library for computer vision. Journal of Real-Time
Image Processing, 2008. 3(4): pp. 255-268.

[20] Maresca, M., M.A. Lavin, and H. Li, Parallel
architectures for vision. Proceedings of the IEEE,
1988. 76(8): pp. 970-981.

[21] Tarditi, D., S. Puri, and J. Oglesby. Accelerator: using
data parallelism to program GPUs for general-
purpose uses. in ACM SIGARCH Computer
Architecture News. 2006.

[22] Kauffmann, C. and N. Piche. Cellular automaton for
ultra-fast watershed transform on gpu. in 19th
International Conference on Pattern Recognition
2008.

[23] Fialka, O. and M. Cadik. FFT and convolution
performance in image filtering on GPU. in Tenth
International Conference on Information
Visualization. 2006.

[24] Rost, R.J., Open GL: Shading Language2004:
Addison-Wesley Professional.

[25] Wright, R.S. and B. Lipchak, OpenGL superbible.
Vol. 1. 2000: Waite Group Press Indianapolis.

[26] Munshi, A., D. Ginsburg, and D. Shreiner, OpenGL
ES 2.0 programming guide2008: Pearson Education.

[27] Cannataro, M., et al., A parallel cellular automata
environment on multicomputers for computational
science. Parallel Computing, 1995. 21(5): pp. 803-
823.

[28] Barry, W., Parallel Programming: Techniques and
Applications Using Networked Workstations and
Parallel Computers, 2/E2006: Pearson Education
India.

