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Abstract 

Titanium dioxide (TiO2)nanoparticles have been frequently employed in the environmental treatment and purification purposes as a 
cheap and highly efficient photocatalyst. A photocatalyst can facilitate the breakdown and removal of a variety of environmental pollutants 
at room temperature. TiO2 photocatalyst is the best candidatebecause of its strong oxidized ability, non-toxicity and longthermal 
photostability. The TiO2 is also importantand need deep studies because it can be used as self-cleaningand anti-fogging glass in future.In 
this paper, TiO2 nanoparticles were synthesized by liquid phase method. The samples were characterized by x-ray diffraction (XRD) and 
transmission electron microscopy (TEM) analyses after heat treatments. The XRD results show the sharp picks after annealing process. The 
TEM results reveal that the size of nanoparticles is in the range of 20-40 nm in diameter. Raman scattering pattern of the TiO2 
nanoparticles confirm the TEM analysis and indicate the anatase phase. 
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1. Introduction 

The potential benefits of photocatalysis have been 
reported in a large number of studies published in recent 
decades. Photo-catalysis has been applied in water 
treatment and air pollution control. Super-hydrophobic self-
cleaning, called Lotus effect, utilizes right combination of 
surface chemistry and roughness to force water droplets to 
form high contact angle on a surface, easily roll off a 
surface and pick up dirt particles. A photocatalyst can 
facilitate the breakdown and removal of a variety of 
environmental pollutants at room temperature by oxidation, 
using either sunlight or artificial light as an energy source. 
Nano-TiO2 photocatalysis has drawn much attention 
recently due to its promising application in chemical 
conversion and storage of solar energy for solar cells, 
hydrogen production, refractory pollutants elimination and 
self-cleaning surface [1–4]. Titanium dioxide, as a cheap, 
nontoxic, and highly efficient photocatalyst, has been 
frequently employed in the environmental treatment, 
purification purposes and computer sciences. [4–9].  

The pairs of free electrons and holes are formed in the 
conduction and valence band region of TiO2 under the UV 
irradiation, which react with oxygen and adsorbed 
hydroxylgroup [4]. These highly reactive oxygen species 
possess strong oxidation potential to decompose a variety 
of calcitrant organic pollutants and kill pathogenic 

microorganisms [10]. However, the large-scale application 
of titanium dioxide as an efficient photocatalyst has been 
hampered by the notorious problem of recycling the 
photocatalytic powders in the aqueous purification. In this 
context, nano-crystalline titanium dioxide coatings on some 
substrates with large surface areas have received much 
attention in recent years. Through various coating 
techniques, the optical coating of TiO2 films were 
successfully achieved on different substrates, such as glass 
[11–15], silica [13], stainless steels [16–19]  

  In the photo-oxidative removal of potentially toxic 
organic or inorganic compounds present in the 
environment, primary attention has been devoted to the role 
of titanium dioxide (TiO2) over compounds such as ZnO, 
CdS. This attention is due to its high photocatalytic 
activity, biological and chemical inertness and stability, 
resistance to photo-corrosion, low cost, nontoxicity, and 
favourable band-gap energy [20]. The photo-catalytic 
activity of titania is strongly affected by physicochemical 
features of the particles, with respect to both structural and 
morphological characteristics. From a structural point of 
view, TiO2 can crystallize in three different polymorphic 
forms: anatase (tetragonal), rutile (tetragonal) and brookite 
(orthorhombic). The anatase polymorph is generally 
reported to show the highest photo-activity compared to 
either brookite or rutile polymorphs because of the low 
recombination rate of its photo-generated electrons and 
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holes. When TiO2 catalysts are subjected to irradiation with 
photons of energy equal to or higher than their band gap, 
the generated electron–hole pairs can induce the formation 
of reactive oxygen species, such as hydroxyl radical and 
superoxide radical that are directly involved in the 
oxidation processes leading to the degradation of both 
contaminants and microorganisms [21–25]. Evidence for 
the low toxicity of TiO2 nanoparticles comes from 
cosmetics industry, with the 20-year long history of human 
use in sun screen preparations. There are a lot of studies 
which prove that micro- or nano-sized TiO2 particles are 
not (photo) mutagenic or (photo) genotoxic to humans. 
Above all, there is no difference between micro and nano 
TiO2 in distribution and elimination from the body [26]. 

Generation of charge carriers: 
TiO2 + hν → h+ + e- 

Trapping of charge carriers 
h+ + Ti4+OH ↔ (Ti4+OH)+ 

e- + Ti4+OH → Ti3+OH 
e- + Ti4+ → Ti3+ 

Recombination of charge carriers 
e- + (Ti4+OH)+ → Ti4+OH 
h+ + Ti3+OH → Ti4+OH 

Transfer of charge carriers to the surface 
(Ti4+OH)+ → Ti4+OH 

Scheme 1. Mechanism of photocatalysis by TiO2 

 
Moreover, other properties of self-cleaning could be 

modified with the use of TiO2 nanoparticles, such as: 
hydrophobicity/hidrophilicity, UV protection, antibacterial 
properties and anti-wrinkle resistance.  

Photocatalysis represents a photo-induced chemical 
reaction accelerated in the presence of the catalyst. This 
implies that both light and a catalyst are necessary for a 
chemical reaction to occur. TiO2 is a semiconductor and its 
molecular orbitals can be approximated with bands, out of 
which the valence band and the conductive band, separated 
by the energy gap, are the most important. The mechanism 
of TiO2 photocatalysis involves few stages (Scheme 1).  

When TiO2 particles absorb light, electrons are excited 
to the conduction band, and positively charged holes 
remain in the valence band. Generated charge carriers can 
recombine nonradiatively or radiatively, or migrate to the 
surface of the photocatalyst, and get trapped at certain 
places of the crystal lattice, subsequently reacting with e-
donor or e-acceptor molecular species adsorbed at the 
photocatalyst surface. The competition between these two 
processes determines the overall efficiency of the 
photocatalyst. The electrons and the holes generated in 
TiO2 nanoparticles are localized in different defect sites of 
the material.  

The mechanism of oxidation and reduction of molecular 
species involves the generation of superoxide anions and 
hydroxyl radicals. The conduction band e- reacts with 
adsorbed oxygen leading to the formation of superoxide 
anions. The holes in the valence band react with water and 
generate hydroxyl radicals, or react directly with adsorbed 
organic molecules. Also, hydroxyl radicals can oxidize 

wide a variety of organic molecules. This process in large 
excess of photocatalyst finally leads to the complete 
mineralization of organic molecules yielding CO2 and H2O 
molecules. There are a number of papers describing the 
decomposition routes of chemical warfare agents and their 
simulants. Artificial superhydrophobic surfaces can be 
produced in many ways, including template synthesis, 
phase separation, crystallization control, etching, sol-gel 
processing, layer by layer deposition, and electrospinning 
[27].  

In this article, TiO2 nanoparticles are successfully 
synthesized by liquid phase method under given conditions 
with Titanium (IV) oxide sulfate (TiOSO4), sulfuric acid 
(H2SO4) and urea. The characterization of the samples is 
studied by TEM and XRD analyses after calcination.  
 

2.  Materials and Methods 
The synthesis of TiO2 nanoparticles was carried out by 

chemical method. The liquid phase process of the 
nanoparticles is as follow: TiOSO4 as the source for the 
oxidizing elements, H2SO4 and urea were used as fuels 
(reducing agents). The reaction was started with the 
stoichiometric mixture of fuel and the oxysulfate. Next, the 
mixture was placed on a preheated hot plate, with the 
objective of ensuring homogeneous mixing and starting 
dehydration of the aqueous mixture. The reaction was 
transferred to a preheated furnace and calcinated, where the 
reaction was accompanied by release of a large amount of 
gases.  

The automotive glasses were used as the substrates. The 
specimens in the form of slides with dimension of 100mm× 
20mm×2mm were used as the substrate to support the TiO2 
films. Before the deposition, glass substrates were 
ultrasonically cleaned using acetone and ethanol 
respectively. Finally they were thoroughly washed with 
water and dried. TiO2 thin film was deposited on substrate 
at room temperature. Substrates were immersed in the TiO2 
sol prepared for 30 minutes and dried at room temperature 
followed by the drying at 120 oC for 1 hour in an oven. In 
order to obtain nano-TiO2 powder, the TiO2 sol prepared 
was oven dried at 110 oC and calcined at 400 oC for 1 hour.  

The morphology and structure of the prepared 
nanoparticles were characterized by TEM and XRD. The 
specification of the size and shape of the nanoparticles 
were examined by TEM analysis using a Philips EM 208. 
To determine the nanoparticles’ structure, the XRD was 
performed using a Seifert with Cu-Kα radiation 
(wavelength=1.54 A°). The Raman spectrum of the as-
prepared TiO2nanoparticles were collected by using a 
Thermo Nicolet Almega dispersive micro-Raman scattering 
spectrometer operating by a 532 nm laser line as the second 
harmonic of a Nd:YLF laser. 
 

3. Results and Discussion 

As a new material, nano-sized TiO2 is a great interest of 
many scientists in the recent years. Its small size and large 
specific surface area allow for certain unique unusual 
physio-chemical properties. Nano- TiO2 has the tightly 
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Fig. 4.TEM images of the TiO2 nanoparticles 

4. Conclusion 

In conclusion, the self-cleaning TiO2 superhydrophobic 
layers were successfully fabricated on glass. The XRD 
pattern of annealed TiO2 nanoparticles showed the sharp 
picks that reveals the crystalline nanoparticles. TEM image 
of the TiO2 indicated the uniform nanoparticles. The peaks 
appeared in Raman scattering is ascribed to the anatas 
phase TiO2. 
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