
 Journal of Computer and Robotics 1 (2010) 1-11

1

An Integrated Temporal Partitioning and Mapping Framework for

Improving Performance of a Reconfigurable Instruction Set Processor*

Farhad Mehdipour
a **

, Hamid Noori
b
, Morteza Saheb Zamani

c
, Hiroaki Honda

d
,

Koji Inoue
a
, Kazuaki Murakami

a

a Faculty of Information Science and Electrical Engineering, Department of Informatics, Kyushu University, Fukuoka, Japan

b School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
c Department of Computer Engineering and IT, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

d Institute of Systems, Information Technologies and Nanotechnologies, Fukuoka, Japan

Received 5 December 2008, revised 9 September 2009, accepted 21 September 2009

Abstract

Reconfigurable instruction set processors allow customization for an application domain by extending the core instruction set architecture.
Extracting appropriate custom instructions is an important phase for implementing an application on a reconfigurable instruction set
processor. A custom instruction (CI) is usually extracted from critical portions of applications and implemented on a reconfigurable
functional unit. In this paper, our proposed RFU architecture for a reconfigurable instruction set processor is introduced. As the main
contribution of this work, an integrated framework of temporal partitioning and mapping is introduced that partitions and maps CIs on the
RFU. Temporal partitioning iterates and modifies partitions incrementally to generate CIs. The proposed framework improves the timing
performance particularly for the applications comprising a considerable amount of CIs that could not be implemented on the RFU due to
architectural limitations. Furthermore, exploiting similarity detection and merging as two complementary techniques for the integrated
framework brings about reduction in the configuration memory size.

Keywords: Reconfigurable instruction set processor, Custom instruction, Reconfigurable functional unit, Temporal partitioning.

1. Introduction

Synthesis of application-specific instruction-set

processors (ASIPs) has been an important design

methodology for system-on-chip processors in the last

decade. ASIPs have more potentials to meet the high-

performance demands of embedded applications, compared
to general purpose processors (GPPs) but the synthesis of

ASIPs traditionally involved the generation of a complete

instruction set architecture for the targeted application. On

the other hand, GPPs are very flexible but may not offer the

necessary performance. Reconfigurable instruction set

processor is one of the recent trends in customization. An

important feature of this design method is extending an

existing processor core with units specialized for a given

domain, rather than designing a custom processor

completely. The main motivation toward customization of

existing processors versus the design of complete ASIPs is

to avoid the complexity and cost of complete processor and
tool set development.

Reconfigurable instruction set processors allow addition

of a functional unit or co-processor and application-specific

custom instructions (CIs) to the core instruction set

architecture to meet the critical computational demands of a

target application ‎[3]. Instruction set customization is an

effective way to improve processor performance and also to
meet the power demands of embedded applications. It also

maintains a degree of system programmability, which

enables them to be utilized with more flexibility. Using a

reconfigurable instruction set processor with a

reconfigurable functional unit proposes favorable tradeoff

between efficiency and flexibility while keeping design

turnaround time much shorter.

The reconfigurable part of a reconfigurable instruction

set processor executes critical portions of an application to

gain higher performance. It can be fine-grained or coarse-

grained ‎[7]. In fine-grained systems processing elements

are typically logic gates, flip-flops and look-up tables. They
operate at the bit level, implementing a Boolean function of

a finite-state machine. Also, they are more flexible but they

are slower compared with the coarse-grained one. On the


 A portion of this article appeared in Proceedings of the 11

th
 Asia-Pacific Computer Systems Architecture Conference (ACSAC'06). This is an expanded

version that includes over 30% new materials and results.
**

 Corresponding author. E-mail: farhad@c.csce.kyushu-u.ac.jp

mailto:farhad@c.csce.kyushu-u.ac.jp

F. Mehdipour et al. / An Integrated Temporal Partitioning and Mapping …

2

other hand, in coarse-grained hardware, the processing

elements may contain complete functional units, like ALUs
that operate upon multiple-bit words. Coarse-grained

hardware demand for less configuration memory and

mapping of instructions on them is easier ‎[7].

By creating application-specific extensions to an

instruction set, the critical portions‎ of‎ an‎ application’s‎

dataflow graph (DFG) can be accelerated by using custom

functional units. The nodes of these DFGs are the

instructions of critical potions of applications and the edges

of DFGs represent data dependencies between instructions

corresponding to a sequence of instructions that are

extracted from hot basic blocks (HBBs). HBBs are basic

blocks which are executed more than a predefined number
of times. A basic block is a sequence of instructions that is

terminated by a control instruction such as branch ‎[13].

Extracting CIs from applications is an important stage in

accelerating application execution. Some generated CIs

cannot be mapped on reconfigurable hardware because

some RFU constraints, like physical constraints, cannot be

considered at the CI generation phase. We call this kind of

CIs rejected CIs. Two different strategies are used for

rejected CIs. In the first case, rejected CIs are run on the

base line processor, and so, this offers no speedup. As the

second strategy, we suggest using approaches to recover
and execute rejected CIs on the RFU rather than the base

processor. To achieve this goal, two approaches are

proposed. In the first approach, a CI generation tool is used

to regenerate the CIs from HBBs according to the RFU

constraints.

As another approach, we propose a framework for

generating CIs. This framework generates CIs in such a

way that they can be executed on the RFU. Besides, it

partitions rejected CIs to multiple mappable CIs. The same

well-known temporal partitioning ‎[4]‎[6]‎[10] concept is

utilized to this end. Temporal partitioning can be stated as

partitioning a data flow graph (DFG) into a number of
partitions such that each partition can fit into the target

hardware and also, dependencies among the graph nodes

are not violated ‎[4]‎[6].

Previous work in the domain as well as our

contributions will be reviewed in Section 2. In Section 3, an

overview of our target reconfigurable instruction set

processor called AMBER, which was introduced in ‎[13], its

components and the proposed RFU architecture for

AMBER are highlighted. Section 4 discusses the design

flow proposed for generating CIs and the details of the

temporal partitioning algorithms and their incremental
versions. In Section 5, custom instruction similarity

detection and merging algorithm for reducing configuration

memory size are discussed. In Section 6, experimental

results are presented and, finally, Section 7 concludes the

paper.

2. Related Literature

Research in reconfigurable instruction set processors has

mainly been revolving around automatic instruction

generation/selection. Identifying an optimal set of custom
instructions to improve the computational efficiency of

applications has received significant attention more

recently. PRISC ‎[15] and Chimaera ‎[21] provide

compilation tools that attempt to automatically generate

and map the custom instructions on the reconfigurable

logic. Their generated custom instructions tend to be

relatively small, due to the difficulty of the matching

problem and the size of the available programmable fabric.

Research in reconfigurable computing is often more in

line with our goal. Some research papers on reconfigurable

computing have addressed the identification of application

sections that are mapped to a reconfigurable fabric. Most
CI extraction methods attempt to identify patterns within a

basic block. In ‎[7], the authors combine template matching

and generation based on the occurrence of patterns which

usually led to small templates. Template matching is done

based on graph isomorphism. Arnold et al. [1] avoid the

exponential increase in these patterns by using a technique

that iteratively detects two-operator patterns and replaces

their occurrences in the DFG. Atasu et al. ‎[2] search a full

binary tree and decide at each step whether or not to

include a particular instruction in a pattern. The potential

large search space is pruned based on input/output
constraints. They attempt to find maximal sub-graphs of an

application data flow graph but they do not take into

account the underlying structure of the execution hardware.

Clark et al. ‎[5] search possibly good patterns by starting

with small patterns and expanding them considering the

input, output and convexity constraints.

The general goal of this study is presenting methods for

CI generation, specifically for recovering the rejected CIs.

Moreover, the main intuition behind this work which helps

to justify our claims is generating CIs for AMBER, a

reconfigurable instruction set processor introduced in ‎[13].

AMBER uses a coarse-grained reconfigurable functional
unit with fixed resources. Initial CIs are generated by a

simple CI generation tool presented in ‎[13] some of the

generated CIs might be rejected because of violating RFU

constraints. Rejection of CIs decreases the speedup. We do

not use any pruning algorithm for making smaller CIs from

rejected CIs because obviously, by using bigger CIs, more

speedup can be obtained. In fact, in our proposed approach

an integrated temporal partitioning and mapping framework

is used for CI generation. CIs generated by this framework

are the maximal sub-graphs extracted from the data flow

graph of the corresponding rejected CI.
Temporal partitioning is a basic function of our

proposed framework. Several algorithms have been

presented for temporal partitioning. SPARCS ‎[14] is an

integrated partitioning and synthesis framework, which has

a temporal partitioning tool to temporally divide and

schedule DFGs on a reconfigurable system. Bobda ‎[4]

proposed a temporal partitioning approach based on

positioning of modules in a three-dimensional vector space.

Karthikeya et al. ‎[6] proposed algorithms for temporal

partitioning and scheduling of large designs on area

 Journal of Computer and Robotics 1 (2010) 1-11

3

constrained reconfigurable hardware. Tanougust et al. ‎[19]

attempted to find the minimum area while meeting timing
constraints during temporal partitioning. Spillane and

Owen ‎[18] focused on finding a sequence of conditions for

an optimized scheduling of configurations to achieve the

desired trade-offs among reconfiguration time, operation

speed and area.

In this paper, we propose a framework for CI generation

relying on the integrated framework introduced in ‎[10].

This framework can be used as a general methodology for

CI generation in which temporal partitioning is done

iteratively and gets feedbacks from the mapping process to

modify partitions and map them onto the RFU to improve

target‎ reconfigurable‎ instruction‎ set‎ processor’s‎ speedup.‎
Another contribution of this work is to introducing

similarity detection and merging as two complementary

techniques to reduce the number of generated CIs and thus

the configuration memory size.

3. General Overview of AMBER

AMBER was introduced in ‎[13] and falls in the category

of the reconfigurable instruction set processors. It has been

developed by integrating a base processor with three other

main components. The base processor is a general RISC

processor and the other three components are: profiler,

sequencer and a coarse-grained reconfigurable functional
unit (RFU) (Figure 1.a). AMBER has two operational

modes: a training mode and a normal mode. In the training

mode, the applications are run on the base processor and

profiled by the profiler. Then, the start addresses of HBBs

are detected. They are read from the object code using the

start addresses of HBBs and the CIs are extracted from the

HBBs. In this mode, configuration data for RFU are

generated and a sequencer table is initiated. When these

processes are done, the processor switches to the normal

mode. In the normal mode, using the RFU, its configuration

data (which is stored in the configuration memory),

sequencer and its table, the custom instructions are
executed on the RFU. AMBER enters the training mode

once, and learns about custom instructions and then it

switches to the normal mode.

The base processor is an in-order RISC processor that

supports MIPS instruction set. The profiler performs the

profiling for running applications through monitoring the

program counter (PC). The profiler looks for jumps and

taken branches by monitoring PC to detect critical regions.

The profiler has a table with a counter for each entry that

keeps the execution frequency for basic blocks. Using the

profiler table and a threshold value, the start addresses of
HBBs are detected ‎[13].

The sequencer mainly determines the microcode

execution sequence by selecting between the RFU and the

processor functional unit. It has a table in which the start

addresses of custom instructions (which are going to be

executed on the RFU) are specified. The table of the

sequencer is initialized according to the locations of the

custom instructions in the object code at the training mode

when they are generated. In the normal mode, it checks
whether the corresponding configuration is available in the

multi-context memory or not. In the case of availability, the

sequencer selects the configuration bits to read registers

which are required by the CI, from the register file. Then it

switches from processor functional unit to the RFU, waits

for some specified clock cycles and lets the RFU finish the

execution of the CI. If the configuration is not available in

the multi-context memory, the original code will be

executed on the processor functional unit as usual. In this

case, only the expected speedup for that instruction will be

missed and there will be no penalty. Figure 1 illustrates the

integration of different components in AMBER.

Baseline Processor

Base Proc.

Functional Units

RFU
...

...

...

Register File

ID/EXE Reg.

ID/EXE Reg.

Configuration

Memory

MUX Counter

Augmented Hardware

(a)

(b)

Fig. 1. AMBER’s‎architecture‎(a)‎Integration‎of‎main‎components‎in‎

AMBER; (b) RFU detailed architecture.

The RFU is an array of functional units (FUs) that is

located inside of the base processor in parallel with

standard functional units (Figure 1.b). According to the size

of data in a processor, an array of functional units (FUs)

seems an efficient and reasonable hardware for accelerating

dataflow subgraphs as CIs [5]. Using coarse-grained

reconfigurable accelerators demands less configuration

memory. In addition, they are faster comparing with fine-
grained programmable hardware and mapping instructions

on them is easier. Each FU of our proposed coarse-grained

RFU supports all fixed-point instructions of the base

processor except multiplication, division and load.

In the first stage of this work, a quantitative approach

was followed to determine the architectural specifications

of RFU using the twenty-two applications from Mibench

‎[11].

A mapping tool was developed to map CIs on the RFU.

We merely describe the specification of the final

Row 1

Row 5

Adder/
subtractor

AND OR XOR
Barrel
Shifter

Configuration
bits

Configuration
bits

Configuration
bits

FU FU FU FU

F. Mehdipour et al. / An Integrated Temporal Partitioning and Mapping …

4

architecture. According to the obtained results, eight inputs,

six outputs and 16 FUs were chosen for the RFU because
they brought about a reasonable CI rejection rate (about

10%). Rejection rate represents the percentage of CIs that

cannot be mapped on the RFU according to its defined

constraints. In addition, a proper topology for RFU

connections was achieved based on the quantitative

analysis. In the proposed architecture, there are left to right

connections in the fourth row and right to left connections

in the third row. As mentioned above, the outputs of FUs in

each row are fully connected to the inputs of FUs in the

subsequent row. Moreover, there are extra vertical

connections, as in Figure 1.b, between non-subsequent

rows to keep the CI rejection rate low. Obviously, detecting
unnecessary connections through quantitative analysis of

the DFGs and removing them result in less area and power

consumption. More details on AMBER and its components

can be found in ‎[13].

4. CI Handling Approaches

As mentioned in previous sections, our main focus is on

a method for handling CIs. In the following sections, the

details of the CI generation approaches are explained.

4.1. Overview

Basic CI generation approach has been proposed in ‎[13].

This CI generator algorithm gets the DFG of each HBB as
an input and then looks for the biggest sequence of

instruction that can be executed on the RFU. Then after

checking the flow and anti dependencies, mappable

instructions are moved and added to the head and tail of the

detected biggest instruction sequence. Mappable

instructions are those instructions that can be implemented

by RFU. It should also be checked that the area where the

instructions are going to be moved, are not target of branch

instructions. If these conditions are met then for those parts

of the object code that instructions are moved, object code

is rewritten (binary rewriting). In this algorithm CIs are

generated in such a way that they can become as big as
possible and RFU architectural constraints are not

considered during CI generation process, therefore some of

the generated CIs do not satisfy the RFU architectural

constraints and cannot be mapped on the RFU. These CIs

are executed on the base processor during run time;

therefore they offer no more speedup.

To reduce the CI rejection rate and generating

appropriate CIs, two different approaches are presented [9].

Appropriate CI set means the set of CIs which satisfy the

RFU primary constraints and might have the capability of

being mapped successfully on the RFU. RFU primary
constraints are the architectural constraints including the

number of inputs, outputs and nodes.

In the first approach (CIGen) (Figure 2.a), appropriate

CIs are generated for each application considering the RFU

primary constraints by using a modified version of simple

CI generation algorithm ‎[13] described above. CIGen uses

the basic CI generation algorithm and considers RFU
primary constraints for generating appropriate CIs. In this

method, the decision on accepting or rejecting CIs is made

after their mapping on the RFU since the CI generation

process is unaware of the mapping process results. One

important drawback of this CI extraction procedure is that

it cannot consider all of the constraints such as routing

resources constraints. Therefore, some of these CIs may not

be ultimately mapped to the RFU. These CIs are rejected

and should be executed on the base processor.

(a)

Mapping on

RFU

Temporal

Partitioning

(HTTP or VTTP)

Mapping is successful?

Final

Configurations

Incremental Temporal

Partitioning

(HTTP or VTTP)
NO

RFU Architectural

Constraints

Rejected CIs

YES

Similarity Detection

Merging

Reduced Final

Configurations

Incremental

Temporal Partitions

Temporal

Partitions (Initial

Partitions)

(b)

Fig. 2. Design flow for (a) CIGen; (b) IntegFrame.

IntegFrame is the second CI generation approach that is

based on the framework in ‎[10]. It performs an integrated

temporal partitioning and mapping process to generate

mappable CIs. The proposed design flow for IntegFrame is

shown in Figure 2.b. This design flow takes rejected CIs

and attempts to partition them to appropriate CIs with the

 CIs

RFU Architectural

Constraints

Mapping is successful?
YES

NO

Rejected CIs

(Have to be run on base

processor)

CI Generation

Tool

Final

Configurations

 Journal of Computer and Robotics 1 (2010) 1-11

5

capability of being mapped on the RFU. In our

methodology, a DFG corresponds to a CI. Moreover, the
partitions obtained from the integrated temporal

partitioning process are the same appropriate CIs which are

mappable on the RFU.

In the first stage, RFU primary constraints are

considered to generate initial partitions (CIs). Then for each

partition (CI) generated in the first step, the mapping

process is done. These CIs are accepted and finalized if

they can be mapped on the RFU. Otherwise, an incremental

temporal partitioning algorithm modifies the partition (CI)

by moving some of the nodes to the subsequent partition

(CI). The mapping process is repeated to map the modified

partition (CI) on the RFU. It attempts to reduce total
connection length between the nodes and satisfy the RFU

architectural constraints simultaneously. This process is

repeated until all partitions are mapped successfully on the

RFU. This framework can have the following advantages:

Reducing the number of rejected CIs: This can affect the

overall performance by partitioning the rejected CIs to CIs

which can be mapped on the RFU.

Using a mapping-aware temporal partitioning process:

this process attempts to prevent the rejection of CIs by
modifying CIs according to the feedbacks obtained from

the mapping process. In fact, only primary constraints of

the RFU can be considered in the CIGen but it is unaware

of such mapping information as routing resource

constraints. In the IntegFrame, CIs are partitioned in such a

way that they can be mapped on the RFU.

Two temporal partitioning algorithms and their

incremental versions were developed specially for this

framework. The mapping-aware incremental versions can

be used during iterative CI generation process. The time

complexity of both temporal partitioning algorithms is
O(n2), where n is the number of instructions in the CI.

4.2. Horizontal Traversing Temporal Partitioning (HTTP)

The IntegFrame-HTTP (briefly referred as HTTP) is the

first temporal partitioning algorithm. This algorithm

traverses DFG nodes horizontally according to the ASAP

(As Soon As Possible) level of the nodes and adds them to

the current partition while architectural constraints are

satisfied. The ASAP level of nodes represents their order to

execute according to their dependencies ‎[12]. In other

words, a parent node should be executed before its descents

because of data dependencies between them. For example,
in Figure 3, by using the HTTP algorithm, a DFG

corresponding to a rejected CI has been partitioned into two

smaller CIs which are mappable on the RFU. The number

located at the left top side of each node stands for the

selecting and moving order of that node.

4.3. Vertical Traversing Temporal Partitioning (VTTP)

HTTP algorithm partitions a given DFG by horizontally

traversing of the DFG nodes and usually brings about more

parallelism for instruction execution. However, this may

require large intermediate data to be transmitted to the

subsequent partition. The size of intermediate data can
affect data transfer rate and the size of configuration

memory. We presented IntegFrame-VTTP (briefly referred

as VTTP) as an alternative to HTTP to vertically traversing

the DFG. Although using this algorithm creates partitions

with longer critical paths, it reduces the size of intermediate

data. Figure 4 shows an example for VTTP algorithm.

2

6 4

0

1

5

RFU Map

0

1

2

3

8

9

4

10

11

5

12

13

6

14

15

7

Data Flow Graph of Input CI

1st Partition

2nd Partition

0

1

2

4 5 6

7

1st Partition

3

8

9

10

11

12

13

14

15

2nd Partition
123

5

4

6 7 8

9

3

11

10 12 14 7

8 13 15

9

RFU Map

10

Fig. 3. Example of HTTP and its related incremental algorithm.

3 8

0

1

2

9

RFU Map

0

1

2

3

8

9

4

10

11

5

12

13

6

14

15

7

0

1

2

3

8

9

Data Flow Graph of

Input CI

7

10

15

4 5 6

12 14

11 13

RFU Map

4

10

11

5

12

13

6

14

15

7

1st Partition

2nd Partition

1

2

3

4

5

6

7

8

9 10

Fig. 4. Example of VTTP and associated incremental algorithm.

4.4. Partitions Modification

In the IntegFrame, an incremental temporal partitioning

process is accomplished iteratively until all partitions are

mapped on the RFU successfully. Each partition which

does not satisfy RFU constraints is modified by selecting

and moving proper nodes to the subsequent partition and
then a new iteration starts. For HTTP and VTTP algorithms,

we propose two different partition modification strategies.

F. Mehdipour et al. / An Integrated Temporal Partitioning and Mapping …

6

The main difference between these two algorithms is in the

way of selecting the nodes to be moved to the next
partition. The time complexity of this process is O(n2).

Incremental HTTP: Firstly, this algorithm chooses the

nodes with highest ASAP level. All nodes in a partition are

sorted according to their ASAP level and the node with the

highest ASAP level is selected and moved to the subsequent

partition. In Figure 3, the order in which are selected and

moved to the next partition is 15, 13, 11, 9, 14, 12, 10, 8, 3

and 7. The nodes are moved until all the generated

partitions satisfy the RFU architectural constraints.

Incremental VTPP: Incremental VTPP algorithm

chooses another strategy for selecting and moving nodes

from current non-mappable partition to the next partition.
The goal of VTTP was to reduce the size of intermediate

data by in-depth traversing of DFG nodes. Therefore,

selecting nodes from a partition should be done according

to this goal; otherwise the results of the modification

process may converge to those of the HTTP algorithm. Our

experiments demonstrate this statement. In the first attempt,

a node with the highest ASAP level is selected and moved

to the next partition. If the constraints are still not met, the

nodes are selected from the path where the previous moved

node had been located in their ASAP level order. A node

with the highest ASAP level from another path is selected if
there is not any more node belonging to the current

partition on the processing path. In Figure 4, the order of

node selection is shown. The nodes 15, 14, 6, 13, 12, 5, 11,

10, 4 and 7 may be selected in-order and moved to the next

partition during the incremental VTTP.

4.5. Mapping Algorithm

The mapping process in the IntegFrame is the same as

the well-known placement problem ‎[16]. Placement

problem can be defined as determining appropriate

positions for hardware modules on the target device.

Minimizing the connection length, area and the longest

wire are usually the main goals in this process ‎[16]. Here,
the mapping process can be defined as the placement of

DFG nodes on a fixed architecture RFU, to determine the

appropriate positions for DFG nodes on the RFU.

Assigning CI instructions or DFG nodes to FUs is done

based on their priority. We calculated slack of nodes ‎[12] to

determine their priority for mapping. Slack of each node

represents its criticality. For example, slack equal to 0

means that it is on the critical path of DFG and should be

scheduled with the highest priority. On the other hand, for

the nodes with the same criticality, their ASAP level

determines their mapping order.
In the first step of mapping process, ASAP, ALAP (As

Late As Possible) and slack values of each node in the DFG

are calculated ‎[12]. Assigning a position for each selected

node starts by determining an appropriate row for that

node. Row number is set to the last row if the selected node

is on a critical path with the length more than or equal to

the RFU depth. Otherwise, row number is selected

according to the slack and ALAP of the selected node and

the number of unoccupied cells available in the RFU rows.
For the nodes which do not belong to any critical path

longer than the RFU depth, their starting row is set to

ALAP- slack -1. This means that we reserve FUs of the

lower rows for the nodes belonging to the critical path. For

this purpose, it is tried to prevent the occupation of FUs in

the lower RFU rows by the nodes that do not belong to

critical paths. Therefore, spiral shaped mapping of nodes is

possible for long critical paths thanks to the horizontal

connections in the third and fourth rows. After setting the

row number, an appropriate column is determined for the

selected node. Column number is calculated according to

the minimum connection length criterion. All unoccupied
units of the RFU in the selected row are checked to find an

FU which gives the minimum connection length between

the selected node and its dependent nodes already

positioned on the RFU.

For each row, a maximum capacity is considered to

prohibit gathering many nodes in a row. Capacity of rows

is determined with respect to the longest critical path and

the number of critical paths in the DFG. Row number is

decreased and a new attempt starts if there is not any FU in

that row to assign the selected node.

Referring to the RFU architecture in Figure 1.a and its
routing resources, though the RFU depth is equal to 5, our

mapping algorithm can map CIs whose critical path length

is at most equal to 8. In Figure 3 and Figure 4, examples of

mapping of CIs on the RFU have been shown.

Corresponding DFG of the first partition in Figure 4 has a

critical path longer than the RFU depth, and so it takes

advantage of a spiral shaped mapping. This kind of

mapping results in effective usage of routing resources

(horizontal connections of the third and forth rows) and

FUs. At the same time, the mapping algorithm attempts to

reduce total connection length between DFG nodes.

5. Reducing Configuration Memory Size

The large number of custom instructions generated for

applications can potentially be an important issue in the

implementation of RFU and configuration memory being

used for storing configuration data. Employing the

IntegFrame is effective in increasing the number of CIs due

to splitting a CI into multiple CIs.

To support an application containing large number of

CIs, a large size of configuration memory is needed.

Increasing configuration memory size can impose more

hardware cost as well as more power consumption for the

reconfigurable instruction set processor. On the other hand,
according to observations obtained from experiments, we

came to following conclusions:

 Usually, there are a considerable number of similar

CIs in applications.

 There is some wasted area in the RFU with respect

to existing small CIs in which the number of nodes are

 Journal of Computer and Robotics 1 (2010) 1-11

7

noticeably less than the number of FUs available in the

RFU.
Therefore, two different techniques for reducing the size

of configuration memory based on similarity detection and

merging of CIs are proposed. In following sections, these

two complementary methods are described.

5.1. Exploring Similarity of Custom Instructions

The number of custom instructions for applications can

be reduced by detecting the similarity between CIs.

Similarity of two CIs can be detected based on four kinds

of similarity: a) similarity of nodes (FUs) and connections

in corresponding DFGs, b) similarity of inputs, c) similarity

of outputs and d) similarity of immediate inputs. In most

cases, CIs have similar configuration bits related to FUs
and connections but those bits for inputs or outputs are

different. In addition, detecting the similarity of nodes

(FUs) and connections needs a special similarity detection

procedure. Therefore, we isolate nodes and connections

similarity from other kinds of similarity. In this way, two

types of FUs and connections similarity are defined:

 Complete Similarity: The functionality of nodes

(FUs) and connections of both CIs are completely the same.

In this case, considering corresponding DFG of each CI,

there is a one to one similarity between nodes and also

connecting edges of the two DFGs.

 Subset Similarity: One of the CIs is completely

similar to a subset of another CI in terms of the nodes and

connections.

We use a naïve graph isomorphism algorithm to explore

the nodes and connections similarity of two DFGs. The

graph isomorphism problem is to determine whether there

is a one to one correspondence between the nodes of the

graphs while preserving the edges. In other words, two

graphs are isomorphic if there is a one-to-one

correspondence between their nodes and also, there is an

edge between two nodes of one graph if and only if there is

an edge between the two corresponding nodes in the other
graph ‎[20]. To detect the subset similarity of CIs, we were

also more interested in similar sub-graphs that are not

necessarily isomorphic. Sub-graph isomorphism is deciding

if there is a sub-graph of one graph which is isomorphic to

another graph ‎[20]. Sub-graph isomorphism is a general

form of maximal sub-graph detection problem.

A simple approach to identify maximal similar sub-

graphs is considering all cycle free paths starting at two

vertices from two graphs and doing a pair wise comparison

afterwards ‎[8]. This approach constructs maximal similar

sub-graphs by induction from the starting vertices and by
matching length limited similar paths. What makes this

approach feasible is that it considers all possible matches at

once.

According to four types of similarity and also for

reducing the size of configuration memory as well, it is

divided to four parts to support partial programmability.

Paying attention to the RFU architecture, each CI

configuration needs 512 bits; 155 bits are used for selecting

functions (FUs) and routing resources (selectors of

MUXes), 92 bits for selecting inputs, 61 bits for selecting
outputs and finally, 204 bits for keeping immediate inputs.

Configuration bits of four parts of each CI are generated

and indexed by an index number. The configuration of a CI

is determined according to the four index numbers stored in

an index table. This table has four columns with the

number of entries equal to the maximum number of

generated CIs (more information can be found in ‎[13]).

In the first stage of our similarity detection algorithm,

only the similarity of nodes and connections are

considered. As a matter of fact, by considering all types of

similarities altogether, only a small amount of similar CIs

can be resulted. For detecting the similarity of two CIs
according to their FUs and routing resources, a graph

isomorphism algorithm from ‎[8] was used. The first CI is

replaced by the second one, if the two CIs have Complete

or Subset Similarity. In this stage, for each application, the

size of the first part of configuration memory can be

reduced due to reduction in the number of CIs.

Regarding the amount of bits needed to maintain CI

inputs and outputs configurations and also immediate input

values, reducing the size of these parts can lead to a

considerable reduction in the overall size of configuration

memory. Therefore, in the second stage, another similarity
detection algorithm is used for exploring similarity of two

CIs based on the similarity of inputs, outputs and

immediate operands, separately. Similarity of two CIs

according to their inputs means that they have a similar set

of inputs. In other words, two CIs are examined to have a

one to one correspondence between their inputs. CIs

similarity based on outputs and also immediate operands

are detected in a similar manner. Figure 2.b shows that

similarity detection process can be done after generating

mappable CIs to reduce the final number of CIs and hence,

the size of configuration memory.

5.2. Merging

According to our observations, the length of generated

CIs varies between 5 and 59. CIs with the length of 4 or

less are rejected in the initial CI generation stage.

Therefore, some CIs which are successfully mapped on the

RFU have a small size compared with the RFU size that

has 16 FUs. This may result in a noticeable unused space in

the RFU. Experiments show that the percentage of unused

space of the RFU for twenty-two applications of Mibench

[Mibench] is almost 63% without considering the similarity

of CIs.

According to this observation, we attempted to reduce
unused space of the RFU by merging small CIs to larger

ones. We call this process merging. In fact, merging is

conceptually opposite to temporal partitioning. Our

IntegFrame uses a temporal partitioning based approach to

split CIs to smaller ones. On the contrary, merging tries to

merge small CIs to larger ones that can be mapped on the

RFU successfully. Merging of CIs not only decreases the

http://www.nist.gov/dads/HTML/graph.html
http://www.nist.gov/dads/HTML/edge.html
http://www.nist.gov/dads/HTML/subgraph.html
http://www.nist.gov/dads/HTML/graph.html
http://www.nist.gov/dads/HTML/isomorphic.html

F. Mehdipour et al. / An Integrated Temporal Partitioning and Mapping …

8

unused spaces of RFU but also reduces configuration

memory size because of reduction in total number of CIs.
For merging, a simple approach is presented which finds

mergeable CI pairs for each application. This process is

done in two steps. In the first step, for every CI pair, a

combined CI is formed and is checked to satisfy RFU

primary constraints. In the second stage, these CIs would

be replaced by the combined one if it could be mapped

successfully on the RFU. Figure 5 shows two CIs, each of

which has been successfully mapped on the RFU. These

CIs are merged and form a larger CI which in turn is

mappable on the RFU. Figure 5 also shows the mapping of

the resulted CI on the RFU.

The merging procedure can be exploited in two cases; a)
independently without using the similarity detection

process or b) after the similarity detection phase (Figure

2.b). Experiments show more reduction in the size of

configuration memory by using both the similarity

detection and the merging processes. The similarity

detection process is performed before the merging process

because merging of CIs may destroy the similarity of

primary CIs, while considerable number of similar CIs can

be detected before their merging.

6. Experimental Results

Simplescalar tool set (PISA configuration) ‎[17] and 22
applications of Mibench ‎[11] were used in the experiments.

The base line processor of AMBER was MIPS324K with a

five stage pipeline, 32KB L1 data cache (1 clock cycle

latency); 32KB L1 instruction cache (one clock cycle

latency) and 1MB unified L2 cache (6 clock cycle latency).

The RFU was implemented using Synopsys tools with

Hitachi 0.18µm library. The RFU area size was 1.15mm2.. It

was assumed that the RFU has a variable latency based on

the length of the longest critical path. Regarding the base

processor frequency (166MHz) and RFU delay, CIs with

critical path length less than or equal to 5 take one clock

cycle and CIs including critical path length more than 5
take 2 clock cycles for execution on the RFU ‎[13]. For

example, for the corresponding CI of the first partition in

Figure 4, due to the critical path’s length that is equal to

six, it takes two clock cycles to execute on the RFU.

Initial CIs were generated using the method proposed in

‎[13]. CI rejection rate with respect to RFU architectural

constraints was around 10%. ‎0 shows the minimum and

maximum length of initial CIs. It also shows the minimum

length of rejected CIs which were applied to the

IntegFrame. Application names with rejected CIs have

been shown in bold face. Figure 6 depicts that in 9 of the 22
applications, there was not any rejected CI. This means that

all CIs in these applications were mapped on the RFU

successfully. However, 13 of the 22 applications included

rejected CIs and some of them like blowfish and

blowfish(dec) included a remarkable rejection rate.

A couple of algorithms were introduced in Section 4 for

recovering rejected CIs. First, CIGen was used to

regenerate CIs with respect to RFU constraints. For these

CIs, the mapping process was performed and some of them
were rejected again at the mapping stage. In fact, this

method generates the CIs considering only RFU primary

constraints but it cannot consider the routing resource

constraints before mapping. Figure 7 indicates that 10 out

of 13 applications already included CIs which were not

mappable on the RFU. These rejected CIs should be

executed on the base processor and offer no more speedup.

In the second approach, the IntegFrame is utilized to

partition the rejected CIs and generate appropriate ones. It

is shown that the IntegFrame can result in higher speedup

in comparison with the CIGen due to successful mapping

of all CIs on the RFU. This is one of the most important
achievements of the proposed framework.

1

9

3 4

10 0 6 10 11

7 8

2

0

1

2

4

3

5

5

Data Flow Graph

of First CI

RFU Map for

Combined CI

Merging

Process

6

7

9

8

1110

Data Flow Graph

of Second CI

Fig. 5. An instance of merging of two mergeable CIs.

Table 1
CIs length for Mibench applications

Application

Name

Min. CI

length

Max. CI

length

Min. Rejected CI

length

cm(enc) 5 7 -

adpcm(dec) 5 7 -

bitcounts 4 20 20

blowfish 5 16 15

blowfish (dec) 5 16 15

basicmath 3 11 -

cjpeg 5 59 11

crc 5 5 -

dijkstra 4 9 -

djpeg 4 48 8

fft 3 16 16

fft (inv) 3 16 16

gsm (dec) 5 14 14

gsm (enc) 4 26 13

lame 3 13 7

patricia 3 6 -

qsort 5 7 -

rijndael (enc) 5 16 10

rijndael (dec) 5 18 10

sha 5 18 7

stringsearch 5 9 -

susan 6 10 -

Two algorithms including IntegFrame-HTTP and

IntegFrame-VTTP were compared with respect to initial

and final number of partitions (CIs), critical path length of

generated CIs and intermediate data size. Figure 8 shows

 Journal of Computer and Robotics 1 (2010) 1-11

9

that for cjpeg, reijndael(dec) and reijndael(enc), HTTP

generated larger number of initial partitions. Comparing
final number of CIs generated shows that in most cases, the

two algorithms generated equal number of CIs except for

cjpeg that VTTP generates more CIs.

Figure 9 compares the two algorithms with respect to

intermediate data size. For 6 out of 13 applications,

intermediate data size was smaller using VTTP. For the

seven remaining applications, intermediate data size was

the same. Another comparison was done with respect to

critical path length. Figure 10 shows that VTTP generated

CIs with critical path length equal to or more than HTTP

because it traverses DFG nodes in depth, whereas HTTP

traverses them horizontally.
Figure 11 depicts the comparison of speedup achieved

using HTTP, VTTP and CIGen (speedup is obtained

compared to the applications run-time on the base

processor). Using both HTTP and VTTP algorithms, all CIs

were mapped successfully on the RFU and the fraction of

applications which were accelerated was the same for the

two algorithms. However, in most cases, HTTP resulted in

better speedup since it benefits more from parallelism in

the instruction execution. In other words, critical path

length was less using HTTP, and therefore, RFU execution

latency was smaller. Moreover, according to Figure 11,
both HTTP and VTTP offer better speedup compared to

CIGen. IntegFrame can be run in the training mode and it

has a small overhead time (O(n2)) due to using incremental

algorithms.

Fig. 6. CI rejection rate for Mibench applications.

Fig. 7. Rejection rate for CIs generated by CIGen.

To examine the effect of the two proposed algorithms on

reducing the size of configuration memory, including
similarity detection and merging, additional experiments

were conducted. ‎0 shows the number of similar CIs

considering similarity of FUs and connections, inputs,

outputs and immediate inputs. For example, for

blowfish(dec), there are 15 similar CIs considering the FUs

and connections similarity, seven CIs with similar set of

inputs, 14 CIs with similar outputs and 14 CIs with similar

set of immediate input values. Therefore, total

configuration bits needed to this application are

25  155+(40-7)92+(40-14)61+ (40-14)204=1.7KB

in comparison with 40512= 2.5KB, which are obtained
without using the similarity detection algorithm. Obviously,

the size of configuration memory is determined according

to the largest size of memory required to support an

application.

Fig. 8. Initial and final number of partitions using HTTP and VTTP.

Fig. 9. Comparison of the intermediate data size.

Fig. 10. CIs maximum critical path length for HTTP and VTTP.

0

10

20

30

40

50

60

70

80

ad
pcm

(e
nc)

ad
pcm

(d
ec

)

bitc
ou

nts
blo

w
fis

h

blo
w
fis

h (d
ec

)

bas
ic

m
at

h
cj

pe
g

cr
c

dijk
st

ra
djp

eg ff
t

ff
t (

in
v)

gsm
 (d

ec
)

gsm
 (e

nc)
la

m
e

pat
ric

ia
qso

rt

ri
jn

da
el

 (e
nc

)

ri
jn

da
el

 (d
ec

)
sh

a

st
ri
ng

se
ar

ch
su

sa
n

%
 o

f
R

e
je

c
te

d
 C

Is

0

5

10

15

20

25

30

35

40

45

50

bitc
ounts

blo
w

fis
h

blo
w

fis
h (d

ec
)

cj
pe

g

djp
eg ff

t

ff
t (

in
v)

gsm
 (d

ec
)

gsm
 (e

nc)

la
m

e

ri
jn

da
el

 (e
nc)

ri
jn

da
el

 (d
ec

)
sh

a

%
 o

f
R

e
je

c
te

d
 C

Is

0
10
20
30
40
50
60
70
80
90

100

bitc
nt

s

blo
w

fis
h

blo
w

fis
h (d

ec
)

cj
peg

djp
eg ff

t

ff
t (

in
v)

gsm
 (d

ec
)

gsm
 (e

nc)

la
m

e

rij
nd

ae
l (

en
c)

rij
nd

ae
l (

dec
)

sh
a

N
o

.
o

f
C

Is

Initial No. of CIs using HTTP Initial No. of CIs using VTTP

Final No. of CIs using HTTP Final No. of CIs using VTTP

0

20

40

60

80

100

120

140

160

180

bitc
nts

blo
w

fis
h

blo
w

fis
h (d

ec
)

cj
pe

g

djp
eg ff

t

ff
t (

in
v)

gsm
 (d

ec
)

gsm
 (e

nc)

la
m

e

ri
jn

da
el

 (e
nc)

ri
jn

da
el

 (d
ec

)
sh

a

N
o

.
o

f
3

2
b

it

 I
n

te
rm

e
d

ia
te

 D
a

ta

HTTP Intermediate Data Size VTTP Intermediate Data Size

0

1

2

3

4

5

6

7

8

9

bitc
nts

blo
w

fis
h

blo
w

fis
h (d

ec
)

cj
pe

g

djp
eg ff

t

ff
t (

in
v)

gsm
 (d

ec
)

gsm
 (e

nc)

la
m

e

ri
jn

da
el

 (e
nc)

ri
jn

da
el

 (d
ec

)
sh

a

C
ri

ti
c

a
l

P
a

th
 L

e
n

g
th

HTTP Critical Path Length VTTP Critical Path Length

F. Mehdipour et al. / An Integrated Temporal Partitioning and Mapping …

10

Fig. 11. Speedup comparison between HTTP, VTTP and CIGen.

Table 2

Results obtained using similarity detection and merging techniques

Applications

No.

of

CIs

No. of CIs

after

Similarity

Detection

No. of

Inp/Out/Immediate

Similarities

No. of CIs

after

Similarity

Detection &

Merging

adpcm(enc) 4 3 0/0/0 2

adpcm(dec) 3 3 0/0/0 2

bitcounts 9 7 0/0/0 5

blowfish 40 25 6/14/14 22

blowfish (dec) 40 25 7/14/14 22

basicmath 10 6 0/0/0 3

cjpeg 41 22 0/5/3 16

crc 1 1 0/0/0 1

dijkstra 9 7 0/1/1 4

djpeg 31 18 0/5/3 12

fft 13 6 0/2/1 4

fft (inv) 13 6 0/2/1 4

gsm (dec) 17 8 0/1/0 5

gsm (enc) 84 24 21/18/2 17

lame 39 20 3/5/3 12

patricia 10 7 0/0/1 4

qsort 17 10 1/1/3 5

rijndael (enc) 117 14 0/9/32 8

rijndael (dec) 110 15 0/19/26 10

sha 32 9 1/4/4 6

stringsearch 5 4 0/1/1 2

susan 9 4 0/0/0 3

The maximum size of the configuration memory is up to

4.5KB which is obtained for rijndael(enc) using similarity
detection algorithm, while the initial memory size is 7.4KB

without using the reduction techniques. In other words,

similarity detection process reduces the configuration

memory size by 38.5%. In addition, using merging process

after applying the similarity detection algorithm reduces

configuration memory size to 4.4KB, which indicates the

overall 40% reduction. The final stage of experiments was

performed to observe the particular effect of the merging

process on the configuration memory size. Experiments

show at least 7% and at most 50% reduction in the number

of CIs. Therefore, using only merging process can
substantially reduce the configuration memory size.

7. Conclusion

This paper addressed handling of CI generation
concerns for a reconfigurable instruction set processor.

Some of the CIs which are extracted from hot basic blocks

of applications were rejected due to RFU primary

constraints. Two approaches were presented to support the

rejected CIs. The first approach (CIGen) generates CIs by

applying the RFU constraints to the CI generation tool. It

may still cause rejection of some generated CIs. The

IntegFrame is the second approach introduced to perform

CI generation task. This framework can be used as a

general approach for generating CIs as well. It uses

mapping-aware temporal partitioning algorithms for

generating CIs. HTTP is a temporal partitioning algorithm
that takes advantage of parallel instruction execution on an

RFU. VTTP is an alternative which reduces intermediate

data size. In the IntegFrame, CI modification is done using

incremental versions of HTTP and VTTP algorithms. This

framework successfully mapped all CIs on the RFU.

Therefore, the IntegFrame brought about more speedup

compared to CIGen in both cases of using HTTP and

VTTP.

This paper also addressed the configuration memory

size reduction, which can decrease area, cost and power

consumption of hardware augmenting to the base
processor. Two techniques comprising similarity detection

and merging were presented in this paper to reduce the size

of configuration memory. The first method attempted to

detect similarity of CIs based on four different types of

similarity. The latter one used an algorithm to merge CI

pairs and replace them with a combined CI. These two

approaches resulted in fewer CIs as well as smaller

configuration memory.

Acknowledgment

This research was supported in part by Core Research for
Evolutional Science and Technology (CREST) of Japan Science
and Technology Corporation (JST).

References

[1] M. Arnold and H. Corporaal, Designing domain-specific processors,

In Proc. of the Design, Automation and Test in Europe Conf, 61-66,

2002.

[2] K. Atasu, L. Pozzi and P. Lenne, Automatic application-specific

instruction-set extensions under microarchitectural constraints, In

Proc. of the Design, Automation and Test in Europe (DATE), 256-

261, 2003.

[3] F. Barat, R. Lauwereins and G. Deconinck, Reconfigurable instruction

set processors from a hardware/software perspective, IEEE Trans. on

Software Engineering, vol. 28, no. 9, 847-861, 2002.

[4] C.Bobda, Synthesis of Dataflow Graphs for Reconfigurable Systems

Using Temporal Partitioning and Temporal Placement, Ph.D thesis,

University of Paderborn, 2003.

[5] N. Clark, M. Kudlur, H. Park, S. Mahlke and K. Flautner,

Application-specific processing on a general-purpose core via

1

1.2

1.4

1.6

1.8

2

2.2

2.4

b
it
co

u
n
ts

b
lo
w
fi
sh

b
lo
w
fi
sh

 (
d
ec

)

cj
pe

g

d
jp
eg ff

t

ff
t
(i
nv

)

g
sm

 (
d
ec

)

g
sm

 (
en

c)

la
m
e

ri
jn

da
el
 (e

n
c)

ri
jn

da
el
 (d

ec
)

sh
a

S
p

e
e
d

u
p

HTTP VTTP Without IntegFrame

 Journal of Computer and Robotics 1 (2010) 1-11

11

transparent instruction set customization, In Proc. of IEEE/ACM Int.

Symp. on Microarchitecture, 30-40, 2004.

[6] M. Karthikeya, P. Gajjala and B. Dinesh, Temporal partitioning and

scheduling data flow graphs for reconfigurable computer, IEEE

Trans. on Computers, vol. 48, no. 6, 579-590, 1999.

[7] R. Kastner, A. Kaplan, S. Ogrenci Memik and E. Bozorgzadeh,

Instruction generation for hybrid reconfigurable systems, ACM

TODAES, vol. 7, no. 4, 605-627, 2002.

[8] J. Krinke, Identifying Similar Code with Program Dependence

Graphs, In Proc. 8th Working Conf. on Reverse Engineering, 301-

309, 2001.

[9] F. Mehdipour, H. Noori, M. Saheb Zamani, K. Murakami, M.

Sedighi and K. Inoue, An integrated temporal partitioning and

mapping framework for handling custom instructions on a

reconfigurable functional unit, The 11
th
 Asia-Pacific Computer

Systems Architecture Conf. (ACSAC'06), Lecture Notes in

Computer Science, vol. 4186/2006, 219-230, 2006.

[10] F. Mehdipour, M. Saheb Zamani and M. Sedighi, An integrated

temporal partitioning and physical design framework for static

compilation of reconfigurable computing systems, Microprocessors

and Microsystems, vol. 30, no. 1, 52-62, 2006.

[11] Mibench. http://www.eecs.umich.edu/mibench.

[12] G.D. Micheli, Synthesis and Optimization of Digital Circuits,

McGraw-Hill, 1994.

[13] H. Noori, F. Mehdipour, K. Murakami, K. Inoue and M. Saheb

Zamani, An architecture framework for an adaptive extensible

processor, The Journal of Supercomputing, Springer Netherlands,

vol. 45, no. 3, 313-340, 2008.

[14] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Vemuri,

An integrated partitioning and synthesis system for dynamically

reconfigurable multi-FPGA architectures, In Proc. of the

Reconfigurable Architecture Workshop, 31-36, 1998.

[15] R. Razdan and M.D. Smith, A high-performance microarchitecture

with hardware-programmable functional units, In Proc. of the 27th

Annual Int. Symp. on Microarchitecture, 172-180, 1994.

[16] N. Sherwani, Algorithms for VLSI Physical Design Automation,

Kluwer-Academic Publishers, 1991.

[17] Simplescalar. http://www.simplescalar.com.

[18] J. Spillane and H. Owen, Temporal partitioning for partially

reconfigurable field programmable gate arrays, IPPS/SPDP

Workshops, 37-42, 1998.

[19] C. Tanougast, Y. Berviller, P. Brunet, S. Weber and H. Rabah,

Temporal partitioning methodology optimizing FPGA resources for

dynamically reconfigurable embedded real-time system,

Microprocessors and Microsystems, vol. 27, 115-130, 2003.

[20] W.Weisstein,Graphisomorphism,http://mathworld.wolfram.com/

GraphIsomorphism.html.

[21] Z.A.Ye et al, Chimaera: A high-performance architecture with

tightly-coupled reconfigurable functional unit, In Proc. of the 27th

Annual Int. Symp. on Computer Architecture, 225-235, 2000.

http://www.eecs.umich.edu/mibench/
http://www.simplescalar.com/
http://mathworld.wolfram.com/GraphIsomorphism.html
http://mathworld.wolfram.com/GraphIsomorphism.html
http://mathworld.wolfram.com/GraphIsomorphism.html

