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Abstract 
 

This paper aims to improve the trajectory by an extended reinforcement learning based method in which a new 

tracking algorithm is used for mobile robot applications with low-rate control command. There are some trajectories 

that underactuated robots, like quadrotors, are unable to track; hence a suitable trajectory should be designed with 

respect to the robot's dynamics. In this paper, the initial trajectory is generated by Rapidly-exploring Random Tree Star 

algorithm which is not suitable for quadrotor application. Then, the initial trajectory is improved by an extension of Path 

Integral Policy Improvement with Covariance Matrix Adaption (PI2-CMA) algorithm. The extension includes 

improving tracking algorithm and controller performance considering low-rate control command. Our proposed 

algorithm succeeded to reduce the cost of tracking by designing safer and shorter trajectories which are more suitable 

for real robots. Furthermore, the results show that the proposed tracking algorithm and controller improve the 

performance of tracking. The hardware requirements for implementing our proposed method are a webcam and a 

personal computer; therefore with a low-cost implementation of the proposed method, a suitable trajectory is designed. 

In this paper, the initial trajectory is improved by an extension of PI2-CMA algorithm in which the trajectory tracking is 

performed such that reciprocating motions are avoided. Also, desired velocity and acceleration are used by controller for 

better tracking. 

Keywords: Quadrotor robot, Path planning, Trajectory tracking and Reinforcement learning 

1. Introduction 

During recent years, the quadrotors have been 

used for a variety of applications; from military 

applications [1] to commercial usages like toys [2]. 

The use of quadrotors are even evident in other areas 

like load transportation [3], inspection of buildings 

[4], mapping [5], identification and exploration of 

unknown regions [6], delivery of goods [7] and 

search and rescue [8]. Firstly, the quadrotors should 

be able to automatically map the environment and 

localize their positions by capturing data through 

their sensors and secondly plan a free obstacle 

trajectory according to a defined mission, and 

finally, to track the trajectory. Recently many 

research has been done in the field of path planning 

and obstacle avoidance. 
 

The purpose of path planning is to find a 

trajectory in free obstacle space in a way that the 

quadrotor is able to track the trajectory. The path 

planning has two categories: local and global [9].  
 

The Local Path Planning(LPP) tries to identify 

the obstacles of the environment and get the required 

knowledge through the sensors. The LPP generates a 

free obstacle trajectory along the movement [10]. In 

Global Path Planning(GPP), the environment is 

static and known so before the robot starts to move 

the algorithm can generate a complete trajectory 

between the start point and the destination point. The 

focus of GPP is to produce the smooth trajectories 

for the robot [11]. Therefore, another algorithm 

might be needed for trajectory smoothing and 

eliminating extra waypoints [12]. 
 

In some LPP methods, a combination of 

mathematical functions is used to represent the 

smooth trajectory. As an example, one of the most 

popular LPP methods is Dubin’s curves in which 
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discontinuities arise at the junction of line and arc. 

The discontinuities cause errors while tracking [12]. 

Two types of curves have been used to resolve the 

discontinuities: the parametric curves whose 

curvature is a function of their arc length such as 

Clothoids, and the curves which coordinates have a 

closed-form expression such as B´ezier curves and 

B-splines [13]. 
 

There are a number of GPP algorithms which are 

considered as the most common ones. They are 

namely: Probability RoadMap(PRM) [14], Visibility 

Graph(VG), the class of Rapidly-exploring Random 

Tree(RRT) algorithm [15] [16], Space 

Skeletonization [17] and cell decomposition [18] 

[19] methods. These methods are considered global 

when they are applied to the whole configuration 

space. They can be made local by restricting their 

application to a subset of configuration space around 

the current configuration of the robot [19]. In our 

research, we applied Rapidly-exploring Random 

Tree Star (RRT*) algorithm as a global path planner. 

Also there are some GPP algorithm based on 

deep reinforcement learning which we explore them 

in the following: 
 

In [20], a deep reinforcement learning based 

method is presented for quadrotor autonomous 

navigation in semi-known environments. Their 

method uses the dueling double deep recurrent Q-

learning to implement global path planning with the 

obstacle map as input. Also, for effectively 

conducting real-time autonomous obstacle avoidance 

with monocular vision, a contrastive learning-based 

feature extraction is combined with their method. 
 

Another deep Q-network (DQN) based method is 

proposed in [21] for motion planning of quadrotors. 

The method generates local motion plans in the form 

of motion primitives using raw depth images from a 

front-facing camera. DQN is trained with around 

75,000 which takes a raw depth image and relative 

position information as its input, and yields a motion 

primitive selection as its output. 
 

In [22], a UAV path planning method based deep 

reinforcement learning is presented. The double 

deep Q-networks (DDQNs) in the method are 

trained by exploiting structured map information of 

the environment. 
 

Neglecting the robot's dynamic leads to trajectory 

incompatibility of the trajectory with the robot and 

in order to improve the trajectory, a complementary 

method needs to be applied. As evidence, B´ezier 

curves are used in [23] and [24] and spline curves 

are applied in [25] and [26] to improve the 

trajectory. In [27] and [28] a GPP algorithm 

generates an initial trajectory as input to a closed 

loop structure including a robot’s dynamic, a 

controller and an optimization method. The output of 

the structure is the designed trajectory. A variety of 

optimization methods such as dynamic programming 

[29], Quadratic Programming(QP) [30] [31], Genetic 

Algorithm(GA) [32] [33], artificial network [34], 

Linear–Quadratic Regulator(LQR) [35], Particle 

Swarm Optimization(PSO) [33] can be used for 

trajectory improving. In these methods, the problem 

must be formulated in a particular form, and the 

optimal trajectory can be obtained by minimizing the 

cost function with respect to the desired constraints. 
 

Studies show that various methods have been 

used by researchers to modify the trajectory. In the 

following we explore a few of these research: 
 

In [30], an initial trajectory is generated with the 

RRT algorithm, and a controller based on Model 

Predictive Control (MPC) is designed to generate the 

feasible trajectories which satisfy given constraints. 

It is done by using an inner-simulator to track the 

trajectories. The MPC problem is transformed into 

QP form which can be numerically solved. 
 

In [31], an initial trajectory in obstacle-free space 

is generated by the Informed Optimal Rapidly-

exploring Random Trees-star (IRRT*) algorithm and 

the problem of optimizing the trajectory is stated in a 

QP form considering dynamic constraints. The 

constraints, which are not in QP forms cannot be 

used by this method.  
 

Optimization methods are widely used to adjust 

the trajectory parameters as mentioned earlier. The 

environment might slightly change, and a real robot 

is incapable of adapting to new changes after the 

optimization. We are going to propose a learning 

method which can learn a smooth and continuous 

trajectory considering the robot's dynamics and can 

be applied to the real robot. An alternative approach 

for adjusting the trajectory parameters is 

Reinforcement Learning (RL) methods. As an 

example, Path Integral Policy Improvement (PI2) 

[36] [37] [38] is a RL algorithm with interesting 

features like having an arbitrary state-dependent cost 

function part, exploration noise as the only open 

algorithmic tuning parameter, numerically robust 

performance in high-dimensional learning problems 
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and better performance than gradient-based methods 

[39]. PI2 has been compared with some of the most 

efficient methods like REINFORCE [40] [41], 

GPOMDP [42], PG [43], ENAC [44] and PoWER 

[45] on multiple applications, and the results show 

that PI2 surpasses all of them [36]. The Path Integral 

Policy Improvement with Covariance Matrix 

Adaptation (PI2-CMA) learning algorithm is a 

modified version of the PI2 algorithm, which 

automatically and optimally adjusts the exploration 

noise. PI2-CMA optimizes the trajectory which is 

generated by Dynamic Movement Primitives 

(DMPs). The trajectory involves the position, 

velocity, and acceleration at any time, and is tracked 

using a PD controller by default.  
 

In this paper, we propose a modified version of 

PI2-CMA which is applied for improving the initial 

trajectory, and we show that our modified version of 

this algorithm minimizes the cost considering the 

robot's dynamics. The cost is calculated during 

tracking the trajectory by a proposed tracking 

algorithm which is suitable for mobile robots with 

low-rate control command. A modified controller, 

which considers the desired velocity and 

acceleration, is used in the proposed tracking 

algorithm. Since our proposed method benefits from 

the PI2-CMA algorithm, there is no need to state the 

problem in a specific form meaning that there is no 

limitation in the definition of the cost function. We 

have implemented a two-dimensional position 

measurement system based on image processing and 

a communication system between quadrotor and PC 

to evaluate the behavior of the proposed algorithm. 

In our practical experiment, trajectories are 

generated by DMPs and tracked by using our 

proposed tracking algorithm. 
 

The rest of the paper is organized into four 

sections. The proposed path planning and trajectory 

tracking are discussed in section 2, and the 

implementation and results are presented in section 3 

and 4, respectively. We conclude in section 5. 
 

2. Quadrotor Path Planning And Trajectory 

Tracking 
 

The quadrotor task is passing through all 

waypoints of the trajectory, which is placed in 

obstacle-free space. We already know that adjusting 

the task and improving the controller considering the 

robot's dynamic can reduce the cost. Two steps are 

needed to accomplish the task: the first step is 

generating a suitable path for moving from the 

starting point to the ending point and the second is 

tracking the trajectory by a strategy. We describe the 

strategy in the rest of this section. 

2-1. Proposed path Planning Algorithm 
 

It is preferred that the robot’s dynamic and the 

measurement errors be considered during path 

planning. Short, smooth and continuous trajectories 

with slow variation in velocity and acceleration, are 

more suitable to track. Also, it is necessary to keep a 

safe distance from obstacles to avoid a collision. 

Therefore, the path planning problem can be 

formulated as a reinforcement learning problem, in 

which, the initial trajectory has input role. The 

lowest cost trajectory which is experimented through 

learning is the output of the learning problem, in 

other words, the output is the most suitable 

trajectory that is experimented by the robot. The cost 

function is defined according to required features, 

and more rewards are given to the trajectories with 

lower cost, in this way the required features are 

obtained. 
 

In our research, PI2-CMA reinforcement learning 

algorithm is used to optimize the trajectory.  The 

advantages of using PI2-CMA are: having an 

arbitrary state-dependent cost function part, 

automatic adjustment of exploration noise, no open 

algorithmic tuning parameter, numerically robust 

performance in high-dimensional learning problems 

and better performance than gradient-based methods 

[39]. The PI2-CMA algorithm works based on the 

reward-weighted averaging methods [46]. It 

minimizes the cost function through an iterative 

process of exploration and parameter updating. The 

policy improvement algorithm [47] is extended for 

mobile robot applications with low-rate control 

command, and it is shown in Figure (1). The gray 

block in Figure (1) denotes our special tracking 

algorithm and controller in which is named 

“generate K rollouts” as discussed in the next 

section. In PI2-CMA, DMPs are usually used to 

produce the path as a special case of parameterized 

policies which its attractive feature in this research is 

to provide instantaneous values of velocity and 

acceleration of the trajectory. DMP equations are 

expressed as [39]: 
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Fig. 1. The block diagram of our policy improvement algorithm 

 

component of the position, velocity and acceleration 

at time  . The generated trajectories are sampled 

over a uniform subdivision of time *            +. 
The basis functions      

    are defined by a 

piecewise linear function approximator with 

Gaussian weighting kernels [36] as follows: 
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      Where    is bandwidth and    is the center of the 

Gaussian kernels. 

In Equation (1), the parameter    denotes the 

shape of the  th dimension of the absorption 

trajectory in which there is a scalar component in   
 
 

for each component of the basis function |    |        

. This formulation allows a DMP to generate 

arbitrary smooth trajectories (see [48] and [49]). The 

features of DMP include [50]:  

 

1- Each DMP generates a dimension of the 

trajectory ,       ̇      ̈    -   *         + . 

Therefore,    dimensional trajectory can be 

generated with   DMPs 

,       ̇      ̈    -   *     +  .  

2- Each DMP converges from the starting point 

     to the goal point      .  

3- The general shape of the trajectory is 

determined by the parameters         : 

 

   

[
 
 
 
  
 

  
 

 
  
 ]
 
 
 

 (3) 

 

 

 

In the learning problem, exploration begins with 

adding noise      to the parameter   . The noise       

is drawn from a zero-mean Gaussian distribution 

with variance   . 
 

  
     in Figure (1) denotes the initial trajectory 

parameter which is generated by a GPP algorithm. 

DMP execution repeats K times with         

which results in K noisy trajectories 

,          ̇         ̈       -        , which are called 

rollouts. Each of the rollouts contains N waypoints 

and robot should track all of them to specify      

which is the costs of the  th rollout from  th 

waypoint to (   )th waypoint,           
 1. A controller is needed to steer the robot along 

the trajectory with minimum error. It is crucial to 

obtain a safe trajectory through learning, since 

tracking an unsafe trajectory leads to robot damage. 

To solve the problem, we have used the robot’s 

dynamic model to simulate trajectory tracking. In 

more details, the controller is applied to the robot 

model to track the desired trajectory, and the output 

of the model is used to calculate the costs     . 
Furthermore, the system transfer function is 

identified and used instead of the model to make the 

simulation closer to the reality.  

The costs      are defined as Equation (4) [47]:    

 

                                                           
1 - In the rest of this paper,   is used instead of    for notational 

compactness 
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        Where      is the instant cost of the  th 

waypoint of  th rollout, and it is equal to the sum of 

all the costs that the robot has spent to reach the  th 

point of the trajectory from (   )th point.        is 

the normalized version of     .      denotes the 

importance of the  th rollout from  th waypoint to 

(   )th waypoint. Each of the K rollouts will 

have a specific contribution in updating the 

parameters    and as well as determining the size 

and direction of the noise according to the weights 

    . In other words, the new values of    and    for 

the time    (i.e.,     
    and     

   ) are calculated as 

follow [47]: 
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Then, the parameter    and the noise variance    

is updated as [47]: 
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      Where   is identity matrix and      is a positive 

scalar constant. In Equation (10), early convergence 

is avoided by adding       to the covariance matrix 

at each updating step [51]. With the updating 

method, the learning tends towards less costly 

trajectories. Equation (8) shows, the contribution of 

sample      in     
    is             

 . In fact, the 

effect of sample      on the expansion of the 

distribution in      direction is proportional to      

and |    |. It means that the distribution will be 

expanded towards less costly samples. This process 

is repeated until the algorithm converges to a 

suitable trajectory for moving the robot. 

2-2. Proposed Path Tracking Algorithm 
 

The proposed path planning algorithm generates 

a trajectory which includes the waypoints namely 

                 . The quadrotor can pass along 

the trajectory with the sequential chasing of these 

waypoints. Each waypoint is a vector including three 

components: instantaneously required position, 

velocity and acceleration, i.e. (     ̇    ̈  ), where 

    (           ) shows the position of the robot in 

three-dimensional space. Trajectory tracking is 

improved using the desired velocity and acceleration 

in the controller. Also for every moment, a suitable 

target point should be determined by the tracking 

algorithm due to low-rate control command and 

position updating. In the next part, we present the 

details of the proposed trajectory tracking algorithm 

and its controller. 

 

In the trajectory tracking algorithm, the starting 

waypoint is considered as the first target point 

(    ̇   ̈ ), and the controller brings the quadrotor 

to the target point neighborhood2. Then the target 

point is replaced by the next waypoint, and the 

controller steers the quadrotor toward it. The process 

of replacing the target points will be continued until 

the quadrotor reaches to the end of the trajectory. By 

this approach, if the quadrotor passes the target point 

with a distance more than ra, the target point does 

not change; therefore reciprocating movement is 

unavoidable. For this issue, another algorithm is 

proposed to determine the suitable target points after 

lift-off and before landing. The pseudocode is given 

in Table 1. The execution of the algorithm is done 

after each position and angle measurement. The 

algorithm starts tracking by selecting           as 

the target point; therefore the quadrotor moves in the 

neighborhood of           . If the quadrotor stays 

nf successive time steps at the neighborhood of 

         , the target point changes to           

(rows 3 to 8 Table 1). In the next time steps, if the 

quadrotor is in the neighborhood of a target point, 

                                                           
2 - Reaching to the target point is impossible duo to noise, 

disturbances and error in position measurement; therefore we consider a 

neighborhood with radius ra around the target point. Placing the 

quadrotor in the neighborhood means to reach the point.  
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the target point is replaced by the first waypoint 

outside of its neighborhood. In other words, the 

waypoints might be dense and close together in the 

vicinity of the target point; hence some of the next 

waypoints are also in the neighborhood. In this case, 

the target point will be replaced by the first waypoint 

in the outside of the neighborhood (rows 14 to 18 in 

Table 1). The rows 10 to 13 in Table 1 are 

considered for reciprocating avoidance during 

trajectory tracking. In other words, if the quadrotor 

is getting away from the current target point, which 

is assumed to be          , the distances of 

quadrotor from       waypoints, i.e. 

            , …              are calculated. 

The target point is replaced by the waypoint with 

minimum distance, minDist. ra is set to minDist+Δ 

where Δ is a small value. In this way,the quadrotor 

returns to the most appropriate waypoint and 

continues passing the trajectory. The target point is 

not changed  anymore after setting to            , 

in which the desired velocity and acceleration are 

zero. 

Waypoints contain velocities and accelerations of 

the trajectory and using the velocities and 

accelerations can improve the trajectory tracking as 

Table 1  

The target point selection algorithm for mobile robots with low-rate control command 

Initialization: Trajectory={                 },                    , (    ̇   ̈ )           , count=0, i=1. 

1.        √(          )
  (          )

  (          )
 

 

2. IF (    ̇   ̈ )             THEN 

3. |     IF count<nf && dist< ra THEN 

4. |     |    count++; 

5. |     ELSE IF count>=nf && dist< ra THEN 

6. |     |     (    ̇   ̈ )            

7. |     ELSE  

8. |     |     count=0; 

9. ELSE 

10. |     IF dist > previousDist THEN   // Reciprocating avoidance  code                                   ;   

11. |     |      [(    ̇   ̈ ), NearDist] = FindNearestTarget(                            );     

12. |     |      ra = NearDist+∆;                                                                                                        ; 

13. |     |      dist= NearDist;                                                                                                          ; 

14. |     WHILE dist< ra 

15. |     |      i=i+1 

16. |     |      (    ̇   ̈ )            

17. |     |      IF i==(n-1) THEN break; 

18. |     |             √(          )
  (          )

  (          )
  

19. previousDist = dist; 

20. IF  i>=n-1 Then target =          (n-1)  

21. Calculate control signal and change robot input 

 

Various controllers such as PID [4] [52], PD [53], PI 

[52], Takagi-Sugeno fuzzy controller [54] and 

sliding mode controller [55] are used by researchers 

to navigate the quadrotor along the trajectory. In this 

paper, a two degrees of freedom PID controller 

based on the controller in [53], is used as shown in 

Equation (10). The advantages of the PID controller 

are: simple adjustment of its coefficients, robustness 

and capability of industrial implementation. 

 

 

(10) 

    (    )    ∫(    )  

   (  ̇   ̇)    ̈  

(11)  ̇  
 

  
    
   

  

 

     Where   (       ) is control signal in which 

    and     are control signals for       and      

axes.   ,  ̇  and  ̈  are respectively, the position, 

velocity, and acceleration of the target point which is 

determined by the proposed algorithm,   and  ̇ are 

respectively, the quadrotor position and velocity.    

is time step, M is a constant coefficient that 

determines the bandwidth of the highpass filter 

which acts as an differentiator, Z is z transfer 

variable,   ,   ,   ,   and   are PID controller 

coefficients. The first and second term of the 

controller reduce the position error. The quadrotor 

velocity converges to the desired velocity due to the 

third component. The third term, i.e., velocity error 

is used instead of the derivative of the error signal. 

The error is equal the difference between the target 

point and the quadrotor position. Since the target 
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point is constant until the quadrotor reaches to its 

neighborhood, we have  ̇    in the error 

derivative that is not true. With this approach, the 

velocity is also controlled. Quadrotor velocity is 

calculated by the time derivative of its position. For 

this purpose, a high-pass filter in Equation (11) has 

been used. The filter also reduces the effect of the 

noise in the computation of the derivative. The term 

  ̈  is the prediction of the desired acceleration, and 

it can significantly improve performance for 

trajectories with large accelerations or controllers 

with soft gains [53]. 
 

The yaw angle affects the quadrotor direction 

according to Equation (12). 

 

(12) 
                  

                   
 

 

     Where    and     are control signals of pitch 

angle and roll angle.   is quadrotor yaw angle. To 

control the yaw angle, PID controller is used as: 

 
 

 

(13) 

 

       (    )    ∫(    )  

     
   

 
(    ) 

       

      Where    is yaw angle control signal.    is 

desired yaw angle.    ,     and     are PID 

controller coefficients. Block diagram of the system 

controller is shown in Figure (2). 

 

 
Fig. 2. Block Diagram of Closed-Loop System

       The control signals   ,    and    respectively 

determine the desired roll angle(feed to input A3 of 

flight controller4), the desired pitch(feed to input E) 

and the  desired yaw angle(feed to input R) for the 

flight controller as Figure (2) shows. 

3. Implementation 

  

We did a low-cost implementation of our 

proposed algorithm and evaluated its performance 

within a real configuration containing a quadrotor, a 

webcam, and a computer. Furthermore, a two-

dimensional trajectory is considered in an arena that 

could be seen via the webcam. On the arena, the 

robot's attitude  (           ) and obstacles are 

obtained by processing the webcam frames. 

 

3-1. Specifications of the Robot and the Arena  
 

                                                           
3  - A, E and R are abbreviation for Aileron, Elevator and Rudder, 

respectively. 

4 - Our flight controller is NAZA M-Lite [58] 

Figure  (3) shows the specifications of the arena 

as well as the webcam's view. The color of the floor 

is white, and the color of the obstacles are set to 

black. Our webcam, which is a TSCO TW 100K, 

sends the captured images to a computer via its USB 

port. The rate of data transmission is 30 frames per 

second (30 fps). The size of quadrotor with its 

propeller guards is (approximately) equivalent to a 

square with a side length of 35cm.    Table 2 shows 

the quadrotor parts list. NAZA M-Lite flight 

controller has some parameters which called gains 

and we adjust them as shown in     

   Table 3. We have made a radio control unit 

which can communicate with the computer and 

quadrotor via two modules namely HLK-RM04 and 

MRF24J40. The radio control unit runs in two 

modes: either manual or automatic. Running in 

manual mode allows the operator to control the 

quadrotor manually, but the automatic mode enables 

the quadrotor to receive the commands from a 

computer automatically. 
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3-2. Our Software Program 
 

Using Visual C++ 2012, we developed a 

processing unit by which the robot is controlled and 

the calculations are performed. The processing unit 

has three modules:  

The first module is responsible for performing 

the following stages: 

1- Capturing an image from the webcam. 

2- Processing the image using OpenCV library to 

identify the obstacle positions 

3- Constructing the spherical Bounding Volume 

Hierarchy (BVH) tree, by BVH algorithm to 

enable checking the collision occurrence in the 

next stages [56] 

4- Generating an initial trajectory [57] by RRT* 

algorithm. 

In the second module, the initial trajectory is 

represented using the DMPs and improved by the 

proposed method which is done offline.  

The third module:  

 

 
Fig. 3. Schematic of the Arena Map 

 

   Table 2 

   Quadrotor parts list 

HMF X240 Quadcopter Frame Frame 

T-Motors 1806 Motor 
XC3012BA dualsky ESC 

750 grams weight 
NAZA M-Lite Flight controller 

3 blade 5×3 Propeller 

13cm Center to motor dis 

3000mAH Battery 

    

   Table 3  

   The flight Controller Gain 

125 Basic Gain Pitch 

125 Basic Gain Roll 
115 Basic Gain Yaw 
140 Basic Gain Vertical 
125 Attitude Gain Pitch 

125 Attitude Gain Roll 

 
Fig. 4. Two disks are installed on the top of quadrotor to determine the 

position and angle of the robot. 

 

1- Capturing frames with 30fps from the webcam 

2- Calculating the position and angle of the robot 

in each frame.  

3- Sending control commands to quadrotor for 

tracking the trajectory. 

The red and small yellow disks in Figure (4) are 

installed on the quadrotor to determine the position 

and angle (yaw) of the robot. The center of disks is 

calculated by using the image processing. The 

quadrotor position is indicated by the center of the 

red disk. The angle between    axis and the line 

segment, which connects the disk centers, is yaw. 

The units of the yaw and position are degree and 

pixel respectively. 

3-3. Identification of the System  
 

Figure (2) shows the open loop system whose 

inputs are applied to the flight controller inputs and 

its outputs are position and angle, (    ,     ) and 

 , of the quadrotor in the arena. The inputs of the 

flight controller (E,R,A) are 50 Hz PWM signals 

whose pulse-width is determined as shown in   Table 

4. The control signal   ,    and    are pulse-width 

in the range [1000, 2000] which are transformed to 

the corresponding PWM pulses in radio controller 

unit. The radio controller unit transmits the pulses to 

the flight controller as inputs. 

According to Equation (12), position control is 

simplified as        and        by setting 
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     in the yaw controller. We used Matlab 

identification toolbox to identify the transfer 

functions of the open-loop system including position 

transfer functions, i.e.      and      , and yaw 

transfer function, i.e.   . For this purpose,   ,    

and    signals are fed to the inputs E, A, R of the 

flight controller and     ,      and   are measured 

as outputs which are shown in Figure (5).      , 

      and    are identified as: 

 

(14) 

      

  
                         

                      
 

      

  
                         

                    
 

   
         

              
 

 

and the response of the identified systems to the 

inputs are plotted in Figure (5). 

Result In order to evaluate the performance of our 

proposed algorithm, two arenas with different 

obstacles have been created. First, the obstacles 

regions are specified, and the BVH tree is generated 

to check the collision occurrence. In our experiment, 

we use two DMPs for the variables      and      in 

the two-dimensional arena. The initial parameters 

      
     of DMPs are calculated from the initial 

trajectory.  

 

The PI2-CMA algorithm adjusts the parameter 

vectors        such that the cost function is 

minimized. We defined the cost function according 

to the following criteria: 

Unsafe distances from obstacles during trajectory are 

punished. 

The trajectories with shorter length are preferred. 

Reaching to the goal point is rewarded.  

According to the above-mentioned criteria, the cost 

function for the piece of  th rollout starting from 

          is defined as: 

(15) 

                          

                               
   

 
 

     ∑     

   

   

 

  Table 4 

  Pulse width specifications of the flight controller Inputs 

Maximum pulse width Middle pulse width Minimum pulse width Input 
2000µs 1500µs 1000µs A(roll) 

2000µs 1500µs 1000µs E(pitch) 
2000µs 1500µs 1000µs R(yaw) 

 
Fig. 5.  a) The response of        and the position system      to   . b) The response of        and the position system      to   . c) The response of    

and the yaw system to   . d) The input signals   ,    and    
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    where        is the distance between current and 

previous robot positions (note that the  th rollout 

length is equal to ∑       
   
   ) and is defined as: 

(16) 
       (             )

 

 (             )
  

       where the current and the previous position of 

the quadrotor are denoted by   and      .         is 

the distance between current robot position and the 

goal point and is defined as: 

 

(17) 
         (               )

 

 (              )
  

 

 

     Where       denotes the last waypoint which 

also called goal point.         denotes the cost of 

the robot distance from obstacles and is defined as 

follows: 

(18)         ∑ 
  .

                 
       

/

 

   

 

    Where Q is the number of obstacles. Minimum 

safe distance from the obstacles is        . The 

distance between the quadrotor and the  th obstacle 

is denoted by         , hence the distance          
is safe if it is greater than        .   ,    and    are 

determined according to the importance of each 

criterion and changing the value of the coefficients 

affect the result. 
 

The control signal for a target point is applied to 

the       and       models and the output, i.e., the 

quadrotor positions during tracking, are calculated. 

Hence after tracking, we have all the values which 

are needed for calculating the cost. Table 5,  Table 6,  

Table 7,  Table 8 and Table 9  respectively show the 

parameter values for DMP, yaw and position 

controller tracking algorithm and cost function. 

       ⁄  and     denotes the frame rate of the 

webcam.   ,   ,    and   are set as in [36]. The 

controller coefficients   ,   ,   ,    ,     and     

are initially calculated by Matlab's PID tuner and 

then readjusted in order to reach a better response. 

The other values (  ,   ,   , A, b, L, nf, np and ∆) 

are obtained by trial and error. 

Table 5 

The values of the DMP Parameters 

L  (s)          DMP Parameters 
25                    Value 

 

 

Table 6 

The values of the position controller coefficients 

TS(s) M c b          
Position controller 

coefficients 
0.033 20 0.1 0.5 1.2 0.3 0.5 Value 

 

Table 7 

The values of the yaw controller coefficients 

            Yaw controller coefficients 
7 0.3 3 Value 

 

 Table 8 

 The values of the tracking algorithm Parameters 

∆ np nf Tracking algorithm Parameters 

5 10 5 Value 

Table 9 

The values of the cost function parameters 

                 Cost function parameters 
100 10 75 0.1 Value 

 

Figure (6) and Figure (7) show initial and 

improved trajectory of an example leaning run in 

two different arenas, A and B. Figure (8) and Figure 

(9) show the average learning curves of 10 different 

learning runs and illustrate how the cost is reduced 

during the learning process. 
 

By a real experiment in arena A, we compare the 

performance of the proposed tracking algorithm 

with/without reciprocating avoidance code (rows 10 

to 13 in Table 1) in Figure (10) and Figure (11). In 

Figure (10) the improved trajectory in arena A is 

tracked based on our proposed tracking algorithm 

three times that the quadrotor movement during one 

of them is shown in Figure (11).  
 

Figure (12) shows that the algorithm with 

reciprocating avoidance code has a higher 

performance. Figure (13) shows the effects of the 

desired speed and acceleration terms in the 

controller behavior of the proposed tracking 

algorithm.  
  

At the beginning of a real experiment, the 

quadrotor is manually steered into the neighborhood 

of the starting point and automatic control is 

activated. During the real experiment, the 

neighborhood radius, ra, for the first waypoint is set 

to 10 and for next waypoints, it is set to 15. Also, the 

yaw angle controller is used to hold     . 
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Fig. 6. Initial and improved trajectory of an example leaning in the arena 

A. 

 
Fig. 7. Initial and improved trajectory of an example leaning in the arena 

B. 

 

 
Fig. 8. Average learning curve during learning in the arena A. 

 
Fig. 9. Average learning curve during learning in the arena B. 

 
Fig. 10. The dotted line denotes the learned trajectory in arena A that is 

tracked three times by the proposed tracking algorithm in real 

experiment. 

 

 
 

Fig. 11. The quadrotor movement during the tracking experiment which 

is labeled Test1 in Figure (10). 
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Fig. 12. The tracking result of the proposed tracking algorithm 

with/without rows 10 to 13 in Table 1 in the real experiment. 

 

 
 

Fig. 13. The effects of ignoring desired speed and acceleration on the 

controller performance in the real experiment. 

 

      At the end, we want to design a path by the 

proposed algorithm for a more complex problem 

which is presented in paper [22]. The problem in the 

paper is designing a path which should be passed 

through the vicinity of some certain points. The 

designed path in [22] is shown in Figure (14). 
 

 To track such a path, the robot have to move 

slowly in the path corners, otherwise it may not be 

able to navigate the path successfully. If the 

dynamics of the robot is taken into account in the 

design of the path, it will be possible to navigate the 

path at higher speeds. We designed the same path 

with our proposed algorithm regarding to the robot 

dynamics, as shown in Figure (15).  

 

Fig. 14. The designed path in [22]. The colored circles denote the points 

that the robot should pass through their vicinity. The blue squares denote 

the start/end points of the path. The red area denotes the no-fly zone. 

The striped red squares denote the obstacles. 

 

 

 
Fig. 15. The blue path is designed by the proposed algorithm regarding 

to the robot dynamics. The red path denotes the path that the robot pass 

 

The figure shows that the designed path has 

passed through some obstacles and during tracking 

the path, the robot can pass through safe areas at 

higher speed as shown in the figure. 

4. Conclusion  

In this paper, a learning-based GPP algorithm is 

proposed that are applicable to mobile robots. 

Advantages of using our proposed algorithm are: 1- 

Using the identified model, the effects of the robot’s 

dynamic and error/delay in the position 

measurement system are considered, 2- DMP is used 
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to generate desired velocities and accelerations as 

well as desired positions that improve tracking. 
 

To evaluate the performance of the proposed 

algorithm, a processing unit is developed for 

processing images, performing our algorithm 

calculations and controlling the robot movement. 

Also, a radio control unit is made for communication 

between the computer and the quadrotor (or operator 

in the manual mode). 
 

Results show that the proposed algorithm 

improves the initial trajectory concerning the robot's 

dynamics and PI2-CMA with the designed cost 

function tend to shorter and safer trajectory and the 

proposed tracking algorithm and controller improve 

the performance of tracking. 
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