
 Journal of Computer & Robotics 15 (1), 2022 65-79

65

Global Path Planning of Quadrotor Using Reinforcement Learning

Mehdi Khakbaz
a,*

, Majid Anjidani
b

a Department of Electrical Engineering, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
b Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran

Received 14 May 2022; Accepted 12 July 2022

Abstract

This paper aims to improve the trajectory by an extended reinforcement learning based method in which a new

tracking algorithm is used for mobile robot applications with low-rate control command. There are some trajectories

that underactuated robots, like quadrotors, are unable to track; hence a suitable trajectory should be designed with

respect to the robot's dynamics. In this paper, the initial trajectory is generated by Rapidly-exploring Random Tree Star

algorithm which is not suitable for quadrotor application. Then, the initial trajectory is improved by an extension of Path

Integral Policy Improvement with Covariance Matrix Adaption (PI2-CMA) algorithm. The extension includes

improving tracking algorithm and controller performance considering low-rate control command. Our proposed

algorithm succeeded to reduce the cost of tracking by designing safer and shorter trajectories which are more suitable

for real robots. Furthermore, the results show that the proposed tracking algorithm and controller improve the

performance of tracking. The hardware requirements for implementing our proposed method are a webcam and a

personal computer; therefore with a low-cost implementation of the proposed method, a suitable trajectory is designed.

In this paper, the initial trajectory is improved by an extension of PI2-CMA algorithm in which the trajectory tracking is

performed such that reciprocating motions are avoided. Also, desired velocity and acceleration are used by controller for

better tracking.

Keywords: Quadrotor robot, Path planning, Trajectory tracking and Reinforcement learning

1. Introduction

During recent years, the quadrotors have been

used for a variety of applications; from military

applications [1] to commercial usages like toys [2].

The use of quadrotors are even evident in other areas

like load transportation [3], inspection of buildings

[4], mapping [5], identification and exploration of

unknown regions [6], delivery of goods [7] and

search and rescue [8]. Firstly, the quadrotors should

be able to automatically map the environment and

localize their positions by capturing data through

their sensors and secondly plan a free obstacle

trajectory according to a defined mission, and

finally, to track the trajectory. Recently many

research has been done in the field of path planning

and obstacle avoidance.

The purpose of path planning is to find a

trajectory in free obstacle space in a way that the

quadrotor is able to track the trajectory. The path

planning has two categories: local and global [9].

The Local Path Planning(LPP) tries to identify

the obstacles of the environment and get the required

knowledge through the sensors. The LPP generates a

free obstacle trajectory along the movement [10]. In

Global Path Planning(GPP), the environment is

static and known so before the robot starts to move

the algorithm can generate a complete trajectory

between the start point and the destination point. The

focus of GPP is to produce the smooth trajectories

for the robot [11]. Therefore, another algorithm

might be needed for trajectory smoothing and

eliminating extra waypoints [12].

In some LPP methods, a combination of

mathematical functions is used to represent the

smooth trajectory. As an example, one of the most

popular LPP methods is Dubin’s curves in which

*
 Corresponding Author. Email: mehdi_khakbaz@iaus.ac.ir

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

66

discontinuities arise at the junction of line and arc.

The discontinuities cause errors while tracking [12].

Two types of curves have been used to resolve the

discontinuities: the parametric curves whose

curvature is a function of their arc length such as

Clothoids, and the curves which coordinates have a

closed-form expression such as B´ezier curves and

B-splines [13].

There are a number of GPP algorithms which are

considered as the most common ones. They are

namely: Probability RoadMap(PRM) [14], Visibility

Graph(VG), the class of Rapidly-exploring Random

Tree(RRT) algorithm [15] [16], Space

Skeletonization [17] and cell decomposition [18]

[19] methods. These methods are considered global

when they are applied to the whole configuration

space. They can be made local by restricting their

application to a subset of configuration space around

the current configuration of the robot [19]. In our

research, we applied Rapidly-exploring Random

Tree Star (RRT*) algorithm as a global path planner.

Also there are some GPP algorithm based on

deep reinforcement learning which we explore them

in the following:

In [20], a deep reinforcement learning based

method is presented for quadrotor autonomous

navigation in semi-known environments. Their

method uses the dueling double deep recurrent Q-

learning to implement global path planning with the

obstacle map as input. Also, for effectively

conducting real-time autonomous obstacle avoidance

with monocular vision, a contrastive learning-based

feature extraction is combined with their method.

Another deep Q-network (DQN) based method is

proposed in [21] for motion planning of quadrotors.

The method generates local motion plans in the form

of motion primitives using raw depth images from a

front-facing camera. DQN is trained with around

75,000 which takes a raw depth image and relative

position information as its input, and yields a motion

primitive selection as its output.

In [22], a UAV path planning method based deep

reinforcement learning is presented. The double

deep Q-networks (DDQNs) in the method are

trained by exploiting structured map information of

the environment.

Neglecting the robot's dynamic leads to trajectory

incompatibility of the trajectory with the robot and

in order to improve the trajectory, a complementary

method needs to be applied. As evidence, B´ezier

curves are used in [23] and [24] and spline curves

are applied in [25] and [26] to improve the

trajectory. In [27] and [28] a GPP algorithm

generates an initial trajectory as input to a closed

loop structure including a robot’s dynamic, a

controller and an optimization method. The output of

the structure is the designed trajectory. A variety of

optimization methods such as dynamic programming

[29], Quadratic Programming(QP) [30] [31], Genetic

Algorithm(GA) [32] [33], artificial network [34],

Linear–Quadratic Regulator(LQR) [35], Particle

Swarm Optimization(PSO) [33] can be used for

trajectory improving. In these methods, the problem

must be formulated in a particular form, and the

optimal trajectory can be obtained by minimizing the

cost function with respect to the desired constraints.

Studies show that various methods have been

used by researchers to modify the trajectory. In the

following we explore a few of these research:

In [30], an initial trajectory is generated with the

RRT algorithm, and a controller based on Model

Predictive Control (MPC) is designed to generate the

feasible trajectories which satisfy given constraints.

It is done by using an inner-simulator to track the

trajectories. The MPC problem is transformed into

QP form which can be numerically solved.

In [31], an initial trajectory in obstacle-free space

is generated by the Informed Optimal Rapidly-

exploring Random Trees-star (IRRT*) algorithm and

the problem of optimizing the trajectory is stated in a

QP form considering dynamic constraints. The

constraints, which are not in QP forms cannot be

used by this method.

Optimization methods are widely used to adjust

the trajectory parameters as mentioned earlier. The

environment might slightly change, and a real robot

is incapable of adapting to new changes after the

optimization. We are going to propose a learning

method which can learn a smooth and continuous

trajectory considering the robot's dynamics and can

be applied to the real robot. An alternative approach

for adjusting the trajectory parameters is

Reinforcement Learning (RL) methods. As an

example, Path Integral Policy Improvement (PI2)

[36] [37] [38] is a RL algorithm with interesting

features like having an arbitrary state-dependent cost

function part, exploration noise as the only open

algorithmic tuning parameter, numerically robust

performance in high-dimensional learning problems

 Journal of Computer & Robotics 15 (1), 2022 65-79

67

and better performance than gradient-based methods

[39]. PI2 has been compared with some of the most

efficient methods like REINFORCE [40] [41],

GPOMDP [42], PG [43], ENAC [44] and PoWER

[45] on multiple applications, and the results show

that PI2 surpasses all of them [36]. The Path Integral

Policy Improvement with Covariance Matrix

Adaptation (PI2-CMA) learning algorithm is a

modified version of the PI2 algorithm, which

automatically and optimally adjusts the exploration

noise. PI2-CMA optimizes the trajectory which is

generated by Dynamic Movement Primitives

(DMPs). The trajectory involves the position,

velocity, and acceleration at any time, and is tracked

using a PD controller by default.

In this paper, we propose a modified version of

PI2-CMA which is applied for improving the initial

trajectory, and we show that our modified version of

this algorithm minimizes the cost considering the

robot's dynamics. The cost is calculated during

tracking the trajectory by a proposed tracking

algorithm which is suitable for mobile robots with

low-rate control command. A modified controller,

which considers the desired velocity and

acceleration, is used in the proposed tracking

algorithm. Since our proposed method benefits from

the PI2-CMA algorithm, there is no need to state the

problem in a specific form meaning that there is no

limitation in the definition of the cost function. We

have implemented a two-dimensional position

measurement system based on image processing and

a communication system between quadrotor and PC

to evaluate the behavior of the proposed algorithm.

In our practical experiment, trajectories are

generated by DMPs and tracked by using our

proposed tracking algorithm.

The rest of the paper is organized into four

sections. The proposed path planning and trajectory

tracking are discussed in section 2, and the

implementation and results are presented in section 3

and 4, respectively. We conclude in section 5.

2. Quadrotor Path Planning And Trajectory

Tracking

The quadrotor task is passing through all

waypoints of the trajectory, which is placed in

obstacle-free space. We already know that adjusting

the task and improving the controller considering the

robot's dynamic can reduce the cost. Two steps are

needed to accomplish the task: the first step is

generating a suitable path for moving from the

starting point to the ending point and the second is

tracking the trajectory by a strategy. We describe the

strategy in the rest of this section.

2-1. Proposed path Planning Algorithm

It is preferred that the robot’s dynamic and the

measurement errors be considered during path

planning. Short, smooth and continuous trajectories

with slow variation in velocity and acceleration, are

more suitable to track. Also, it is necessary to keep a

safe distance from obstacles to avoid a collision.

Therefore, the path planning problem can be

formulated as a reinforcement learning problem, in

which, the initial trajectory has input role. The

lowest cost trajectory which is experimented through

learning is the output of the learning problem, in

other words, the output is the most suitable

trajectory that is experimented by the robot. The cost

function is defined according to required features,

and more rewards are given to the trajectories with

lower cost, in this way the required features are

obtained.

In our research, PI2-CMA reinforcement learning

algorithm is used to optimize the trajectory. The

advantages of using PI2-CMA are: having an

arbitrary state-dependent cost function part,

automatic adjustment of exploration noise, no open

algorithmic tuning parameter, numerically robust

performance in high-dimensional learning problems

and better performance than gradient-based methods

[39]. The PI2-CMA algorithm works based on the

reward-weighted averaging methods [46]. It

minimizes the cost function through an iterative

process of exploration and parameter updating. The

policy improvement algorithm [47] is extended for

mobile robot applications with low-rate control

command, and it is shown in Figure (1). The gray

block in Figure (1) denotes our special tracking

algorithm and controller in which is named

“generate K rollouts” as discussed in the next

section. In PI2-CMA, DMPs are usually used to

produce the path as a special case of parameterized

policies which its attractive feature in this research is

to provide instantaneous values of velocity and

acceleration of the trajectory. DMP equations are

expressed as [39]:

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

68

[

 ̇

 ̈

] [

 (() ̇)
]

 [

] ()

(1)

where is internal state and are time

constants. ̇ ̈ respectively determine th

Fig. 1. The block diagram of our policy improvement algorithm

component of the position, velocity and acceleration

at time . The generated trajectories are sampled

over a uniform subdivision of time * +.
The basis functions

 are defined by a

piecewise linear function approximator with

Gaussian weighting kernels [36] as follows:

| |

∑

() ,

 . ()

/

(2)

 Where is bandwidth and is the center of the

Gaussian kernels.

In Equation (1), the parameter denotes the

shape of the th dimension of the absorption

trajectory in which there is a scalar component in

for each component of the basis function | |

. This formulation allows a DMP to generate

arbitrary smooth trajectories (see [48] and [49]). The

features of DMP include [50]:

1- Each DMP generates a dimension of the

trajectory , ̇ ̈ - * + .

Therefore, dimensional trajectory can be

generated with DMPs

, ̇ ̈ - * + .

2- Each DMP converges from the starting point

 to the goal point .

3- The general shape of the trajectory is

determined by the parameters :

[

]

 (3)

In the learning problem, exploration begins with

adding noise to the parameter . The noise

is drawn from a zero-mean Gaussian distribution

with variance .

 in Figure (1) denotes the initial trajectory

parameter which is generated by a GPP algorithm.

DMP execution repeats K times with

which results in K noisy trajectories

, ̇ ̈ - , which are called

rollouts. Each of the rollouts contains N waypoints

and robot should track all of them to specify

which is the costs of the th rollout from th

waypoint to ()th waypoint,
 1. A controller is needed to steer the robot along

the trajectory with minimum error. It is crucial to

obtain a safe trajectory through learning, since

tracking an unsafe trajectory leads to robot damage.

To solve the problem, we have used the robot’s

dynamic model to simulate trajectory tracking. In

more details, the controller is applied to the robot

model to track the desired trajectory, and the output

of the model is used to calculate the costs .
Furthermore, the system transfer function is

identified and used instead of the model to make the

simulation closer to the reality.

The costs are defined as Equation (4) [47]:

1 - In the rest of this paper, is used instead of for notational

compactness

 Journal of Computer & Robotics 15 (1), 2022 65-79

69

(4)

 ∑

(5)

(6)
 ()

∑ ()

 Where is the instant cost of the th

waypoint of th rollout, and it is equal to the sum of

all the costs that the robot has spent to reach the th

point of the trajectory from ()th point. is

the normalized version of . denotes the

importance of the th rollout from th waypoint to

()th waypoint. Each of the K rollouts will

have a specific contribution in updating the

parameters and as well as determining the size

and direction of the noise according to the weights

 . In other words, the new values of and for

the time (i.e.,
 and

) are calculated as

follow [47]:

(7)

 ∑

(8)

 ∑ ()()

 ∑

Then, the parameter and the noise variance

is updated as [47]:

(9)

 [∑ ()

]

 ∑ ()

(10)

[∑ ()

]

∑ ()

 Where is identity matrix and is a positive

scalar constant. In Equation (10), early convergence

is avoided by adding to the covariance matrix

at each updating step [51]. With the updating

method, the learning tends towards less costly

trajectories. Equation (8) shows, the contribution of

sample in
 is

 . In fact, the

effect of sample on the expansion of the

distribution in direction is proportional to

and | |. It means that the distribution will be

expanded towards less costly samples. This process

is repeated until the algorithm converges to a

suitable trajectory for moving the robot.

2-2. Proposed Path Tracking Algorithm

The proposed path planning algorithm generates

a trajectory which includes the waypoints namely

 . The quadrotor can pass along

the trajectory with the sequential chasing of these

waypoints. Each waypoint is a vector including three

components: instantaneously required position,

velocity and acceleration, i.e. (̇ ̈), where

 () shows the position of the robot in

three-dimensional space. Trajectory tracking is

improved using the desired velocity and acceleration

in the controller. Also for every moment, a suitable

target point should be determined by the tracking

algorithm due to low-rate control command and

position updating. In the next part, we present the

details of the proposed trajectory tracking algorithm

and its controller.

In the trajectory tracking algorithm, the starting

waypoint is considered as the first target point

(̇ ̈), and the controller brings the quadrotor

to the target point neighborhood2. Then the target

point is replaced by the next waypoint, and the

controller steers the quadrotor toward it. The process

of replacing the target points will be continued until

the quadrotor reaches to the end of the trajectory. By

this approach, if the quadrotor passes the target point

with a distance more than ra, the target point does

not change; therefore reciprocating movement is

unavoidable. For this issue, another algorithm is

proposed to determine the suitable target points after

lift-off and before landing. The pseudocode is given

in Table 1. The execution of the algorithm is done

after each position and angle measurement. The

algorithm starts tracking by selecting as

the target point; therefore the quadrotor moves in the

neighborhood of . If the quadrotor stays

nf successive time steps at the neighborhood of

 , the target point changes to

(rows 3 to 8 Table 1). In the next time steps, if the

quadrotor is in the neighborhood of a target point,

2 - Reaching to the target point is impossible duo to noise,

disturbances and error in position measurement; therefore we consider a

neighborhood with radius ra around the target point. Placing the

quadrotor in the neighborhood means to reach the point.

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

70

the target point is replaced by the first waypoint

outside of its neighborhood. In other words, the

waypoints might be dense and close together in the

vicinity of the target point; hence some of the next

waypoints are also in the neighborhood. In this case,

the target point will be replaced by the first waypoint

in the outside of the neighborhood (rows 14 to 18 in

Table 1). The rows 10 to 13 in Table 1 are

considered for reciprocating avoidance during

trajectory tracking. In other words, if the quadrotor

is getting away from the current target point, which

is assumed to be , the distances of

quadrotor from waypoints, i.e.

 , … are calculated.

The target point is replaced by the waypoint with

minimum distance, minDist. ra is set to minDist+Δ

where Δ is a small value. In this way,the quadrotor

returns to the most appropriate waypoint and

continues passing the trajectory. The target point is

not changed anymore after setting to ,

in which the desired velocity and acceleration are

zero.

Waypoints contain velocities and accelerations of

the trajectory and using the velocities and

accelerations can improve the trajectory tracking as

Table 1

The target point selection algorithm for mobile robots with low-rate control command

Initialization: Trajectory={ }, , (̇ ̈) , count=0, i=1.

1. √()
 ()

 ()

2. IF (̇ ̈) THEN

3. | IF count<nf && dist< ra THEN

4. | | count++;

5. | ELSE IF count>=nf && dist< ra THEN

6. | | (̇ ̈)

7. | ELSE

8. | | count=0;

9. ELSE

10. | IF dist > previousDist THEN // Reciprocating avoidance code ;

11. | | [(̇ ̈), NearDist] = FindNearestTarget();

12. | | ra = NearDist+∆; ;

13. | | dist= NearDist; ;

14. | WHILE dist< ra

15. | | i=i+1

16. | | (̇ ̈)

17. | | IF i==(n-1) THEN break;

18. | | √()
 ()

 ()

19. previousDist = dist;

20. IF i>=n-1 Then target = (n-1)

21. Calculate control signal and change robot input

Various controllers such as PID [4] [52], PD [53], PI

[52], Takagi-Sugeno fuzzy controller [54] and

sliding mode controller [55] are used by researchers

to navigate the quadrotor along the trajectory. In this

paper, a two degrees of freedom PID controller

based on the controller in [53], is used as shown in

Equation (10). The advantages of the PID controller

are: simple adjustment of its coefficients, robustness

and capability of industrial implementation.

(10)

 () ∫()

 (̇ ̇) ̈

(11) ̇

 Where () is control signal in which

 and are control signals for and

axes. , ̇ and ̈ are respectively, the position,

velocity, and acceleration of the target point which is

determined by the proposed algorithm, and ̇ are

respectively, the quadrotor position and velocity.

is time step, M is a constant coefficient that

determines the bandwidth of the highpass filter

which acts as an differentiator, Z is z transfer

variable, , , , and are PID controller

coefficients. The first and second term of the

controller reduce the position error. The quadrotor

velocity converges to the desired velocity due to the

third component. The third term, i.e., velocity error

is used instead of the derivative of the error signal.

The error is equal the difference between the target

point and the quadrotor position. Since the target

 Journal of Computer & Robotics 15 (1), 2022 65-79

71

point is constant until the quadrotor reaches to its

neighborhood, we have ̇ in the error

derivative that is not true. With this approach, the

velocity is also controlled. Quadrotor velocity is

calculated by the time derivative of its position. For

this purpose, a high-pass filter in Equation (11) has

been used. The filter also reduces the effect of the

noise in the computation of the derivative. The term

 ̈ is the prediction of the desired acceleration, and

it can significantly improve performance for

trajectories with large accelerations or controllers

with soft gains [53].

The yaw angle affects the quadrotor direction

according to Equation (12).

(12)

 Where and are control signals of pitch

angle and roll angle. is quadrotor yaw angle. To

control the yaw angle, PID controller is used as:

(13)

 () ∫()

()

 Where is yaw angle control signal. is

desired yaw angle. , and are PID

controller coefficients. Block diagram of the system

controller is shown in Figure (2).

Fig. 2. Block Diagram of Closed-Loop System

 The control signals , and respectively

determine the desired roll angle(feed to input A3 of

flight controller4), the desired pitch(feed to input E)

and the desired yaw angle(feed to input R) for the

flight controller as Figure (2) shows.

3. Implementation

We did a low-cost implementation of our

proposed algorithm and evaluated its performance

within a real configuration containing a quadrotor, a

webcam, and a computer. Furthermore, a two-

dimensional trajectory is considered in an arena that

could be seen via the webcam. On the arena, the

robot's attitude () and obstacles are

obtained by processing the webcam frames.

3-1. Specifications of the Robot and the Arena

3 - A, E and R are abbreviation for Aileron, Elevator and Rudder,

respectively.

4 - Our flight controller is NAZA M-Lite [58]

Figure (3) shows the specifications of the arena

as well as the webcam's view. The color of the floor

is white, and the color of the obstacles are set to

black. Our webcam, which is a TSCO TW 100K,

sends the captured images to a computer via its USB

port. The rate of data transmission is 30 frames per

second (30 fps). The size of quadrotor with its

propeller guards is (approximately) equivalent to a

square with a side length of 35cm. Table 2 shows

the quadrotor parts list. NAZA M-Lite flight

controller has some parameters which called gains

and we adjust them as shown in

 Table 3. We have made a radio control unit

which can communicate with the computer and

quadrotor via two modules namely HLK-RM04 and

MRF24J40. The radio control unit runs in two

modes: either manual or automatic. Running in

manual mode allows the operator to control the

quadrotor manually, but the automatic mode enables

the quadrotor to receive the commands from a

computer automatically.

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

72

3-2. Our Software Program

Using Visual C++ 2012, we developed a

processing unit by which the robot is controlled and

the calculations are performed. The processing unit

has three modules:

The first module is responsible for performing

the following stages:

1- Capturing an image from the webcam.

2- Processing the image using OpenCV library to

identify the obstacle positions

3- Constructing the spherical Bounding Volume

Hierarchy (BVH) tree, by BVH algorithm to

enable checking the collision occurrence in the

next stages [56]

4- Generating an initial trajectory [57] by RRT*

algorithm.

In the second module, the initial trajectory is

represented using the DMPs and improved by the

proposed method which is done offline.

The third module:

Fig. 3. Schematic of the Arena Map

 Table 2

 Quadrotor parts list

HMF X240 Quadcopter Frame Frame

T-Motors 1806 Motor
XC3012BA dualsky ESC

750 grams weight
NAZA M-Lite Flight controller

3 blade 5×3 Propeller

13cm Center to motor dis

3000mAH Battery

 Table 3

 The flight Controller Gain

125 Basic Gain Pitch

125 Basic Gain Roll
115 Basic Gain Yaw
140 Basic Gain Vertical
125 Attitude Gain Pitch

125 Attitude Gain Roll

Fig. 4. Two disks are installed on the top of quadrotor to determine the

position and angle of the robot.

1- Capturing frames with 30fps from the webcam

2- Calculating the position and angle of the robot

in each frame.

3- Sending control commands to quadrotor for

tracking the trajectory.

The red and small yellow disks in Figure (4) are

installed on the quadrotor to determine the position

and angle (yaw) of the robot. The center of disks is

calculated by using the image processing. The

quadrotor position is indicated by the center of the

red disk. The angle between axis and the line

segment, which connects the disk centers, is yaw.

The units of the yaw and position are degree and

pixel respectively.

3-3. Identification of the System

Figure (2) shows the open loop system whose

inputs are applied to the flight controller inputs and

its outputs are position and angle, (,) and

 , of the quadrotor in the arena. The inputs of the

flight controller (E,R,A) are 50 Hz PWM signals

whose pulse-width is determined as shown in Table

4. The control signal , and are pulse-width

in the range [1000, 2000] which are transformed to

the corresponding PWM pulses in radio controller

unit. The radio controller unit transmits the pulses to

the flight controller as inputs.

According to Equation (12), position control is

simplified as and by setting

 Journal of Computer & Robotics 15 (1), 2022 65-79

73

 in the yaw controller. We used Matlab

identification toolbox to identify the transfer

functions of the open-loop system including position

transfer functions, i.e. and , and yaw

transfer function, i.e. . For this purpose, ,

and signals are fed to the inputs E, A, R of the

flight controller and , and are measured

as outputs which are shown in Figure (5). ,

 and are identified as:

(14)

and the response of the identified systems to the

inputs are plotted in Figure (5).

Result In order to evaluate the performance of our

proposed algorithm, two arenas with different

obstacles have been created. First, the obstacles

regions are specified, and the BVH tree is generated

to check the collision occurrence. In our experiment,

we use two DMPs for the variables and in

the two-dimensional arena. The initial parameters

 of DMPs are calculated from the initial

trajectory.

The PI2-CMA algorithm adjusts the parameter

vectors such that the cost function is

minimized. We defined the cost function according

to the following criteria:

Unsafe distances from obstacles during trajectory are

punished.

The trajectories with shorter length are preferred.

Reaching to the goal point is rewarded.

According to the above-mentioned criteria, the cost

function for the piece of th rollout starting from

 is defined as:

(15)

 ∑

 Table 4

 Pulse width specifications of the flight controller Inputs

Maximum pulse width Middle pulse width Minimum pulse width Input
2000µs 1500µs 1000µs A(roll)

2000µs 1500µs 1000µs E(pitch)
2000µs 1500µs 1000µs R(yaw)

Fig. 5. a) The response of and the position system to . b) The response of and the position system to . c) The response of

and the yaw system to . d) The input signals , and

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

74

 where is the distance between current and

previous robot positions (note that the th rollout

length is equal to ∑

) and is defined as:

(16)
 ()

 ()

 where the current and the previous position of

the quadrotor are denoted by and . is

the distance between current robot position and the

goal point and is defined as:

(17)
 ()

 ()

 Where denotes the last waypoint which

also called goal point. denotes the cost of

the robot distance from obstacles and is defined as

follows:

(18) ∑
 .

/

 Where Q is the number of obstacles. Minimum

safe distance from the obstacles is . The

distance between the quadrotor and the th obstacle

is denoted by , hence the distance
is safe if it is greater than . , and are

determined according to the importance of each

criterion and changing the value of the coefficients

affect the result.

The control signal for a target point is applied to

the and models and the output, i.e., the

quadrotor positions during tracking, are calculated.

Hence after tracking, we have all the values which

are needed for calculating the cost. Table 5, Table 6,

Table 7, Table 8 and Table 9 respectively show the

parameter values for DMP, yaw and position

controller tracking algorithm and cost function.

 ⁄ and denotes the frame rate of the

webcam. , , and are set as in [36]. The

controller coefficients , , , , and

are initially calculated by Matlab's PID tuner and

then readjusted in order to reach a better response.

The other values (, , , A, b, L, nf, np and ∆)

are obtained by trial and error.

Table 5

The values of the DMP Parameters

L (s) DMP Parameters
25 Value

Table 6

The values of the position controller coefficients

TS(s) M c b
Position controller

coefficients
0.033 20 0.1 0.5 1.2 0.3 0.5 Value

Table 7

The values of the yaw controller coefficients

 Yaw controller coefficients
7 0.3 3 Value

 Table 8

 The values of the tracking algorithm Parameters

∆ np nf Tracking algorithm Parameters

5 10 5 Value

Table 9

The values of the cost function parameters

 Cost function parameters
100 10 75 0.1 Value

Figure (6) and Figure (7) show initial and

improved trajectory of an example leaning run in

two different arenas, A and B. Figure (8) and Figure

(9) show the average learning curves of 10 different

learning runs and illustrate how the cost is reduced

during the learning process.

By a real experiment in arena A, we compare the

performance of the proposed tracking algorithm

with/without reciprocating avoidance code (rows 10

to 13 in Table 1) in Figure (10) and Figure (11). In

Figure (10) the improved trajectory in arena A is

tracked based on our proposed tracking algorithm

three times that the quadrotor movement during one

of them is shown in Figure (11).

Figure (12) shows that the algorithm with

reciprocating avoidance code has a higher

performance. Figure (13) shows the effects of the

desired speed and acceleration terms in the

controller behavior of the proposed tracking

algorithm.

At the beginning of a real experiment, the

quadrotor is manually steered into the neighborhood

of the starting point and automatic control is

activated. During the real experiment, the

neighborhood radius, ra, for the first waypoint is set

to 10 and for next waypoints, it is set to 15. Also, the

yaw angle controller is used to hold .

 Journal of Computer & Robotics 15 (1), 2022 65-79

75

Fig. 6. Initial and improved trajectory of an example leaning in the arena

A.

Fig. 7. Initial and improved trajectory of an example leaning in the arena

B.

Fig. 8. Average learning curve during learning in the arena A.

Fig. 9. Average learning curve during learning in the arena B.

Fig. 10. The dotted line denotes the learned trajectory in arena A that is

tracked three times by the proposed tracking algorithm in real

experiment.

Fig. 11. The quadrotor movement during the tracking experiment which

is labeled Test1 in Figure (10).

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

76

Fig. 12. The tracking result of the proposed tracking algorithm

with/without rows 10 to 13 in Table 1 in the real experiment.

Fig. 13. The effects of ignoring desired speed and acceleration on the

controller performance in the real experiment.

 At the end, we want to design a path by the

proposed algorithm for a more complex problem

which is presented in paper [22]. The problem in the

paper is designing a path which should be passed

through the vicinity of some certain points. The

designed path in [22] is shown in Figure (14).

 To track such a path, the robot have to move

slowly in the path corners, otherwise it may not be

able to navigate the path successfully. If the

dynamics of the robot is taken into account in the

design of the path, it will be possible to navigate the

path at higher speeds. We designed the same path

with our proposed algorithm regarding to the robot

dynamics, as shown in Figure (15).

Fig. 14. The designed path in [22]. The colored circles denote the points

that the robot should pass through their vicinity. The blue squares denote

the start/end points of the path. The red area denotes the no-fly zone.

The striped red squares denote the obstacles.

Fig. 15. The blue path is designed by the proposed algorithm regarding

to the robot dynamics. The red path denotes the path that the robot pass

The figure shows that the designed path has

passed through some obstacles and during tracking

the path, the robot can pass through safe areas at

higher speed as shown in the figure.

4. Conclusion

In this paper, a learning-based GPP algorithm is

proposed that are applicable to mobile robots.

Advantages of using our proposed algorithm are: 1-

Using the identified model, the effects of the robot’s

dynamic and error/delay in the position

measurement system are considered, 2- DMP is used

 Journal of Computer & Robotics 15 (1), 2022 65-79

77

to generate desired velocities and accelerations as

well as desired positions that improve tracking.

To evaluate the performance of the proposed

algorithm, a processing unit is developed for

processing images, performing our algorithm

calculations and controlling the robot movement.

Also, a radio control unit is made for communication

between the computer and the quadrotor (or operator

in the manual mode).

Results show that the proposed algorithm

improves the initial trajectory concerning the robot's

dynamics and PI2-CMA with the designed cost

function tend to shorter and safer trajectory and the

proposed tracking algorithm and controller improve

the performance of tracking.

5. Acknowledgment

The authors would like to thank Omid Maldar,

Dr. Moosa Ayati and Dr. Javad Mashayekhi Fard.

References

[1] S. Bortoff, "Path planning for UAVs," in IEEE

Proceedings of the American Control Conference,

Chicago, IL, USA, 2000.

[2] RotorCopters, "Rotor Copters," 2017. [Online].

Available: http://www.rotorcopters.com/sub-50-

multirotor-drone-mini-reviews/. [Accessed 21 September

2017].

[3] G. V. Raffo and M. M. d. Almeida, "Nonlinear robust

control of a quadrotor UAV for load transportation with

swing improvement," in American Control Conference

(ACC), Boston, MA, USA, 2016.

[4] S. Emelianov, A. Bulgakow and D. Sayfeddine, "Aerial

laser inspection of buildings facades using quadrotor,"

Procedia Engineering, vol. 85, pp. 140-146, 2014.

[5] K. Zainuddin, N. Ghazali and Z. M. Arof, "The feasibility

of using low-cost commercial unmanned aerial vehicle

for small area topographic mapping," in Aerospace

Electronics and Remote Sensing Technology (ICARES),

2015 IEEE International Conference on, Bali, Indonesia,

2015.

[6] P. Sujit and R. Beard, "Multiple UAV exploration of an

unknown region," Annals of Mathematics and Artificial

Intelligence, vol. 52, no. 2, p. 335–366, April 2008.

[7] N. K. Yang, K. T. San and Y. S. Chang, "A Novel

Approach for Real Time Monitoring System to Manage

UAV Delivery," in Advanced Applied Informatics (IIAI-

AAI), 2016 5th IIAI International Congress on,

Kumamoto, Japan, 2016.

[8] S. Verykokou, A. Doulamis, G. Athanasiou, C. Ioannidis

and A. Amditis, "UAV-based 3D modelling of disaster

scenes for Urban Search and Rescue," in 2016 IEEE

International Conference on Imaging Systems and

Techniques (IST), Chania, Greece, 2016.

[9] K. Sedighi, K. Ashenayi, R. Wainwright and H. Tai,

"Autonomous local path planning for a mobile robot

using a genetic algorithm," in IEEE Congress on

volutionary Computation,2004, Portland, USA, 2004.

[10] H. Yu, R. Sharma, R. W. Beard and C. N. Taylor,

"Observability-based local path planning and obstacle

avoidance using bearing-only measurements," Robotics

and Autonomous Systems, vol. 61, no. 12, p. 1392–1405,

2013.

[11] A. Signifredi, B. Luca, A. Coati, J. S. Medina and D.

Molinari, "A General Purpose Approach for Global and

Local Path Planning Combination," Las Palmas, Spain,

2015.

[12] K. Yang and S. Sukkarieh, "An analytical continuous-

curvature pathsmoothing algorithm," Robotics, IEEE

Transactions on, vol. 26, no. 3, p. 561–568, 2010.

[13] T. Fraichard and A. Scheuer, "From Reeds and Shepp’s

to continuouscurvature paths," IEEE Trans. Robot., vol.

20, no. 6, p. 1025–1035, 2004.

[14] L. E. Kavraki, M. N. Kolountzakis and J. -C. Latombe,

"Analysis of probabilistic roadmaps for path planning,"

IEEE Transactions on Robotics and Automation, vol. 14,

no. 1, pp. 166 - 171, 1998.

[15] S. M. LaValle, "Rapidly-exploring random trees: A new

tool for path planning," in TR 98–11, Computer Science

Dept., Iowa State University, 1998.

[16] I. Noreen, A. Khan and Z. Habib, "Optimal Path Planning

using RRT* based Approaches: A Survey and Future

Directions," (IJACSA) International Journal of Advanced

Computer Science and Applications, vol. 7, no. 11, pp.

97-107, 2016.

[17] P. Bhattacharya and M. L. Gavrilova, "Voronoi diagram

in optimal path planning," in 4th International

Symposium on Voronoi Diagrams in Science and

Engineering, 2007. ISVD, Glamorgan, UK, 2007.

[18] E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos and L.

Petrou, "A Review of Global Path Planning Methods for

Occupancy Grid Maps Regardless of Obstacle Density,"

Journal of Intelligent & Robotic Systems, vol. 84, no. 1-4,

p. 829–858, 2016.

[19] J. Latombe, Robot Motion Planning, Boston, MA:

Kluwer Academic Publishers, 1991.

[20] J. Ou, X. Guo, W. Lou and M. Zhu, "Quadrotor

Mehdi Khakbaz, Majid Anjidani/ Global Path Planning of Quadrotor Using Reinforcement Learning

78

Autonomous Navigation in Semi-Known Environments

Based on Deep Reinforcement Learning," Remote Sens,

vol. 13, no. 21, p. 4330, 2021.

[21] E. Camci and E. Kayacan, "End-to-End Motion Planning

of Quadrotors Using Deep Reinforcement Learning,"

CoRR abs/1909.13599, 2019.

[22] M. Theile, H. Bayerlein, R. Nai, D. Gesbert and M.

Caccamo, "UAV Path Planning using Global and Local

Map Information with Deep Reinforcement Learning," in

20th International Conference on Advanced Robotics

(ICAR), 2021.

[23] K. Yang and S. Sukkarieh, "Planning Continuous

Curvature Paths for UAVs Amongst Obstacles," in

Australasian Conference on Robotics and Automation

2008(ACRA 2008), Canberra, Australia, 2008.

[24] Y.-J. Tsai, C.-S. Lee, C.-L. Lin and C.-H. Huang,

"Development of Flight Path Planning for Multirotor

Aerial Vehicles," Aerospace, vol. 2, no. 2, pp. 171-188,

2015.

[25] A. Boeuf, J. Cort´es, R. Alami and T. Sim´eon, "Planning

agile motions for quadrotors in constrained

environments," in Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on,

Chicago, IL, USA, 2014.

[26] K. Yang, S. Moon, S. Yoo, J. Kang, N. L. Doh, H. B.

Kim and S. Joo, "Spline-Based RRT Path Planner for

Non-Holonomic Robots," Journal of Intelligent &

Robotic Systems, vol. 73, no. 1, p. 763–782, 2014.

[27] L. Matthies, R. Brockers, Y. Kuwata and S. Weiss,

"Stereo vision-based obstacle avoidance for micro air

vehicles using disparity space," in 2014 IEEE

International Conference on Robotics & Automation

(ICRA), Hong Kong, China, 2014.

[28] Y. Kuwata, G. Fiore and E. Frazzoli, "Real-time Motion

Planning with Applications to Autonomous Urban

Driving," IEEE TRANSACTIONS ON CONTROL

SYSTEMS TECHNOLOGY, vol. 17, no. 5, pp. 1105-1118,

2009.

[29] A. L. Jennings, R. Ordonez and N. Ceccarelli, "Dynamic

programming applied to UAV way point path planning in

wind," in Computer-Aided Control Systems, 2008.

CACSD 2008. IEEE International Conference on, San

Antonio, TX, USA, 2008.

[30] P. Lin, S. Chen and C. Liu, "Model Predictive Control-

based Trajectory Planning for Quadrotors with State and

Input Constraints," in 2016 16th International

Conference on Control, Automation and Systems (ICCAS

2016), HICO, Gyeongju, Korea, 2016.

[31] L. Campos-Mac´ıas, D. G´omez-Guti´errez, R. Aldana-

L´opez, R. d. l. Guardia and J. I. Parra-Vilchis, "A Hybrid

Method for Online Trajectory Planning of Mobile Robots

in Cluttered Environments," IEEE ROBOTICS AND

AUTOMATION LETTERS, vol. 2, no. 2, pp. 935-942,

2017.

[32] C. Yongbo, Y. Jianqiao, M. Yuesong, Z. Siyu, A. Xiaolin

and J. Zhenyue, "Trajectory optimization of multiple

quad-rotor UAVs in collaborative assembling task,"

Chinese Journal of Aeronautics, vol. 29, no. 1, p. 184–

201, 2016.

[33] V. Roberge, M. Tarbouchi and G. Labonté, "Comparison

of Parallel Genetic Algorithm and Particle Swarm

Optimization for Real-Time UAV Path Planning," IEEE

TRANSACTIONS ON INDUSTRIAL INFORMATICS,

vol. 9, no. 1, pp. 132-141, 2013.

[34] S. A. Gautam and N. Verma, "Path planning for

unmanned aerial vehicle based on genetic algorithm &

artificial neural network in 3D," in 2014 International

Conference on Data Mining and Intelligent Computing

(ICDMIC), New Delhi, India, 2014.

[35] A. Perez, R. Platt, G. Konidaris, L. Kaelbling and T.

Lozano-Perez, "LQR-RRT*: Optimal sampling-based

motion planning with automatically derived extension

heuristics," in 2012 IEEE International Conference on

Robotics and Automation, Saint Paul, MN, USA, 2012.

[36] A. Evangelos, J. Buchli and S. Schaal, "A Generalized

Path Integral Control Approach to Reinforcement

Learning," Journal of Machine Learning Research, vol.

11, pp. 3137-3181, 2010.

[37] J. Buchli, F. Stulp, E. Theodorou and S. Schaal,

"Learning variable impedance control," The International

Journal of Robotics Research, vol. 30, no. 7, pp. 820-

833, 2011.

[38] F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L.

Righetti and S. Schaal, "Learning Motion Primitive Goals

for Robust Manipulation," in IEEE/RSJ International

Conference on Intelligent Robots and Systems, San

Francisco, CA, USA, 2011a.

[39] M. Anjidani, M. R. Jahed-Motlagh and M. a. N. A. M.

Fathy, "A novel online gait optimization approach for

biped robots with point-feet," ESAIM: Control,

Optimisation and Calculus of Variations, vol. 25, no.

ESAIM: COCV, p. 29, 2019.

[40] R. J. Williams, "Simple statistical gradient-following

algorithms for connectionist reinforcement learning,"

Machine Learning, vol. 8, no. 3, p. 229–256, 1992.

[41] J. Peters and S. Schaal, "Reinforcement learning of motor

skills with policy gradients," Neural Networks, vol. 21,

no. 4, p. 682–697, 2008a.

[42] J. Baxter and P. L. Bartlett, "Infinite-horizon policy-

gradient estimation," Journal of Artificial Intelligence

Research, vol. 15, no. 1, pp. 319-350, 2001.

[43] R. S. Sutton, D. McAllester, S. Singh and Y. Mansour,

"Policy Gradient Methods for Reinforcement Learning

 Journal of Computer & Robotics 15 (1), 2022 65-79

79

with Function Approximation," in NIPS'99 Proceedings

of the 12th International Conference on Neural

Information Processing Systems, Denver, CO, 1999.

[44] J. Peters and S. Schaal, "Natural Actor-Critic,"

Neurocomputing, vol. 71, no. 7-9, p. 1180–1190, 2008b.

[45] J. Kober and J. Peters, "Policy search for motor

primitives in Robotics," Advances in Neural Information

Processing Systems (NIPS 2008), vol. 21, pp. 297-304,

2008.

[46] F. Stulp and O. Sigaud, "Policy improvement methods:

Between blackbox optimization and episodic

reinforcement learning," in Journ´ees Francophones sur

la Planification, la D´ecision et l’Apprentissage pour la

conduite de syst`emes (JFPDA), 2012a.

[47] F. Stulp and O. Sigaud, "Path Integral Policy

Improvement with Covariance Matrix Adaptation," in 29

th International Conference on Machine Learning,

Edinburgh, Scotland, UK, 2012b.

[48] L. P. Selen, D. W. Franklin and D. M. Wolpert,

"Impedance control reduces instability that arises from

motor noise," J. Neurosci., vol. 7, no. 40, p. 12606–

12616, 2009.

[49] F. Stulp, J. Buchli, A. Ellmer, M. Mistry, E. Theodorou

and S. Schaal, "Reinforcement learning of impedance

control in stochastic force fields," in 2011, Frankfurt am

Main, Germany, 2011b.

[50] F. Stulp, J. Buchli, A. Ellmer, M. Mistry and E. A. T. a.

S. Schaal, "Model-Free Reinforcement Learning of

Impedance Control in Stochastic Environments," IEEE

TRANSACTIONS ON AUTONOMOUS MENTAL

DEVELOPMENT, vol. 4, no. 4, pp. 330-341, 2012c.

[51] M. Kobilarov, "Cross-Entropy Randomized Motion

Planning," in In Proceedings of Robotics: Science and

Systems, Los Angeles, CA, USA, 2011.

[52] G. Hoffmann, S. Waslander and C. Tomlin, "Quadrotor

Helicopter Trajectory Tracking Control," in AIAA

Guidance, Navigation and Control Conference and

Exhibit, Honolulu, Hawaii, 2008.

[53] D. Mellinger, M. Shomin and V. Kumar, "Control of

Quadrotors for Robust Perching and Landing," in

International Powered Lift Conference, Philadelphia,

2010.

[54] F. Jurado, G. Palacios, F. Flores and H. M. Becerra,

"VISION-BASED TRAJECTORY TRACKING

SYSTEM FOR AN EMULATED QUADROTOR UAV,"

Asian Journal of Control, vol. 16, no. 3, p. 729–741,

2014.

[55] M. Reinoso, L. I. Minchala, J. P. Ortiz, D. Astudillo and

D. Verdugo, "Trajectory Tracking of a Quadrotor Using

Sliding Mode Control," IEEE Latin America

Transactions, vol. 14, no. 5, pp. 2157-2166, 2016.

[56] S. Quinlan, "Efficient distance computation between non-

convex objects," in Proceedings IEEE International

Conference on Robotics and Automation, 1994.

[57] M. Jordan and A. Perez, "Optimal Bidirectional Rapidly-

Exploring Random Trees," Tech. Rep. MIT-CSAIL-TR-

2013-021, Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2013

[58] Dji, "NAZA-M LITE," 2014. [Online]. Available:

https://www.dji.com/naza-m-lite/download. [Accessed 21

September 2017].

