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Abstract 
 

In this paper, we study a redundancy allocation problem. The investigated problem has a system with 𝑠 serially connected 

subsystems, which are under periodic inspection. Each subsystem has a 1-out-of-n cold-standby configuration with non-

identical components. In each subsystem, component failures are diagnosed by a perfect switching system, and the first 

component on the standby queue starts working as a replacement for the failed component. This procedure will be continued 

until the last standby component gets in the service and fails during an inspection interval. The failures of the components are 

detected at inspection. The failed component(s) will be repaired during the next inspection interval and added to the standby 

queue. The subsystems can be in different states depending on their working component and the order of the components on 

the standby queue. We present an approach to calculate the subsystems-states transition probabilities. We minimize the 

subsystem's expected total cost by determining the optimal number of components and the optimal subsystem's inspection 

intervals. The expected total cost consists of downtime, repair, and inspection costs of the subsystems per unit time. Then, we 

determine the optimum allocated components to each subsystem under some constraints to find the optimal system inspection 

cost per unit time. 

  

Keywords: Redundancy allocation problem, Periodic inspection, Inspection interval, Transition probabilities, Standby 

configuration, Markov theory. 

 
1.Introduction 
 

Redundancy allocation problem (RAP) and inspection 

interval optimization (IIO) are two important issues in 

production systems. Long inspection intervals will 

increase the System's failure cost, while short intervals 

will increase the System's inspection cost. Therefore, 

obtaining optimal inspection intervals is a cost-effective 

policy (Sharifi & Taghipour,2022). Determining the 

optimal configuration of the components inside a 

manufacturing system is another important issue that can 

improve system reliability. RAP is a well-known problem 

in reliability engineering (Sharifi & Sayyad, 2022) 

In most cases, these two issues are investigated 

individually; however, they are interrelated. In this paper, 

we worked on a joint RAP and IIO problem and 

optimized both issues simultaneously. The under-studied 

System is a series-parallel system in which the 

subsystems are connected serially, and the components in 

each subsystem are connected in parallel. The 

components are considered non-identical to draw the 

problem near to real-case problems.  
 

We first adopt the general formulas to calculate the 

subsystems' reliability. Next, we optimize the duration of 

the inspection interval and the System's configuration 

simultaneously, using a two-stage approach. In the first 

stage, we optimize the inspection interval of the 

components in each subsystem. In the second stage, 

considering the results of the first stage, we optimize the 

subsystem's reliability in terms of the redundant 

components in each subsystem. 

In terms of inspection interval optimization, Taghipour et 

al., (2010) presented a model to find the optimal 

inspection intervals for complex repairable systems with 

two types of failure. A recursive approach was used to 

calculate the failure probability in every interval and 

expected downtimes. Nourelfath et al., (2012) considered 

a series-parallel system with imperfect preventive 

maintenance. A Markov process and a Universal 

Generating Function (UGF) algorithm were used to 
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evaluate the System's availability and cost function. The 

entire solution space was initially partitioned into a set of 

subspaces, then Genetic Algorithms (GA) were used to 

select the best subspace and solution. In this study, the 

components' repair time was ignored in the proposed 

model to simplify it. 
 

Mendes et al., (2014) developed a set of reliability 

formulas using conditional probabilities. The considered 

System has four different configurations, and the 

objective was to find the optimal inspection intervals. 

These configurations included an active redundancy 

system with non-repairable components, an active 

redundancy system with repairable components, a cold-

standby redundant system with non-repairable 

components, and a cold-standby redundant System with 

repairable components. Conditional probabilities were 

also used to find the System's states probabilities. Due to 

the computational complexity of the developed models, 

systems with only two or three components were 

considered. Mendes et al., (2017) extended their previous 

work and used discrete-time Markov chains to define the 

transition probabilities of different system states. The 

optimal interval between inspections was obtained for 

multi-state redundant systems, considering the availability 

and costs of maintenance and production. Taghipour and 

Kassaei (2015) worked on a k-out-of-n load-sharing 

system with identical components. They assumed that the 

load of the failed component was distributed to the 

remaining components. In their model, the System is 

inspected periodically, and based on the number of failed 

components, they considered two different cases and 

developed a model to find the optimal inspection interval 

Their model aimed to minimize the total System expected 

cost. A simulation algorithm was presented to find the 

expected values in the objective function. Zhao and 

Nakagawa (2015) proposed three new inspection models. 

For each model, the total expected inspection and 

downtime costs were calculated, and the optimal policies 

that minimize the calculated costs were derived.  
 

Zhao et al., (2016) compared periodic times and repair 

numbers for different policies in a replacement problem 

and presented a modified replacement model. Rezaei 

(2015) proposed a new reliability model by considering 

minimal and perfect repairs and optimizing the System's 

inspection interval. He considered a repairable system that 

consists of a rotor and filter with failure interactions. 

Huang et al., (2018) presented an advanced Bayesian 

analysis to determine appropriate non-periodic inspection 

intervals of fatigue-sensitive structures. He used the 

Bayesian approach to calculate the probability density 

function of the uncertain parameters and estimated the 

system reliability accurately, even with some uncertain 

parameters. The considered System contained a specific 

number of elements at only one fatigue-critical location. 

Yeh et al., (2019) modeled the failures and repairs as a 

continuous-time Markov chain to calculate the system 

reliability for the production systems with underlying 

serial structures. They optimized the redundancy and the 

frequency of inspection and maintenance tasks to 

maximize the System's profit. 

Sharifi and Taghipour (2020) optimized a k-out-of-n 

System's inspection interval with non-identical 

components and a cold-standby configuration. They used 

a new method to optimize the System's inspection interval 

over a finite time horizon. Sharifi et al., (2021) optimized 

the inspection interval of a k-out-of-n system with load-

sharing identical components whit a mixed redundancy 

strategy for deploying the components. Later, they 

extended their work by considering a condition-based 

approach to optimize the System's inspection interval 

(Sharifi et al., 2022) 
 

In terms of RAP, different studies have been conducted 

by considering different assumptions (Teimouri & et al., 

2016; Khorshidi & et al., 2016; Sharifi & et al., 2016; 

Gholinezhad & et al., 2017; Kim & Kim, 2016; Mellal & 

Salhi, 2021; Sharifi & et al., 2018; Kim, 2018; Sharifi & 

et al, 2019; Yeh, 2018; Huang & et al., 2019; Ouyang & 

et al., 2018; Sharifi & et al., 2019; Mousavi & et al.,2019; 

Hadipour & et al., 2019; Pourkarim & et al., 2018; 

Zaretalab & et al 2020; Wang & et al., 2020; Yeh, 2021; 

Chambari & et al., 2021; Zaretalab & et al., 2022; 

Reihaneh & et al., 2021) 
 

This paper fills the gap in the current literature by 

considering repair action for systems with non-identical 

equipment/components. In this paper, we focus on a 

system with 𝑠 serially connected subsystems. The 

subsystems act like one of the systems presented by 

Mendes et al., (2014) and we extend the general formula 

and calculate transition probabilities between different 

subsystems-states based on Markov theory. The 

subsystems are 1-out-of-n and contain non-identical 

components. We consider a periodic inspection problem 

for the subsystems. The failure of the operating 

components is only detected at inspection unless the last 

component fails and there is no standby component, and 

the subsystem shuts down. We find the optimal allocated 

components to each subsystem and optimal inspection 

interval for each subsystem to minimize total system 

inspection cost per unit time (ICPT). 
 

We organize the contents of this paper as follows: an 

introduction to the problem along with a discussion of the 

related work is addressed in Section 1. In Section 2, we 

define the configuration and assumptions of the 
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subsystem and discuss the proposed approach for 

calculating the transition probabilities. Section 3 deals 

with the calculation of cost matrixes. In this section, we 

also provide details about the calculation method of 

optimal inspection intervals for the subsystems. In Section 

4, we present the redundancy allocation problem as well 

as some numerical examples to demonstrate the 

usefulness of the offered model. Lastly, Section 6 presents 

our conclusions and highlights some directions for further 

studies. 
 

2.Systems Description and Transition Probabilities       

Formulation 
 

For a system with the configuration described in Section 

1, we first define the system states at the beginning of 

each inspection interval. Then we present a state-space 

diagram, as well as an exact formula for calculating the 

transition probabilities between all the states, 𝑃𝑖,𝑗(𝑡), in 

which 𝑖 is the system state at the beginning of the 

inspection interval and 𝑗 is the system state at the end of 

the inspection interval with the related transition matrix. 

The formulas for the transition probabilities are easy to 

calculate for any number of components, n, in the System. 

The system assumptions are presented in Section 2-1, and 

the transition probabilities formulating procedure. 
 

2.1.Assumptions 
 

The system assumptions are as follows: 

 The System is 1-out-of-n with n non-identical 

components, 

 The failure of each component is independent of 

other components, 

 The failure rate of the components is constant; 

therefore, the lifetime of the components follows 

an exponential distribution, and 

 The failure rate of the 𝑖th component is equal to 

𝜆𝑖. 

According to the above-mentioned assumptions, the 

working probability of a component during the inspection 

interval by duration 𝜏 is equal to 𝑒− 𝜆𝑖×𝑡, and its 

probability of failure is equal to (1 − 𝑒− 𝜆𝑖×𝑡).  

 

2.2.System Configurations and Transition Probabilities 
 

In this part, we first discuss the transition probabilities 

and transition matrix. Then, we present the transition 

probabilities formulas of the System. 

 

2.2.1.Transition Probabilities and Rransition Matrix 
 

In the presented problem, the working component and the 

order of the components on the standby queue at the 

beginning of an inspection interval are considered the 

system state. In the rest of the paper, when we use the 

term "inspection interval," we refer to the beginning of the 

inspection interval. After defining system states, the main 

objective is to calculate the transition probabilities 

between different system states during the inspection 

interval. The transition matrix in this problem is a matrix 

whose elements are the system transition probabilities.  
 

2.2.2.Subsystems-States Transition Probabilities 
 

In the investigated System (subsystems), one component 

works at the start of the inspection time interval by 

duration, and other components are in the standby queue. 

During the inspection interval, a standby component starts 

working using a perfect switch after the failure of a 

working component. The failed component at inspection 

intervals is observed, and the failed component is repaired 

during the next inspection interval. The repaired 

component is then added to the System at the end of the 

next inspection interval, and the new component is placed 

at the end of the standby components queue. We consider 

that component repair time is less than the inspection 

interval. After the System's failure (i.e., all its components 

fail), the system failure will be detected at the end of the 

inspection interval. In this case, all failed components will 

be repaired during the next inspection interval, and the 

System will start working at the end of that interval. 

Figure 1 is the schematic operation of System III with 

three components. 

 

 
Fig. 1: Schematic operation of System III 

 

In this model, each state is defined by an ordered pair 

such as (𝑤, 𝑘)  in which 𝑤 is the working component and 

𝑘 is the total number of components that are not failed 

(working and standby components). The reachable states 

from the state (𝑤, 𝑘) can be determined using Equations 

(1-3) as follows: 
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In equations (1) to (3), 𝑠 is the number of failed 

components during an inspection interval, and 𝑓  is the 

state where the System stops working. The transition 

matrix for this System has (𝑛2 + 1) rows and columns. 

Let's assume in this matrix first row and column belong to 

the state (1, 𝑛), the second row and column belong to the 

state (1, 𝑛 − 1), …, row and column 𝑛2 belong to the 

state (𝑛, 1), and the last row and column belong to the 

state that the System fails (𝑓). So, in the transition matrix, 

the state (𝑖, 𝑘) is addressed to row and column number 

 . 1i n k  . We can calculate all elements of the 

transition matrix as follows: 
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and for calculating the last row the transition matrix, we can use Equations (10) and (11) as follows: 
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3.Cost Functions and Inspection Interval Optimization 
 

We consider four different costs based on the system 

states at the beginning and the end of each inspection 

interval, which can be defined as follows are provided in 

reference (Huang, 2018). 

 

3.1.System Cost  
 

The investigated System (subsystems) has a standby 

configuration with the component repair during the next 

inspection interval. The cost matrix has (𝑛2 + 1)rows and 

columns. The cost function for each inspection interval 

depends on the system state at the beginning of that 

interval and define as follows: 

 

 Rule 1: If, at the beginning of an interval, the 

System is in state {(𝑤, 𝑘);    𝑤, 𝑘 = 1, … , 𝑛; }, it 

means that (𝑛 − 𝑘) components fail during the 

previous interval, and the failed components are 

repaired during the present interval.  

Rule 1-1: If during this interval less than k 

components fail, the System still is in working 

condition, and the system cost is equal to 
{𝐶𝑖𝑛𝑠 + (𝑛 − 𝑘) × 𝐶𝑟}.  

Rule 1-2: (𝑘 = 𝑛) and if all components fail 

during this inspection interval, the System fails, 

and we have system downtime. In this condition 

and at the end of the inspection interval, we do 

not have any available (repaired) component, and 

the System moves to state 𝑓. The System's 

downtime is equal 𝜌, and the system cost in this 

condition is equal to  {𝐶𝑖𝑛𝑠 + 𝜌 × 𝐶𝑝}.  

Rule 1-3: If  (𝑘 < 𝑛) and all components fail 

during this inspection interval, the System fails, 

and we have system downtime. The System's 

downtime is equal 
 . 1w n k


 
 and the system cost 

in this condition is equal to {𝐶𝑖𝑛𝑠 + (𝑛 − 𝑘) ×

𝐶𝑟 + 𝜌 × 𝐶𝑝}.  

 Rule 2: If the System starts working (i.e., it's all 

components are working) and then fails during 

the previous inspection interval, at the current 

inspection interval, all failed components will be 

repaired, and the System starts working at the 

end of the present inspection interval. So, the 

system cost in this condition is equal to {𝐶𝑠 +

𝑛 × 𝐶𝑟 + 𝜏 × 𝐶𝑝}.  

Therefore, the system cost is calculated as presented in 

Equations (12-15). 
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 2 1 ,1
.r s pn
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The cost matrix is a matrix in which its elements are 

system state cost. 

 

3.2.Inspection Interval Calculation 
 

Assume that the system mission horizon is equal to 𝑇ℎ. If 

we plan to inspect the System each 𝜏 time interval, the 

number of inspections during the System's mission 

horizon is calculated as presented in Equation (16).  
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Assuming 𝜋𝑘,𝑖 is a 1 × (𝑛2 + 1) dimensional matrix in 

which {𝜋𝑘,𝑖(𝜏);    𝑖 = 1, … , 𝑛2 + 1} is the probability that 

the System is in state 𝑖 at the beginning of the 𝑘rd 

inspection interval when each inspection interval is equal 

to  𝜏. So, we have: 
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In which 𝑝𝑖,𝑗(𝜏) and 𝑐𝑖,𝑗(𝜏) are the (𝑖, 𝑗) element of 𝑃  

(transition matrix) and 𝐶 (cost matrix), respectively.  

𝐶𝑖(𝜏) represents each inspection interval cost, if the 

System starts from state 𝑖  at the beginning of the 

inspection interval. So, the total present worth of the 

system cost is equal to: 
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In equation (20), r  is the daily interest rate and 

(𝑃 𝐹⁄ , 𝑟%, 𝑘) calculates the present worth of  𝑘rd interval 

cost. The inspection cost per unit time (ICPT) is equal: 

 

   
1

n

pur

i

h

Total Present worth of cost C i

ICPT=
T




 

 

(21) 

 

In equation (30), 𝐶𝑝𝑢𝑟,𝑖 is the purchasing price of 

component number 𝑖. 
 

 

 

 

 

 

4.Redundancy Allocation Problem 
 

The redundancy allocation problem is one of the most 

practical problems in reliability, as presented by Fyffe et 

al. [38] in 1968. This problem aims to maximize system 

reliability under system cost and weight constraints. In 

this section, we present a redundancy allocation problem 

with s  parallel subsystems. The subsystems are under 

periodic inspection under the assumption presented in 

Section 2. The presented problem aims to minimize 

system inspection cost per unit time (ICPT). The decision 

variable in this problem is the number of allocated 

components to each subsystem among different available 

components. We consider that a limited budget is 

available to purchase the initial components at the 

beginning of the System's mission horizon. The 

mathematical problem is presented as follows: 

 

, ,

1 1

.
iNs

i j i j

i j

Min Z CPUT x
 

  
 

(22) 
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.
iNs

i j i j

i j
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(25) 

 

2 1in

iN  
 

 

(26) 

 

,1 ;i Max in n i    (27) 

 

 , 0, 1 ; ,i jx i j   (28) 

 

For calculating the values of 𝐼𝐶𝑃𝑇𝑖,𝑗, for the subsystems, 

we consider all combinations and for each combination, 

the value of 𝐼𝐶𝑃𝑇𝑖,𝑗 can be calculated by using the 

procedure presented in section 4-1. 

 

4.1.Numerical Example for Inspection Interval 

Optimization 
 

To demonstrate the usefulness of the presented formulas 

in calculating the transition and cost matrices, we consider 

a system with 3 components and calculate the transition 

and cost matrixes using the related Equations. Next, we 

consider a system with different components and calculate 

the best inspection interval and system cost. In this 

System, the mission horizon is 3650 days (10 years) and 

𝐶𝑖𝑛𝑠 = 200, 𝐶𝑟 = 200, 𝐶𝑝 = 1000, 𝐶𝑠 = 500 and 

𝐶𝑃𝑢𝑟,1 = 2000. Also, the failure rate and the purchasing 

price of components are calculated as follows: 

 

 0 015 0 005 1 1 2 10i . . i ; i , , ,    

 

(29) 

 

   2000 5 1 1 2 10PurC i i ; i , , ,     (30) 

 
 

We calculate the optimum system ICPT and the optimum 

inspection interval for two examples as follows: 

1. Example 1: monthly interest rate 𝑟 = 0%, the 

component purchasing cost is not considered. 

2. Example 2: monthly interest rate 𝑟 = 0.25%, the 

component purchasing cost is considered. 
 

 

 

 

 

 

 

 

Table 1 

 contains the optimal ICPT, inspection interval (days) and the number 

of inspections during the System's horizon (10 years) for the two 

examples. The ICPT of both examples is presented in figure 2. 

 

Comp

onent 

numbe

r 

 

Example 1 

 

Example 2 

 

Numb

er of  

inspec

tions 

Inspe

ction 

interv

al 

(Days

) 

ICP

T 

 

Numb

er of  

inspec

tions 

Inspe

ction 

interv

al 

(Days

) 

ICP

T 

1 

 

1216 3 

  

136.

7990 

 

1216 3 
118.

4917 

2 

 

456 8 
43.9

619 

 

521 7 
42.5

546 

3 

 

260 14 
23.9

892 

 

260 14 
24.8

250 

4 

 

173 21 
16.9

181 

 

173 21 
18.6

641 

5 

 

125 29 
13.7

440 

 

130 28 
16.1

279 

6 

 

110 33 
12.0

695 

 

110 33 
14.9

851 

7 

 

86 42 
11.1

296 

 

86 42 
14.5

566 

8 

 

82 44 
10.5

648 

 

82 44 
14.4

552 

9 

 

68 53 
10.2

258 

 

68 53 
14.5

757 

10 
 

62 58 
10.0

257 

 
62 58 

14.8

094 
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Fig. 2. Optimal ICPT for two examples. 

 

As we expected, when we do not consider the 

component's purchasing price, by increasing the system 

components, the system ICPT decreases. The system 

reliability during each inspection interval depends on the 

number of components in the System, and when we do 

not spend any money on purchasing the components, the 

System applies more components (as it is available). But, 

if we consider the components purchasing price (as in 

example 2), the System with 8 components has a better 

ICPT compared to the System with more or fewer 

components. 

 

4.2.A Numerical Example of the Redundancy Allocation 

Problem 

 

We consider a system with 7 subsystems, which are under 

periodic inspection. We consider that for each subsystem, 

five different components type are available to allocate. 

So, the total combinations of components are equal to 

 52 1 31  . The other subsystem parameters are 

presented in Table 2. 

For calculating the failure rate of each component in all 

subsystems, we used Equation (29), and for calculating 

the weight of each component in all subsystems, we used 

equation (31) as follow: 
 

 , 1, 1 , 1,2, ,5i j jw w i i     (31) 

 

 

Table 2 

 Initial parameters for the presented example. 

  1PurC  insC  rC  PC  sC  1Lambda  1w  

Subsystem-1 2000 200 200 1000 500 0.015 40 

Subsystem-2 1250 200 150 750 350 0.025 25 

Subsystem-3 1000 200 250 1250 550 0.015 40 

Subsystem-4 1500 200 120 1150 450 0.035 20 

Subsystem-5 2000 200 100 1500 650 0.015 45 

Subsystem-6 1500 200 125 1100 450 0.030 25 

Subsystem-7 1250 200 150 850 550 0.010 15 

 

For each subsystem with the parameters presented in 

Table 2, we first calculate the subsystem ICPT using the 

procedure presented in sections 4-1. The results for ICPTs 

are presented in Table 3. Also, the weight and initial cost 

of each combination for each subsystem are calculated 

and presented in Tables 4 and 5 consequently. In these 

tables, the first column represents the subsystems 

combination index 
 j

, and the second column defines 

the combinations of the components.  
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Table 3 

 Subsystems ICPT for all component combinations. 

Combination 

index 

Components 

combination 

Subsystem 

1 2 3 4 5 6 7 

1 1 118.4917 128.2100 130.6647 177.2464 139.0017 161.8461 92.1866 

2 2 133.8090 136.9224 146.4036 183.3865 157.2757 174.0635 110.1055 

3 3 146.1139 145.3955 161.7002 189.4396 175.0361 181.6412 126.0866 

4 4 158.0770 153.6388 176.5720 195.4075 184.3680 187.4915 137.4979 

5 5 169.7119 161.6610 176.5583 201.2917 192.6977 193.2595 147.9211 

6 12 42.5546 49.9217 45.6637 67.9935 46.5575 61.7714 31.6539 

7 13 45.3651 52.2267 48.9351 70.2001 49.6016 64.5101 34.4636 

8 14 48.0082 54.4186 51.5328 72.3323 52.5122 66.6076 36.9005 

9 15 50.0473 56.4391 53.9960 74.3971 54.8076 68.4053 38.8176 

10 23 49.7679 55.4614 53.6446 73.0416 54.3447 67.3416 39.2655 

11 24 52.4662 57.6268 56.8730 75.4293 57.1191 69.4709 42.0474 

12 25 55.0214 59.5025 59.2937 77.7402 59.7867 71.5268 44.2874 

13 34 56.5525 60.2656 60.8009 78.4093 61.2642 72.2169 46.0283 

14 35 58.9934 62.4010 63.7617 80.9558 64.3336 74.5197 48.6406 

15 45 62.3576 65.1560 67.9637 83.2105 67.4766 77.3977 52.0807 

16 123 24.8250 29.2493 26.1192 38.7629 25.2865 35.1090 18.0584 

17 124 25.7650 30.1345 27.2324 39.7270 26.2836 36.1028 18.9258 

18 125 26.6120 30.9595 28.1229 40.5705 27.0752 36.8579 19.6794 

19 134 27.1676 31.2825 28.6846 40.7984 27.5576 37.1318 20.2543 

20 135 28.0319 32.0592 29.5933 41.5667 28.5136 37.9552 21.0086 

21 145 29.1577 33.0642 30.8823 42.5102 29.6763 38.9885 22.0485 

22 234 29.1786 32.6987 30.9052 42.0010 29.5605 38.4949 22.4021 

23 235 30.1073 33.5970 32.0603 42.8569 30.5508 39.4277 23.3009 

24 245 31.4236 34.5668 33.4725 43.9068 31.8120 40.5965 24.5072 

25 345 33.2519 35.8614 35.4694 45.2235 33.4703 41.7726 26.3927 

26 1234 18.6641 21.4247 19.2837 27.4737 17.8454 24.9413 13.3284 

27 1235 19.1104 21.8533 19.7319 27.9329 18.2602 25.3690 13.7041 

28 1245 19.7216 22.3798 20.3446 28.4068 18.8157 25.9082          14.2190  

29 1345 20.4808 23.0021 21.2654 28.9891 19.5763 26.6037         14.9371  

30 2345 21.7667 23.8864 22.7435 29.7471 20.7284 27.3964         16.2940  

31 12345 16.1279 17.7195 16.2957 22.1594 14.6947 20.2204          11.2684  
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Table 4 

Subsystems purchasing cost for all component's combination. 

Combination 

index 

Components 

combination 

Subsystem 

1 2 3 4 5 6 7 

1 1 2000 1250 1000 1500 2000 1500 1250 

2 2 1950 1200 950 1450 1950 1450 1200 

3 3 1900 1150 900 1400 1900 1400 1150 

4 4 1850 1100 850 1350 1850 1350 1100 

5 5 1800 1050 800 1300 1800 1300 1050 

6 12 3950 2450 1950 2950 3950 2950 2450 

7 13 3900 2400 1900 2900 3900 2900 2400 

8 14 3850 2350 1850 2850 3850 2850 2350 

9 15 3800 2300 1800 2800 3800 2800 2300 

10 23 3850 2350 1850 2850 3850 2850 2350 

11 24 3800 2300 1800 2800 3800 2800 2300 

12 25 3750 2250 1750 2750 3750 2750 2250 

13 34 3750 2250 1750 2750 3750 2750 2250 

14 35 3700 2200 1700 2700 3700 2700 2200 

15 45 3650 2150 1650 2650 3650 2650 2150 

16 123 5850 3600 2850 4350 5850 4350 3600 

17 124 5800 3550 2800 4300 5800 4300 3550 

18 125 5750 3500 2750 4250 5750 4250 3500 

19 134 5750 3500 2750 4250 5750 4250 3500 

20 135 5700 3450 2700 4200 5700 4200 3450 

21 145 5650 3400 2650 4150 5650 4150 3400 

22 234 5700 3450 2700 4200 5700 4200 3450 

23 235 5650 3400 2650 4150 5650 4150 3400 

24 245 5600 3350 2600 4100 5600 4100 3350 

25 345 5550 3300 2550 4050 5550 4050 3300 

26 1234 7700 4700 3700 5700 7700 5700 4700 

27 1235 7650 4650 3650 5650 7650 5650 4650 

28 1245 7600 4600 3600 5600 7600 5600 4600 

29 1345 7550 4550 3550 5550 7550 5550 4550 

30 2345 7500 4500 3500 5500 7500 5500 4500 

31 12345 9500 5750 4500 7000 9500 7000 5750 
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Table 5 

 subsystems weight for all component combinations. 

Combination 

index 

Components 

combination 

Subsystem 

1 2 3 4 5 6 7 

1 1 40 25 40 20 45 25 15 

2 2 39 24 39 19 44 24 14 

3 3 38 23 38 18 43 23 13 

4 4 37 22 37 17 42 22 12 

5 5 36 21 36 16 41 21 11 

6 12 79 49 79 39 89 49 29 

7 13 78 48 78 38 88 48 28 

8 14 77 47 77 37 87 47 27 

9 15 76 46 76 36 86 46 26 

10 23 77 47 77 37 87 47 27 

11 24 76 46 76 36 86 46 26 

12 25 75 45 75 35 85 45 25 

13 34 75 45 75 35 85 45 25 

14 35 74 44 74 34 84 44 24 

15 45 73 43 73 33 83 43 23 

16 123 117 72 117 57 132 72 42 

17 124 116 71 116 56 131 71 41 

18 125 115 70 115 55 130 70 40 

19 134 115 70 115 55 130 70 40 

20 135 114 69 114 54 129 69 39 

21 145 113 68 113 53 128 68 38 

22 234 114 69 114 54 129 69 39 

23 235 113 68 113 53 128 68 38 

24 245 112 67 112 52 127 67 37 

25 345 111 66 111 51 126 66 36 

26 1234 154 94 154 74 174 94 54 

27 1235 153 93 153 73 173 93 53 

28 1245 152 92 152 72 172 92 52 

29 1345 151 91 151 71 171 91 51 

30 2345 150 90 150 70 170 90 50 

31 12345 190 115 190 90 215 115 65 
 

We also consider that 𝑊 = 25000 and 𝐶 = 500. Then, 

we solve the presented example using Lingo 11.0 

software.  

The optimal value ,i jx  for this example using a full-

enumeration technique is calculated as: 

 

 1,16 2,16 3,4 4,5 5,16 6,17 7,261, 1, 1, 1, 1, 1, 1x x x x x x x        
(32) 

It means that the optimal subsystems' components 

combinations are: 

 

              1,2,3 , 1,2,3 , 4 , 5 , 1,2,3 , 1,2,3 , 1,2,3,4  
(33) 

 

Also, the System's weight is equal to 24728, the system 

components purchasing cost is equal to 500, and the 

optimal system ICPT is equal to 127.7982. 
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5.Conclusion and Further Studies 
 

In this paper, we worked on a redundancy allocation 

problem. The subsystems have standby configuration with 

components repair. In these subsystems, the components 

were non-identical and had a constant failure rate. The 

subsystems were under periodic inspection, and the 

failure of the components was detected at inspection 

intervals. We calculated the optimal ICPT and inspection 

interval for the subsystems as well as the optimal number 

of subsystem components. Finally, we solved the 

mentioned redundancy allocation problem using Lingo 

11.0 software.  

Since the calculation of the transition probabilities is 

complicated, we considered a discrete time inspection 

policy. For future work, the problem can be drawn near 

real conditions by considering the continuous time 

inspection model. Moreover, time-dependent failure rates 

can be considered. 
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