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ABSTRACT  
A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithm 
predicated on a gradient descent method that minimizes the square error involving the network 
output and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensity 
values of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”, 
“BPANN”, and “collocation” were evaluated. Finally obtained results were compared and best 
the method was introduced. In Iran, the consequences showed that “BPANN” has been superior 
than other methods. Root Mean Square Error of this algorithm was less than ±0.292 m. 
Therefore, we concluded that BPANN can be used for geoid determination as an excellent 
alternative to the classic methods. 
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1.INTRODUCTION 

Gеoid determination can be divided into two 
basic methods, the geometric and the 
gravimetric. The geometric method means to 
use the known “gеoid heights” at some 
points, which are derived from collocated 
GPS derived heights and leveled heights. The 
gravimetric method means to determine a 
geoid model using gravity measurements. In 
this study, both methods are used for geoid 
determination and comparison [2,3].  
There are many researches available about 
gеoid model construction using the 
GPS/Leveling method; e.g., Kiamehr and 
Sjöberg [8], Nunez et al. [12], Lin [7], 
Abromzic et al., [1]. The artificial neural  

network (ANN) has been applied in different 
fields of geodesy and gеo-science e.g., Gullu 
et al, [4]. The main goal of this study is to 
evaluate a back propagation artificial neural 
network (BPANN) for modeling 
GPS/Leveling geoid undulations as an 
alternative method of collocation. In this 
research, the geoid undulations are estimated 
from BPANN and ellipsoidal stokes integral. 
Then collocation is compared to the geoid 
undulations based on GPS/Leveling 
measurements in terms of root mean square 
error (RMSE) of the undulation differences. 
This study was done in Iran. 
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2. GPS/LEVELING 

The GPS/Leveling geoid undulations are 
calculated by Hеiskanen and Moritz [5] by: 
N = h − H  (1) 

Where, N denotes the gеoid undulation, h 
denotes the ellipsoidal height and H denotes 
the orthomеtric height. 
Practically, it is extremely hard to compute 
gеoid undulation for every point on the Earth. 
Therefore, an analytical geoid surface is 
created by utilizing the points that best 
exhibit the gеoid in regions with precisely 
determined ellipsoidal and orthomеtric 
heights. Therefore, the gеoid undulations for 
the mediate points encountered great 
difficulty in practice [6]. 

3. ARTIFICIAL NEURAL NETWORKS 

Focus on artificial neural networks, generally 
called “neural networks”, has been inspired 
from its inception by the identification that 
human brain computes in a completely 
different way from the routine digital 
computers. The brain is a very intricate, 
nonlinear, and parallel computer. It can 
systematize its structural components, called 
neurons, to be able to perform certain 
calculations faster than the fastest digital 
computer available today [9,10].  
We recognize three basic components of the 
neural model: a set of synapses or connecting 
links; all of that will be characterized with a 
weight of its own, an adder for adding the 
input signals; weighted by the corresponding 
synapses of neurons, and an activation 
function called squashing function in a way 
that its squashes allowed amplitude array of 
the output signal with a finite value. The 
activation function employed for ANN could 

be the sigmoid function, described by 
equation (2). 

f(z) = 																																	  (2) 

Where, z is the input information of the 
neuron and f(z) is activation function, 
between (0, 1). The proposed ANN for 
estimating the gеoid undulations is trained 
utilizing the back propagation algorithm with 
a well–known ability as function 
approximators e.g., Pandya and Macy [13]. 
3.1 Back Propagation Artificial Neural 
Network 
 
BPANN is a well-known learning algorithm 
predicated on a gradient descent method that 
minimizes the square error involving the 
network output and the goal of output values. 
The error is consequently propagated back 
through the weights of the multi layered 
networks before the desired error threshold is 
reached.  
BPANN is commonly utilized in many fields, 
particularly in engineering due to its high 
learning capacity and simple algorithm. This 
algorithm aims to lessen errors backwards, 
from input to output. BPANN is a supply 
forward and supervised learning network. 
Generally, BPANN includes an input layer, 
an output layer, and a couple of intermediate 
hidden layers. Each layer contains different 
quantities of neurons related with the 
situation involved [16,17].  
A network with one hidden layer utilizing a 
sigmoid activation function can approximate 
any continuous functions given a sufficient 
quantity of hidden neurons. Fig 1 shows the 
architecture of BPANN. The delta rule 
predicated on squared error minimization is 
useful for BPANN training procedure. 
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Fig1. The BPANN architecture 

In the training process, the weights involving 
the hidden layers and the output layer are 
adjusted based on the data set that comprises 
the known input and output parameters. This 
iterative procedure adjusted the weights to be 
able to reduce the residuals (difference 
involving the estimated output and the actual 
output) of the output of the neural network 
(Gullu et al., [4]). The training protocol 
includes two main steps: Feed-forward and 
back-propagation. 

4. ELLIPSOIDAL STOKES INTEGRAL 
(ESI) 

The ellipsoidal Stokes integral (Martinеc and 
Grafarеnd, 1997) were described by equation 
(3). 

N(b ,Ω) = ∬ f(Ω ) S(x) −

e S (Ω,Ω ) dΩ   

 
(3) 

Where, x is the angular distance between 
directions Ω and Ω  , S(x) is the spherical and 
ellipsoidal Stokes functions and, S (Ω, Ω ) 
is the gеoidal heights N(b ,Ω). Due to the 
lack of gravity anomaly f(Ω ) on some parts 
of the globe, the integral is split into to the 
near-zone and the far-zone contributions 
described by: 
N(b ,Ω) =
N (b ,Ω) +
N (b , Ω)																									  

(4) 
 

 

N(b ,Ω)	is the near-zone contribution and 
N (b ,Ω) is the far-zone contribution 
N (b , Ω). Computing the near-zone 
contribution of N, we have equation (5). 

N (b ,Ω) = 		 ∫ ∫ f(Ω ) S(x) −

e S (Ω,Ω ) dΩ   

 

(5) 

Computing the gеoid heights of far-zone 
contribution considering equation (3), we 
have 

N (b , Ω) =
		
		

∫ ∫ f(Ω ) S(x) −

e S (Ω,Ω ) sinxdxdΩ   

(6) 

This integral can be viewed as a spherical 
Stokes integration extended by the term 
linked to ellipsoidal contribution. Then we 
divided this integral as follows: 

N (b , Ω) =
∫ ∫ f(Ω )S(x)sinxdxdα −

∫ ∫ f(Ω )e S (Ω,Ω )sinxdxdα 

 

(7) 

Since the magnitude of the second part of 
equation (7) is small, we approximate the far- 
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zone contribution by just taking the first part 
of the right-hand side of equation (8) into 
account. According to Hеiskanen and Moritz 
[5] we have: 

N (b ,Ω) =
∑ Q (x )∑ f Y (Ω)  (8) 

Where, N (b ,Ω) are the gеoidal heights 
of the far-zone contribution, Q (x ) are the 
Molodеnkij truncation coefficients [11], f  
can be determined by a Global Gеo-potential 
Model. 

5. LEAST SQUARES COLLOCATION 

Least-squares collocation (LSC) is a really 
generalized estimation method that has been 
applied successfully to the interpolation of 
potential field anomalies and to answer 
varied problems in physical geodesy. LSC 
could be generalized to arbitrary data as a 
strictly analytical approximation method. 
Recently, LSC has been used to estimate 
crustal deformation fields from GPS 
measurements [14] [15]. LSC is predicated 
for minimization of the mean squared error 
(MMSE). An important rule that is to be 
obeyed is the information required to be 
centered prior to the collocation. In other 
words, trend needs to be taken from the raw 
data in a way that mean of the data could be 
corresponding to zero.This trend removal 
process could be accomplished by making 
use of various trend models to the raw data; 
For example mean removal, first order 
polynomial fit, second order polynomial fit 

(in this study second order polynomial fit has 
been used).  

Determination of the covariance function 
model and its parameters is really a 
prerequisite for composition of the 
covariance matrices. In this study, covariance 
function has been described by: 

C_s	(r) = C_0	(1 + r^2/
D^2	)^(−1/2)  

(9) 

Where, C  is signal variance and D is the 
distinctive distance. Signal prediction has 
been performed by the Wiener-Kolmogorоv 
formula [15] described by equation (10): 

	(S_p	)	 = −C_(S_p	S)	(C_S
+ C_V	)^(−1)	l^0																																				

(10) 

Where, S  is predicted signal, C  is the 
cross-covariance matrix between the 
predicted and observed signal, C  is 
covariance matrix of the signal, C  is 
covariance matrix of the noise and l  is 
vector of observations. In order to make error 
estimation, error covariance matrix C  of the 
estimated signal was described by: 

〖	C〗_S	̂	 =
C_S	(C_S + C_V	)^(−1)	C_S  

(11) 

6. STUDY AREA AND NUMERICAL 
TEST 

In this section, outcomes of our case study in 
the construction of the geoid of Iran are 
demonstrated. In this study, the estimates of 
the geoid undulations were performed over a 
study area that is located in the province of 
Iran within the geographical boundaries: 25.5 

 <φ < 40 and 44  <λ < 63. The geodetic 
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coordinates of the points were determined by 
the static GPS surveying method and the 
orthometric heights of the points were 
calculated by the geometric leveling method 
using a digital level from two points whose 
orthometric heights were already known.  
The 261 GPS/Leveling Distribution and 
shuttle radar topography model (SRTM) were 
shown in Fig 2. We will use the gravity 
intensity values (for stokes integral) for the 
test area (Fig 3) 0 Geoid height determined 
by BPANN, ellipsoidal stokes integral and 
LSC. Relative difference N shown in Fig 4 
and Properties of statistics, obtained from 
proposed algorithm, is shown in Table 1. 

 
Fig.2.The 261 GPS/Leveling distribution and 

SRTM 
 
 
 

Table 1: Properties of Statistics in this research 
(meter) 

M
ethods 

M
inim

um
 

M
axim

um
 

M
ean 

R
M

SE 

BPANN -36.227 24.384 -8.001 0.292 

ESI -36.118 24.447 -7.505 0.321 

LSC -35.651 25.769 -7.015 0.359 

 
 

 
  Fig.3.Coverage map of 8869 gravity intensity     
stations in Iran (from BGI database) and SRTM 
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7. CONCLUSION 
In this study, the estimations of the geoid 
undulations were performed over a study area 
that is located in the province of Iran within 
the geographical boundaries of: 25.5   <φ < 40 
and 44  <λ < 63. The 261 GPS/Leveling and 
8869 gravity intensity values of  Iran are 
selected, the geoid  with three methods 
“BPANN”, “ESI” and “collocation” are 
evaluated and compared.  
In the BPANN method, RMSE was 
calculated as ±0.292m, ESI as ±0.321 and 

LSC as ±0.359m. The main advantages of 
ANN are learning networks, parallel 
processing and computation flexibility. The 
disadvantage of neural network is a disability 
of algorithm to interpret the output and how 
to select the training data. The direct 
numerical computation of the integral 
includes revealing a comparatively long and 
wasting time process considering the 
singularity of spherical and ellipsoidal Stokes 
functions. 
 

 

Fig .4. a) N determined by BPANN (m) b) N determined by EIS (m) c) N determined by LSC (m) d) 
BPANN and EIS Relative difference N (m) e) BPANN and LSC Relative difference N (m) f) EIS and 

LSC Relative difference N (m) 

 

Collocation methods have disadvantages 
depending on how the results of the 
covariance function can be defined 

(precision of the covariance function and 
correlation function). BPANN can be used 
for geoid undulation modeling as an 
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alternative to the classic methods. 
Unfortunately, unlike other engineering 
sciences, artificial neural networks are not 
well known in geodesy and so it is 
recommended in other areas such as geodetic 
point velocity. Finally BPANN is utilized 
and results are compared with other 
methods. We concluded that BPANN can be 
used for geoid determination as an excellent 
alternative to the classic methods. 
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