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Abstract 

The drilling is well known as one of the most common hole making processes in the industry. 
Due to close tolerance requirement for drilled holes in the most of work pieces, online 
controlling of the diameter of drilled holes seems to be necessary. In the current work, an online 
dimensional controlling system was developed for drilling process. Doing this, drilling process 
was executed in different cutting conditions (feed per tooth and cutting speed) and different flank 
wear of cutting edges. In each drilling test, axial force and diameter of drilled hole was recorded. 
According to the results obtained from analysis of variance (ANOVA), increase of flank wear in 
cutting edges increases the axial force and hole-diameter. In this way, the axial cutting force, as 
online measurable parameter, could be used for online estimation of the hole-diameter. Neural 
network (NN) was used to model the correlation between axial force and the hole-diameter. In 
this way, the obtained NN model estimates the maximum acceptable axial force by receiving 
cutting conditions and maximum acceptable hole-diameter. The drilling process has to be 
stopped as its axial force exceeds the estimated value for drill changing. 
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1- Introduction 

Drilling process is one of the most 
common methods of machining used for 
making circular holes on work piece. These 
holes are made for various purposes like 
assembling parts on each other. Despite 
traditional technology of drilling process, 
extensive research is still done on this 
process, due to its high industrial use. 
Samuel Raj and Karunamoorthy [1] 
investigated the effect of tool wear on 
quality of drilled hole to select optimum drill 
type. Debnath et al. [2] studied the feasibility 

and defects in drilling process of fiber-
reinforced composite. Figueroa et al. [3], 
preliminarily investigated the tool life of 
commercial drills to select the optimum drill 
type. Palani kumar et al. [4] analyzed the 
axial force in drilling of laminar composite. 
Mac Avelia et al. [5] modeled axial force 
and torque of drilling process to simulate the 
orthopedic surgery. Ahn et al. [6] 
investigated the relationship between the 
cutting conditions and occurred defects like 
delamination in drilling of laminar 
composites. Steinzig et al. [7] studied the 
effect of cutting parameters on accuracy of 
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drilling process of residual stress 
measurements. Aziz et al. [8] developed an 
on-line system to detect the defects like 
break-through during drilling process. Si et 
al. [9] reviewed the statistical data driven 
approaches used to estimate the remaining 
useful life (RUL) of tool. Aramesh et al. [10] 
used reliability function based on a Weibull 
distribution to estimate the RUL of cutting 
tools during turning TiMMCs. Wang and 
Wang [11] used continuous hidden markov 
model to calculate the RUL of tool in 
milling process. Gokulachandran and 
Mohandas [12] used two approaches of 
regression model and artificial neural 
network for the prediction of RUL of 
carbide–tipped tools. Wang et al. [13] used 
proportional hazard model and semi-Markov 
process to evaluate the mean residual life of 
tool. Most of the time, it is necessary to drill 
holes with a close dimensional tolerance. In 
this case, it is important to control the 
diameter of drilled holes; but controlling all 
drilled holes is a time and cost consuming 
process. Thus, it is better to control the 
diameter during the drilling process via 
correlated parameters such as axial force. 

The axial force is a well-known parameter 
that could be easily measured during the 
drilling process. The axial force depends on 
various parameters such as feed per tooth, 
flank wear of cutting edges, etc. Increase of 
flank wear of cutting edges results in 
increase of axial force and hole-diameter. In 
this way, the axial cutting force, as online 
measurable parameter, could be used for 
online estimation of the hole-diameter. 

The X20Cr13 stainless steel, as an 
engineering material, has a wide usage in 

industries such as medical, aerospace, 
petrochemical, refinery, turbines, etc., due to 
its high mechanical properties. In these 
industries, drilling is widely used to 
assemble parts on each other mechanically. 
On the other hand, close diameter tolerance 
should be reached to prevent leakage from 
assembly areas. Neural network simulates 
the human brain ability to learn the 
mathematical correlation between input and 
output parameters. It can model the relation 
between input and output parameters without 
using complex mathematical formulas [14]. 

In the current work, a correlation between 
axial drilling force, as online measurable 
parameter, and diameter of drilled holes was 
investigated to set an online diameter control 
system. To this end, drilling process was 
conducted in different cutting conditions 
(feed per tooth and cutting speed) and 
different flank wear of cutting edges. 
Obtained results were analyzed by ANOVA 
to study the effect of input parameters on 
output factors of drilling process. Also, an 
NN based on back-propagation learning 
algorithm was used to find the mathematical 
relationship between axial force and 
diameter precision of drilled holes. 

2- Materials and Methods 

Machine-Tool and Measurement-tools 
Computer numerical control (CNC) milling 
machine model BM-460H of Control-Afzar-
Tabriz Company was used for drilling 
experiments. It has maximum cutting speed 
of 8000rpm and maximum feed rate of 8000 
mm/min. The milling machine has spindle 
motor and axial motor of 7.5kW and 1.2kW, 
respectively. Dial caliper indicator of 
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internal type was used to measure the 
diameter of drilled holes. To approach high 
accuracy, the diameters of drilled holes were 
measured three times in various depths. 
Afterwards, the average of obtained results 
was recorded as the diameter of drilled hole. 
To measure the axial forces, 3-component 
dynamometer of 9255B Kistler was used. 
The work piece was mounted on 
dynamometer by clamp and the 
dynamometer was fixed on milling 
machine’s table. The dynamometer signals 
are sent to amplifier and then to computer 
for analysis and recording of applied force 
(figure 1). Digital microscope of Dino-Lite 
AM413ZT was used to measure the flank 
wear (VBBmax) of cutting edges. The VBBmax 

for both cutting edges of drills were 
measured and the maximum value was 
selected as flank wear of that drill. 

3- Work Piece and Drill 

Numerous billets of X20Cr13 stainless 
steel were used for drilling experiments. The 
billets were in approximate dimensions of 
80mm (length) × 80mm (width) × 40mm 
(height). The chemical and mechanical 
properties of X20Cr13 stainless steel are 
listed in table 1. Guhring TiN coated high 
speed steel (HSS) drill of 8mm diameter 
with ordinary helical twist was used. This 
type of tool was selected due to its common 
usage in industry. 

 
Fig.1.schematic layout of axial force measurement 

Table .1.The chemical and mechanical properties of X20Cr13 stainless steel 

C Si Mn P S Ni Cr Tensile strength (MPa) Yield strength (MPa) Elongation (%) 

0.15 0.29 0.71 0.04 0.03 0.75 14 690–700 226–250 18 

4- Design of Experiments 

The drilling experiments were arranged 
using full factorial design to investigate the 
effects of drilling parameters (cutting speed 
and feed per tooth) and wear amount of 
cutting edges on axial force and diameter 
accuracy of drilled hole. Due to 
consideration of 4, 4, and 3 levels for cutting 
speed, feed per tooth, and wear amount of 
cutting edges, respectively, the experiments 
were designed to include 48 tests. 

The parameter levels of flank wear 
amounts were determined based on the 
number of similar drilling process done with 
it. The measurements were performed after 
every 40 drilling of throughout holes in work 
pieces with thickness of 40mm. In other 
words, new drill with sharp cutting edges 
was considered for first level with VBBmax=0; 
Drill used for drilling 40 holes, was 
considered for second level of flank wear 
and drill used for drilling 80 holes, was 
considered for third level. Also, the hole-
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diameter and axial cutting force during 
drilling in each measuring point of drill flank 
wear was done. All of 48 tests were repeated 
3 times; each test repeat was done with a 
new drill and average of measured quantities 
was determined as flank wear, hole-
diameter, and axial cutting force of that test. 

The levels of cutting speed and feed per 
tooth include 0.1-0.17-0.24-0.3m/s and 0.015-
0.021-0.027-0.035mm/tooth, respectively. The 
cutting parameters were selected due to the 
recommendation of Guhring tool catalogue 
[15]. 

5- Analysis of Variance 

To investigate the relative influence of 
cutting parameters on axial force and drilled 
hole diameter, ANOVA in MINITAB 
software was executed. 95% of confidence 
was selected for Fisher parameter (Ft). Ft 
value demonstrates the effect of variation of 
input parameter on variation of output 
parameter. Higher value of Ft value means 
that the variation of input parameter leads to 
higher variation of output parameter. 
Percentage of contribution (P) is another 
factor to demonstrate the contribution rate of 
an input parameter among others on regular 
variation of output parameter. Higher P 
value demonstrates that the input parameter 
has higher contribution on regular variation 
of output parameter [16]. 

6- Back-Propagation Based Neural 
Networks 

Neural networks simulate the human brain 
ability to learn the mathematical correlation 
between input and output parameters. It can 
model the relation between input and output 

parameters without using complex 
mathematical formulas. The knowledge of 
correlation between input and output 
parameters is transferred to network by a 
learning process based on experimental data. 
The method of applying the learning process 
is called learning algorithm. During the 
learning process, the synaptic weights of 
neurons are modified to approach a 
minimum difference between estimated 
output of NN and experimental output 
(Minimum error).One of the most frequently 
used learning algorithms in engineering 
applications, is Back-Propagation algorithm 
(BP). The BP is based on adjustment of 
neurons’ weights using error back-
propagation through the network from 
output to input layer. 

7- Results and Discussion 

7.1-Main Effect of Parameters on Diameter 
of Drilled Hole 

MINITAB software was used to obtain the 
main effect diagrams of input parameters 
and drilled holes’ diameter. Figure 2 
illustrates the main effect of input 
parameters on drilled holes’ diameter. As 
seen, a regular variation of drilled holes’ 
diameter was not obtained by variation of 
cutting speed and feed per tooth. On the 
other hand, variation of flank wear of cutting 
edges had a regular effect on drilled holes’ 
diameter. Increase in flank wear of cutting 
edges increases the diameter of drilled hole. 
In other words, increase of the flank wear of 
tool decreases the precision of drilled holes’ 
diameter and increases the difference 
between nominal diameter of drill and 
drilled-hole’s diameter. 
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Fig.2.The main effect diagrams of input parameters and drilled holes’ diameter 

This phenomenon could be explained by 
off-axis rotation of drill. The wear of cutting 
edges causes asymmetric distribution of 
cutting force on the cutting edges of drill 
which results in deflection of drill and off-
axis rotation of it. On the other hand, 
increase of the flank wear of cutting edges 
increases the axial force. Increase of axial 
force increases the deflection amount of drill 
and off-axis rotation amount of it and so, 
increases the difference between nominal 
diameter of drill and drilled-hole’s diameter. 

8- Main Effect of Parameters on Axial 
Force 

Figure 3 illustrates the main effect of input 
parameters on the axial force. As seen, a 
regular variation of axial force was obtained 
by variation of cutting speed, feed per tooth, 
and tool’s flank wear. Slight decrease of 
axial force was obtained by increasing 
cutting speed; but intense increase of axial 
force was obtained by increasing feed per 
tooth and tool’s flank wear. Slight decrease 
of axial force by increasing cutting speed 
could be explained by friction coefficient. 

Increase of cutting speed results in lower 
friction between drill-chip and drill-work 
piece. Decrease of friction causes decrease 
of axial force. The intense increase of axial 
force by increasing feed per tooth could be 
explained by chip thickness. Increase of feed 
per tooth increases the chip thickness and its 
cross section. The chip with higher cross 
section requires more force to be formed 
which results in higher cutting forces. 

Finally, intense increase of axial force by 
increasing tool’s flank wear could be 
explained by plowing phenomenon and 
friction coefficient. The wear of cutting edge 
results in loss of its sharpness. As a result, 
less sharp cutting edge tends to squish and 
plow the work piece rather than cutting it. 
Squishing and plowing of the work piece 
require more force than cutting it. Thus, the 
axial force increases with increases of 
cutting edges’ flank wear. Also, worn 
cutting edge has more contact with work 
piece compared to sharp one. It caused 
higher friction between drill and work piece 
and as a result, higher axial force is achieved 
[17]. 
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Fig.3.The main effect diagrams of input parameters and axial force 

9- ANOVA Investigation of Input 
Parameters and Diameter of Drilled Holes 

MINITAB software was used to execute 
the ANOVA on input drilling parameters 
and drilled holes’ diameter. P factor was 
calculated for cutting speed (V), feed per 
tooth (F), tool’s flank wear (VBBmax), 

interaction between cutting speed and feed 
per tooth (V×F), interaction between cutting 
speed and tool’s flank wear (V× VBBmax), 
and interaction between feed per tooth and 
tool’s flank wear (F× VBBmax). Table 2 lists 
the ANOVA factors of input parameters and 
diameter of drilled holes. 

Table. 2 .ANOVA factors of input parameters and diameter of drilled holes 
Source Degree of freedom Sum of square Variance F95%* Ft P (%) 

V 3 0.002835 0.000945 2.81 0.49 1.17 
F 3 0.010823 0.003608 2.81 1.86 4.49 

VBBmax 2 0.157957 0.078978 3.2 40.80 65.55 
V×F 9 0.024141 0.002682 1.45 1.39 10.02 

V× VBBmax 6 0.006124 0.001021 2.31 0.53 2.54 
F× VBBmax 6 0.004237 0.000706 2.31 0.36 1.76 

Error 18 0.034840 0.001936 - - - 
Total 47 0.240958 - - - - 

* Minimum Ft for confidence level of 95% 
According to the obtained results, only 

tool’s flank wear with contribution 
percentage (P) of 65.55% has statistical and 
physical effect on diameter of drilled holes. 
An input parameter is known to have 
statistical and physical effect on output 
parameter, if and only if calculated Ft value 

of it becomes larger than standard F95% 
value [16]. 

10- ANOVA Investigation of Input 
Parameters and Axial Force 

MINITAB software was used to execute 
the ANOVA on input drilling parameters 
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and axial force. P factor was calculated for 
cutting speed (V), feed per tooth (F), tool’s 
flank wear (VBBmax), interaction between 
cutting speed and feed per tooth (V×F), 
interaction between cutting speed and tool’s 

flank wear (V× VBBmax), and interaction 
between feed per tooth and tool’s flank wear 
(F× VBBmax). Table 3 lists the ANOVA factors 
of input parameters and axial force. 

Table.3.ANOVA factors of input parameters and axial force 
Source Degree of freedom Sum of square Variance F95%* Ft P (%) 

V 3 4.08 1.36 2.81 0.60 0.02 
F 3 5392.16 1797.39 2.81 797.40 28.13 

VBBmax 2 12593.99 6297.00 3.2 2793.63 65.55 
V×F 9 38.78 4.31 1.45 1.91 0.2 
V× 

VBBmax 
6 4.82 0.80 2.31 0.36 0.03 

F× 
VBBmax 

6 1093.69 182.28 2.31 80.87 5.71 

Error 18 40.57 2.25 - - - 
Total 47 19168.1 - - - - 

* Minimum Ft for confidence level of 95% 
 
According to the obtained results, feed per 

tooth, tool’s flank wear, interaction between 
cutting force and feed per tooth, and 
interaction between feed per tooth and tool’s 
flank wear with P values of 28.13, 65.55, 
0.2, and 5.71%, respectively, have statistical 
and physical effects on axial force. It is 
because that their Ft values were higher than 
their standard F95% values [16]. 
Correlating Drilled Hole’s Diameter and 
Cutting Parameters to Axial force by Neural 
Network 

Matlab neural network toolbox was used 
to train NN model by back-propagation 
method based on Levenberg–Marquardt 
algorithm. The executed algorithm obtains 
the combination of neurons’ weight via 
minimizing the mean squared error. 

90% of experimental data sets (43 data 
sets) were used to train the NN and 10% of 
experimental data sets (5 data sets) were 
used to test it. Trial and error method was 
used to obtain the optimum NN architecture. 
Doing this, various architectures with 
different number of neurons in each hidden 
layer were studied.  

Finally, the NN with two hidden layers 
which contains 5 neurons in the first hidden 
layer and 6 neurons in the second hidden 
layer was found to be suitable (figure 4). 
This network has the lowest error in training 
and testing phases. Mean square error of 
0.01 was obtained for training phase after 
247 iterations and mean error percentage of 
4.13% was obtained in testing phase       
(table 4). 
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Fig.4.The NN with two hidden layers which contains 5 neurons in the first hidden layer and 6 neurons 

in the second hidden layer 

Table.4.Testing phase of trained NN 
Input parameters Output parameter  

Cutting speed 
(m/s) 

Feed per tooth 
(mm/tooth) 

Hole Diameter 
(mm) 

NN estimated 
axial force 

(N) 

Experimental axial 
force 
(N) 

Error(%) 

0.24 0.035 8.132 136.12 131.40 3.59 
0.24 0.021 8.097 83.98 86.15 2.52 
0.1 0.027 8.089 84.43 89.90 6.08 
0.17 0.027 8.048 71.76 70.60 1.64 
0.1 0.035 8.168 121.65 130.55 6.82 

The testing results declare that the trained 
NN could be successfully used for 
estimating maximum acceptable axial force. 
Doing this, maximum acceptable hole’s 
diameter together with cutting speed and 
feed per tooth are introduced for NN model 
and the maximum acceptable axial force is 
obtained as the output of NN model. 

 The obtained maximum axial force is 
introduced as upper control limit for drilling 
operator. The measured axial force during 
drilling process should not exceed the value 
of maximum acceptable axial force. 
Otherwise, the drilled-hole’s diameter 
exceeds the maximum allowable diameter. 

Thus, the drilling process has to be stopped 
as its axial force exceeds the estimated value 
for drill changing. 

11- Conclusions 

In the current work, drilling process was 
conducted in different cutting conditions 
(feed per tooth and cutting speed) and 
different flank wear of cutting edges to 
correlate axial force and hole’s diameter. 
Doing this, ANOVA was used to investigate 
the influence of cutting parameters on axial 
force and drilled-hole diameter. Also, NN 
model was used to correlate drilled-hole’s 
diameter and cutting parameters to axial 
force.  
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The obtained results are listed as 
follows: 

 The main effect diagrams illustrate that 
the flank wear of cutting edges is in 
direct proportion to drilled-hole’s 
diameter, i.e. increase of wear amount 
of cutting edges increases the drilled 
hole’s diameter. 

 This phenomenon has been explained by 
off-axis rotation of drill. The flank wear 
of cutting edges causes the cutting force 
to be asymmetrically distributed on the 
cutting edges of drill. Asymmetric 
distribution of cutting force results in 
deflection of drill and off-axis rotation 
of it. The off-axis rotation of drill causes 
enlarging of drilled-hole’s diameter. 

 According to the main effect diagrams, 
slight decrease of axial force was 
obtained by increasing cutting speed; 
but intense increase of axial force was 
obtained by increasing feed per tooth 
and flank wear. 

 The slight decrease of axial force has 
been explained by friction coefficient. 
Increase of cutting speed results in 
lower friction between drill-chip and 
drill-work piece and lower axial force. 

 The intense increase of axial force by 
increasing feed per tooth has been 
explained by chip thickness. Increase of 
feed per tooth increases the chip 
thickness that results in higher chip 
formation force. Higher chip formation 
force causes increase in axial force. 

 The intense increase of axial force by 
increasing flank wear has been 
explained by plowing phenomenon and 

friction coefficient. The flank wear of 
cutting edge results in loss of its 
sharpness. As a result, less sharp cutting 
edges tend to squish and plow the work 
piece rather than cutting it that causes 
increase of axial force. 

 According to the ANOVA investigation, 
only tool’s flank wear with P value of 
65.55%, has statistical and physical 
effect on diameter of drilled holes. Also, 
feed per tooth, tool’s flank wear, 
interaction between cutting force and 
feed per tooth, and interaction between 
feed per tooth and tool’s flank wear with 
P values of 28.13, 65.55, 0.2, and 
5.71%, respectively, have statistical and 
physical effect on axial force. 

 The NN was successfully modeled to 
correlate drilled holes’ diameter 
together with cutting parameters and 
axial force. It contains two hidden layers 
with 5 neurons in the first hidden layer 
and 6 neurons in the second hidden 
layer. 

 The testing results declare that the 
trained NN could be successfully used 
for estimating maximum acceptable 
axial force. In this way maximum 
acceptable hole’s diameter together with 
cutting speed and feed per tooth are 
introduced for NN model and the 
maximum acceptable axial force is 
obtained as the output of NN model. 
The obtained maximum axial force is 
introduced as upper control limit for 
drilling operator and the drilling process 
have to be stopped as its axial force 
exceeds the estimated value for drill 
changing. 
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