A Comparison between OTC and P&O MPPT Control Methods Applied to Small Sized Wind Power Plants

Ramin Shirmohammadi¹, Ali ajami²

¹Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran Email: Ramin.Shirmohammadi69@gmail.com (Corresponding author)
²Department of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

Email: aajami83@yahoo.com

Abstract

This paper provides a review of OTC and P&O MPPT controllers used for extracting maximum power from the wind energy systems using permanent magnet synchronous generators. Hence, the output power of wind energy system varies continually as wind speed changes, it is desirable to determine the one optimal generator speed that ensures maximum energy yield. Thus, it is important to include a controller that can track the maximum peak regardless of wind speed. After explaining the basic concepts of OTC and P&O algorithms by implementing the algorithms on MATLAB -SIMULINK platform, a comparison has been made between the performance of these two MPPT algorithms on the basis of speed responses and ability to achieve the maximum energy. The priority of OTC algorithm is validated through analyzing simulation results.

Keywords: Wind Energy, Maximum Power Point Tracking, PMSG, Boost converter

1. Introduction

Wind energy source is becoming more and more used as a renewable source since it offers several advantages such as incurring no fuel, not being polluting and inexhaustible source. The output power of wind energy system varies continually as wind speed changes. To operate in variable speed conditions, a wind energy needs power electronic system a converter. Several work have considered the different possible configurations of electrical generators and power converters for variable-speed wind turbine systems [1-4].Wind turzbines are controlled to operate only in a specified range of wind speeds bounded by cut-in (V_{cut-in}) and cut-out $(V_{cut-out})$ speeds. Beyond these limits, the turbine should be stopped to protect both the generator and turbine. Fig. 1 shows the typical power curve of a wind turbine [6, 7]. From the figure, it can be observed that there are three different operational regions. The first is the low-speed region, in this region the turbine is prevented from driving the generator and is disconnected from the grid [8].

As the wind speed is instantaneously changing, it is necessary for the rotational speed to be variable to maintain the optimal TSR at all times. To operate in variablespeed conditions, a wind energy system needs a power electronic converter to convert the variable-voltage-variable frequency of the generator into a fixedvoltage-fixed-frequency that is suitable for the grid [11–14]. In addition to increasing the energy capture, variable-speed turbines can be controlled to reduce the load on the

drive-train and tower structure, leading to potentially longer installation life [9]. In [11,15,16] the different possible configurations of power converters and electrical generators for variable-speed wind turbine systems are discussed.

Fig.1. Ideal power curve of a wind turbine

Due to its high efficiency, reliability, power density, gearless construction, light weight, and self-excitation features, among electric generators, the permanent magnet synchronous generator (PMSG) is preferred due to its high efficiency, reliability, power density, gearless construction, light weight, self-excitation features and [17–21]. Controlling the PMSG to achieve the maximum power point (MPP) can be done by varying its load using a power electronic interface circuit. The interfacing can be done by a back-to-back converter or by a threephase diode rectifier connected to a boost converter. According to Zhipeng et al. [21], using a rectifier and a boost converter is less expensive and more reliable. By controlling the duty cycle of the converter, the apparent load developed by the generator can be adjusted, and thus, its output voltage and shaft speed can also be adjusted. Also, by operating the boost converter in discontinuous conduction mode (DCM) and applying a power factor correction (PFC) technique contributes to a total harmonic distortion (THD) reduction and increases the power factor (PF) of the wind-power generator and contributes to a total harmonic distortion (THD) reduction [22,23].

Including a MPPT algorithm in the system for determining the optimal operating point of the wind turbine, is crucial. Musunuri and Ginn Iii [26] categorized the available MPPT algorithms into nine groups based on the specified performance and measurement requirements. The authors also reported that there is an increasing trend of MPPT algorithm use among researchers over the past decade. Therefore, recent trends in the proposed wind MPPT technology should be reviewed and compiled. To the best of the current authors' knowledge, there is limited peer-reviewed literature on the MPPT algorithms for wind energy systems.

In this paper, the PMSG load interfacing is made through rectifier. The rectifier is controlled and the MPPT is used in determining the optimum rotor speed for each wind speed to obtain maximum power. We made an application on a wind turbine system using the different MPPT strategies(OTC and P&O) and a comparison has been achieved under different wind speed conditions. The performances of the studied system are verified by simulation analyses carried by using MATLAB-SIMULINK software.

2. Topology of the System

The schematic diagram of the reviewed wind turbine system is illustrated in Fig. 2. The system supplies a resistive load and consists of a wind turbine rotor, PMSG, rectifier, and a boost converter. Wind turbine converts the wind energy into mechanical energy, which then runs a generator to create electrical energy. Wind turbine generates mechanical power that is obtained by [27–29]:

$$P_m = \frac{1}{2} \rho \pi R^2 V^3 C_P(\lambda, \beta) \tag{1}$$

1

Fig.2. a brief block diagram of the proposed PMSG wind-energy system [2].

To describe the power extraction efficiency of the wind turbine the turbine power coefficient (C_p) is used [30]. It is a nonlinear function of both the tip speed ratio (λ) and the blade pitch angle (β). While its maximum theoretical value is approximately 0.59, in reality it lies between 0.4 and 0.45 [16]. Eq. (2) is used for expressing the ratio of the linear speed of the blade tips to the rotational speed of the wind turbine [27–29], and is calculated as:

$$\lambda = \frac{\omega_m R}{V_w} \tag{2}$$

According to previous literatures various versions of fitted equations for C_p can be used. In this paper C_p based is calculated using following equation [19]:

$$C_{p}(\lambda,\beta) = 0.5 \left(116 \frac{1}{\lambda_{i}} - 0.4 \beta 5 \right) e^{-(21/\lambda_{i})}$$
(3)

$$\frac{1}{\lambda_i} = \frac{1}{\lambda + 0.08\beta} - \frac{0.035}{1+\beta^3}$$
(4)

As rotor pitch for this study assumed to be fixed, the angle (β) is considered to have zero amount. In this way, the characteristics of C_p mainly depend on λ . Fig. 3 presents C_p as a function of λ . As shown in Fig.4., there is only one optimal point, denoted by λ_{opt} , where C_p is maximum Continuous operation of the wind turbine at this point guarantees that it will obtain the maximum available power from the wind at any speed.

3. MPPT Techniques for WT

Step 1. Optimal torque (OT) control

In order to get the optimest conversion of available wind energy into mechanical form,

the operation of the system should kept at λ_{opt} constantly. It can be observed from the block diagram, represented in Fig. 6, that the principle of this method is to adjust the PMSG torque according to a maximum power reference torque of the wind turbine at a given wind speed. Eq. (2) is rewritten in the following form in order to obtain the wind speed [31–34] so the turbine power can be determined as a function of λ and ω_m .

$$V_w = \frac{\omega_m R}{\lambda} \tag{5}$$

By substituting Eq. (5) into Eq. (1), the expression yields:

$$P_m = \frac{1}{2} \rho \pi R^5 \frac{\omega_m^3}{\lambda^3} C_p \tag{6}$$

Fig.6. the block diagram of optimal torque control mppt method [2].

Generator speed (rad/s)

Fig.7. the torque-speed characteristic curve for a series of wind speeds.

If the rotor is running $at\lambda_{opt}$, it will also run $atC_{p max}$. Thus, by replacing $\lambda = \lambda_{opt}$ and $C_p = C_{p max}$ into eq. (7), the following expression is obtained:

$$P_{m-opt} = \frac{1}{2} \rho \pi R^5 \frac{C_{p\,max}}{\lambda_{opt}^3} \omega_m^3 = K_{p-opt} \omega_m^3 \quad (7)$$

$$T_{m-opt} = \frac{1}{2} \rho \pi R^5 \frac{C_{p max}}{\lambda_{opt}^3} \omega_m^2 = K_{opt} \omega_m^2 \qquad (8)$$

It is a torque-control-based method, where the analytical expression of the optimum torque curve, represented by Eq. (8) and Fig. 7, is given as a reference torque for the controller that isconnected to the wind turbine. In general, this method is simple, fast, and efficient. As this method does not measure the wind speed directly, meaning that wind changes are not reflected instantaneously and significantly on the reference signal its efficiency is lower compared to that of TSR control method [24].

Step 2. Perturbation and observation (P&O) control

The hill-climb searching (HCS) method or the perturbation and observation (P&O) method, is widely used in wind energy systems to determine the optimal operating point that will maximize the extracted energy and is a mathematical optimization technique used to search for the local optimum point of a given function. This method is based on perturbing a control variable in small step-size and observing the resulting changes in the target function until the slope becomes zero. As shown in Fig. 9, if the operating point is to the left of the peak point, the controller must move it to the right to be closer to the MPP, and vice versa if it is on the other side. In the available literature. some authors perturbed the rotational speed and observed the mechanical power. Since In electrical power measurement, the mechanical sensors are not required, and electric parameter sensors are more reliable and low-cost, some others monitored the output power of the generator and perturbed the inverter input voltage [35] or one of the converter variables, namely:

duty cycle, d [36–39]; output current, I_{in} [40]; or input voltage, V_{in} [41].

Although the P&O method fails to reach the maximum power points under rapid wind variations when it is used for large and medium inertia wind turbines, but it does not require prior knowledge of the wind turbine's characteristic curve, and is independent, simple. and flexible. Additionally, choosing an appropriate step size is not an easy task: though larger stepsize means a faster response and more oscillations around the peak point, and hence, less efficiency, a smaller step-size improves efficiency but reduces the convergence speed [25,42,43], as shown in Fig. 10. In addition, initialization of the parameters significantly affects the system's performance [44]. The value of the converter output capacitor in HCS method can also influence the system response, where a larger capacitance reduces the speed of system response [45].

The lack of distinction between the power differences resulting from the change in the wind with those resulting from the change in the previous perturbation can be one major drawback that leads to the failure of the tracking process [25]. Fig. 11 demonstrate show indistinct differences in power can result in a wrong decision in determining the direction of the next step. Despite the presence of the peak on the left, the actual decision made was to move toward the right side of the curve, which decreases the efficiency by moving further away from the peak.

Modified variable step-size algorithms have been proposed to improve the efficiency and the accuracy of the conventional P&O method. [25,37,38,40,41,44,46,47]. In adaptive stepsize methods, the step-size is automatically updated according to the operating point. If the system is working on a certain point that is far from the peak, the step-size should be increased to speed up the tracking process. Conversely, when the operating point nears the MPP, the action is reversed to decrease the step-size.

Fig.10. HCS control (a) larger perturbation and (b) smaller perturbation.

Continually, the step-size is decreased until it approaches zero in order to drive the operating point to settle down exactly at the peak point. This working principle reduces the oscillations that occur in the conventional P&O method, lowers the time needed for tracking, and accelerates the speed to reach the maximum.

Fig.11. the HCS control losing its track ability under changing wind conditions and traveling downhill instead of the uphill climb [24].

In previous studies, the controlling rule for adjusting the step-size varies from one group of studies to another, depending on the perturbed variable. Some studies [25-47] used the duty cycle of the converter as an input control to the system. In others, the load current [40] or the input voltage [41] were used as control inputs. In the studies [25,44], the distance from the current generator speed (ω) to the optimal speed (ω^*), which is determined from the optimal power curve, was used to adjust the perturbation size periodically at the end of each cycle by the following equation:

$$d(k+1) = d(k) + \alpha(\omega - \omega^*)$$
(9)

Based on the scaled measure of the slope of power with respect to the converter's duty ratio, the perturbation size can be selected [37,38]:

$$d(k+1) = d(k) + \alpha \frac{\Delta P(k)}{\Delta D(k)}$$
(10)

Syed et al. [46] used a dual stepsize(d_{step}); one was a small perturbation(d_{min}) to be used when the operating point is close to the peak, while the other (d_{max})was larger and used when the operating point is far from the peak:

$$d(k+1) = d(k) + d_{step} . sign\{\Delta P(k)\}$$
(11)

In [40], the duty cycle and generator speed was updated indirectly by changing the load current. The controlling rule for this method is:

$$i_{ref}(k+1) = \Delta i_{ref}(k) + \alpha \frac{\Delta P(K)}{\Delta \omega(k)}$$
(12)

The duty ratio can indirectly modified by changing the input voltage of the converter depending on the slope of the power with respect to the input voltage [41]:

$$\begin{cases} V_{ref}(k+1) = V_{ref}(k) + \frac{\Delta P(k)}{\Delta Slope(k)} \\ Slope(k) = \frac{\Delta P(k)}{\Delta V_{dc}(k)} \end{cases}$$
(13)

Step 3. Other methods

According to [48], the fuzzy logic control (FLC) method has the advantages of fast convergence, parameter insensitivity, and acceptance of noisy and inaccurate signals. Thus, many of the problems associated with the aforementioned methods have been solved by artificial intelligence control and hybrid methods. The conventional HCS method can also utilize this method to obtain an optimal step-size [10,49]. Wind speed measurement and its associated drawbacks have been resolved using neural network techniques to estimate the wind speed depending on actual machine torque and speed [33,50]. To diminishes the effect of the wind turbine inertia on HCS method performance the control structure, Wilcoxon radial basis function network (WRBFN)based with HCS MPPT strategy and modified particle swarm optimization (MPSO) algorithm presented in Lin et al. [51].

Kazmi at [25], exploited a hybrid method. The key characteristic of this method is to combine two methods and uses the advantages of one technique to overcome the disadvantages of the other. An example of these methods was proposed by where the OTC method was merged with HCS to solve the two problems associated with conventional HCS: speed efficiency tradeoff and wrong directionality under rapid wind change.

4. Review Results and Discussion

For the simulation system shown in Fig .12 the performance of three MPPT control methods is presented in Table 1 This simulations are carried out by Abdullah et al. [2]. The OTC and P&O were the studied MPPT methods. In which the duty cycle of the boost converter in OTC, P&O, and input voltage of the boost converter in P&O method has been considered. Simulations were carried out with system parameters as in Mena Lopez [19]. For all simulations the load resistance was considered to be 20Ω . 0.5×10^{-3} was taken as fixed amount for the step-sizes in P&O algorithm and 0.001V was chosen to be the input voltage for P&O algorithm.

Table.1. Summary of performance of three algorithms [2].

method	Median	Response	Recovery	Energy	Efficiency
		time(s)	time(s)	(w)	(%)
Max theoretical value (reference)	0.48	-	-	734.5	-
OTC	0.4789	0.02488	0.0006	665.9	90.66
P&O of input voltage	0.4607	0.053	0.0014	645.9	87.94
P&O of duty-cycle	0.3956	0.2142	0.022	597.4	81.33

Fig.12. The simulated system diagram.

Fig.13. a step change in wind speed [1].

Fig 14 shows the obtained performance from the different methods for the wind changes depicted in Fig. 13, and the results are summarized in Table 1 as well the recovery time upon wind speed change was also faster for this algorithm. The OTC method reached the highest value of C_p and maintained that value even after the change in wind speed. Itwas followed by the P&O in input voltage method, which took almost twice the time needed to reach the steadystate, with the average value of C_p being 0.4607. Based on results and analysis, the OTC controller was found to be the fastest in achieving the steady-state.

Fig.14. the output power response produced by the pmsg generator [2].

As the response time was eight times longer than the first method, The P&O dutycycle method was found to be the slowest and least efficient method. It was also found that P&O duty cycle method did not maintain the same value of $C_{p max}$ all the time, as it decreased from 0.46 to 0.42 when a step change in the wind speed occurred.

Since the conventional perturbation and observation methods were used with a fixed step-size, the ripples of the C_p changed under wind speed variations. Fig. 14depicts the generator's output power for each method. As shown in the figure, while the first two methods were stabilized similarly in 0.025 s, 0.175 s more is needed for the third one. By taking the maximum mechanical input energy of the generator as a reference and measuring the electrical energy output of the generator under the selected methods, the efficiencies could be calculated as listed in Table 1.

Conclusion

The available MPPT algorithms for wind energy systems are discussed and reviewed in this paper. Additionally, a simulation and comparison of three selected control methods in terms of efficiency and speed of response were analyzed. The superiority of the OTC method in terms of simplicity and accuracy were demonstrated by simulation results. This method obtained the maximum average value of C_p and maintained it at its maximum value even with changes in wind speed. However, its inflexible behavior due dependency to on wind turbine characteristics were noticed as a weak point. On the other hand, less efficiency and difficulty in determining the optimum stepsize was detected as weak point for P&O method, but this is flexible and simple in implementation. Compared to perturbation of the duty cycle, perturbation of the input voltage was found to be better in terms of accuracy and response time. To overcome some of the obstacles found in the current methods, determining the adaptive step-size algorithms and combining two or more of the available methods will improve the performance efficiency of the system.

References

- [1] Ahmadi, Hamed, and Hassan Ghasemi.
 "Probabilistic optimal power flow incorporating wind power using point estimate methods." Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on. IEEE, 2011.
- [2] Abdullah MA, Yatim AHM, Tan CW. A study of maximum power point tracking algorithms for wind energy system. In: 2011 IEEE, first conference on clean energy and technology (CET). 2011. p. 321–6.
- [3] Saidur R, Islam MR, Rahim NA, Solangi KH. A reviewon global wind energy policy. Renewable and Sustainable Energy Reviews 2010; 14:1744– 62.
- [4] Lau KY, Yousof MFM, Arshad SNM, Anwari M, Yatim AHM. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 2010; 35:3245–55.
- [5] Ngan MS, Tan CW. Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renewable and Sustainable Energy Reviews 2012; 16:634–47.
- [6] Bianchi F, De Battista H, Mantz R.Wind turbine control systems: principles, modelling and gainscheduling design (advances in industrial control). Lavoisier; 2006.
- [7] Feng X, Jianzhong Z, Ming C. Analysis of double objectives control for wind power generation system with frequency separation. In: 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). 2011. p. 1366–71.
- [8] Verdornschot M. Modeling and control of wind turbines using a continuously variable transmission [Master's thesis]. Eindhoven: Eindhoven University of Technology, Department of Mechanical Engineering; 2009.

- [9] Bianchi FD, De Battista H, Mantz RJ. Wind turbine control systems: principles, modelling and gain scheduling design. Springer-Verlag; 2007.
- [10] Hui J, Bakhshai A, Jain PK. An adaptive approximation method for maximum power point tracking (MPPT) in wind energy systems. AZ: Phoenix; 2011. p. 2664–9.
- [11] Llorente Iglesias R, Lacal Arantegui R, Aguado Alonso M. Power electronics evolution in wind turbines –a market-based analysis. Renewable and Sustainable Energy Reviews 2011; 15:4982–93.
- [12] Chakraborty A. Advancements in power electronics and drives in interface with growing renewable energy resources. Renewable and Sustainable Energy Reviews 2011; 15:1816–27.
- [13] Wang H, Nayar C, Su J, Ding M. Control and interfacing of a grid-connected small-scale wind turbine generator. IEEE Transactions on Energy Conversion 2011; 26:428–34.
- [14] Chakraborty S, Kramer B, Kroposki B. A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design. Renewable and Sustainable Energy Reviews 2009; 13:2323–35.
- [15] Baroudi JA, Dinavahi V, Knight AM. A review of power converter topologies for wind generators. Renewable Energy 2007; 32:2369– 85
- [16] Zhe C, Guerrero JM, Blaabjerg F. A review of the state of theart of power electronics for wind turbines. IEEE Transactions on Power Electronics 2009; 24:1859–75.
- [17] Molina MG, dos Santos EC, Pacas M. Advanced power conditioning system for grid integration of direct-driven PMSG wind turbines. In: 2010 IEEE Energy Conversion Congress and Exposition (ECCE). 2010. p. 3366–73.
- [18] Li S, Haskew TA, Xu L. Conventional and novel control designs for direct driven PMSG wind turbines. Electric Power Systems Research 2010; 80:328–38.
- [19] Mena Lopez HE. Maximum power tracking control scheme for wind generator systems [Master Thesis]. Texas A&M University; 2007.
- [20] Muyeen SM, Takahashi R, Murata T, Tamura J. A variable speed wind turbine control strategy to

meet wind farm grid code requirements. IEEE Transactions on Power Systems2010; 25:331– 40.

- [21] Zhipeng Q, Keliang Z, Yingtao L. Modeling and control of diode rectifier fed PMSG based wind turbine. In: 2011 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT). 2011. p. 1384–8.
- [22] Carranza O, Garcerá G, Figueres E, González LG. Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators. Applied Energy 2010; 87(August):2728–36.
- [23] Kawale YM, Dutt S. Comparative study of converter topologies used for PMSG based windpower generation. Proceedings of the 2009 Second International M.A. Abdullah et al. / Renewable and Sustainable Energy Reviews 16 (2012) 3220– 3227 3227 Conference on Computer and Electrical Engineering–Volume 02. IEEE Computer Society 2009:367–71.
- [24] Raza Kazmi SM, Goto H, Hai-Jiao G, Ichinokura O. Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system. In: 2010 IEEE Energy Conversion Congress and Exposition (ECCE). 2010. p. 4075–82.
- [25] Kazmi SMR, Goto H, Hai-Jiao G, Ichinokura O. A novel algorithm for fast and efficient speedsensorless maximum power point tracking in wind energy conversion systems. IEEE Transactions on Industrial Electronics 2011; 58:29–36.
- [26] Musunuri S, Ginn Iii HL. Comprehensive review of wind energy maximum power extraction algorithms; 2011.
- [27] Freris LL. Wind energy conversion system. London, UK: Prentice Hall; 1990.
- [28] Abdelkafi A, Krichen L. New strategy of pitch angle control for energy management of a wind farm. Energy 2011; 36:1470–9.
- [29] Nema P, Nemab RK, Rangnekar S. A current and future state of art development of hybrid energy system using wind and PV-solar: a review. Renewable and Sustainable Energy Reviews 2009; 13:2096–103.

- [30] Grimble MJ, Johnson MA. Optimal Control of Wind Energy Systems; 2008.
- [31] Nakamura T, Morimoto S, Sanada M, Takeda Y. Optimum control of IPMSG for wind generation system. In: Proceedings of the Power Conversion Conference, 2002 PCC Osaka. 2002. p. 1435–40, vol. 3.
- [32] Morimoto S, Nakayama H, Sanada M, Takeda Y. Sensorless output maximization control for variable-speed wind generation system using IPMSG. IEEE Transactions on Industry Applications 2005; 41:60–7.
- [33] Pucci M, Cirrincione M. Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Transactions on Industrial Electronics 2011; 58:37–47.
- [34] Shirazi M, Viki AH, Babayi O. A comparative study of maximum power extraction strategies in PMSG wind turbine system. In: 2009 IEEE Electrical Power & Energy Conference (EPEC). 2009. p. 1–6.
- [35] Quincy W, Liuchen C. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Transactions on Power Electronics 2004; 19:1242–9.
- [36]Patsios C, Chaniotis A, Rotas M, Kladas AG. A comparison of maximum power-point tracking control techniques for low-power variable-speed wind generators. 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium. ELECTROMOTION 2009:1–6.
- [37] Hua ACC, Cheng BCH. Design and implementation of power converters for wind energy conversion system. In: 2010 International Power Electronics Conference (IPEC). 2010. p. 323–8.
- [38] Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for windenergy-conversion applications. IEEE Transactions on Industrial Electronics 2006; 53:486–94.
- [39] Soetedjo A, Lomi A, Mulayanto WP. Modeling of wind energy system with MPPT control. In: 2011 International Conference on Electrical

Engineering and Informatics (ICEEI). 2011. p. 1-6.

- [40] Tiang TL, Ishak D. Novel MPPT control in permanent magnet synchronous generator system for battery energy storage. Applied Mechanics and Materials 2012; 110:5179–83.
- [41] Neammanee B, Sirisumranukul S, Chatratana S. Control performance analysis of feedforward and maximum peak power tracking for smalland mediumsized fixed pitch wind turbines. In: 9th International Conference on Control, Automation, Robotics and Vision, 2006 ICARCV '06. 2006. p. 1–7.
- [42] Kesraoui M, Korichi N, Belkadi A. Maximum power point tracker of wind energy conversion system. Renewable Energy 2011; 36:2655–62.
- [43] Ching-Tsai P, Yu-Ling J. A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. IEEE Transactions on Energy Conversion 2010; 25:207–16.
- [44] Hong M-K, Lee H-H. Adaptive maximum power point tracking algorithm for variable speed wind power systems. In: Proceedings of the 2010 international conference on life system modeling and intelligent computing, and2010 international conference on intelligent computing for sustainable energy and environment. Part I. Wuxi, China: Springer-Verlag; 2010. p. 380–8.
- [45] Raza K, Goto H, Hai-Jiao G, Ichinokura O. A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems. In: 18th International Conference on Electrical Machines, 2008 ICEM. 2008. p. 1–6.
- [46] Liu X, Lopes LAC. An improved perturbation and observation maximum power point tracking algorithm for PV arrays. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004 PESC 04. 2004. p. 2005–10. Vol. 3.
- [47] Syed Muhammad Raza K, Goto H, Hai-Jiao G, Ichinokura O. Maximum power point tracking control and voltage regulation of a DC grid-tied wind energy conversion system based on a novel permanent magnet reluctance generator. In: International Conference on Electrical Machines and Systems, 2007 ICEMS. 2007. p. 1533–8.

- [48] Patsios C, Chaniotis A, Kladas A. A hybrid maximum power point tracking system for gridconnected variable speed wind-generators. In: IEEE Power Electronics Specialists Conference, 2008. PESC. 2008. p. 1749–54.
- [49] Simoes MG, Bose BK, Spiegel RJ. Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Transactions on Industry Applications 1997; 33:956–65.
- [50] Trinh Q-N, Lee H-H. Fuzzy logic controller for maximum power tracking in PMSG-based wind power systems. In: Huang D-S, Zhang X, Reyes García C, Zhang L, editors. Advanced intelligent computing theories and applications with aspects of artificial intelligence. Berlin/Heidelberg: Springer; 2010. p. 543–53.
- [51] Lee C-Y, Shen Y-X, Cheng J-C, Li Y-Y, Chang C-W. Neural networks and particle swarm optimization based MPPT for small wind power generator, vol. 60.World Academy of Science, Engineering and Technology; 2009. p. 17–23.
- [52] Lin W-M, Hong C-M. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system. Energy 2010; 35:2440–7.

R .shirmohammadiwasborn in Bonab, Iran, in 1990. He received the B.S. degree in electrical engineering from Islamic Azad University (IAU) -Bonab Branch in **2012**.Currently, he is M.S. degree student in Islamic Azad University (IAU)-Ahar Branch.

Since **2013**, he has been with Islamic Azad University (IAU) – Bonab, Iran, where he is a

Laboratory lecturer. His research interests include control of switching power converters and power electronics.

A.Ajami was born in Tabriz, Iran, in 1973. He received the B.S. and M.S and PHD degrees in Electrical Engineering, Electrical and Computer Engineering faculty of Tabriz University, Iran, in 1996 and 1999 and 2005, respectively.

He is now an associate professor with the Electrical Engineering, Azerbaijan Shahid

Madani University, Tabriz, Iran, hi has received the researcher award of Azerbaijan university of Tarbiat Moallem in 2006, 2008, 2010 and 2011.

Appendix:

Nomenclature

V _{cut-in}	Cut in wind speed $\left(\frac{m}{2}\right)$	p_m	Mechanical power of
	(s)		the turbine (kw)
V _{cut-out}	Cut out wind speed $\left(\frac{m}{m}\right)$	T _m	Mechanical torque of
	contraction (s)		the turbine (nm)
V _{rated}	Rated wind speed $\left(\frac{m}{s}\right)$	Psf	Power signal feedback
λ ,TSR	Tip speed ratio	Р&о	Perturbation and
			observation
λ_{opt}	Optimal tip speed ratio	Hcs	Hill climb searching
Pmsg	Permanent magnet	D	Duty cycle of the
	synchronous generator		converter
Мрр	Maximum power point	I _{in}	Input current of the
			converter (a)
Dcm	Discontinuous	V _{in}	Input voltage of the
	conduction mode		converter (a)
Pfc	Power factor correction	ω	Generator speed
			$\binom{rad}{s}$
Thd	Total harmonic	ω^{*}	Optimal generator
	distortion		speed $\left(\frac{rad}{s}\right)$
Mppt	Maximum power point	α	Constant scaled factor
	tracking		X 1 C
ρ	Air density $\binom{\kappa g}{m^3}$	V _{ref}	Input voltage reference
17	(m)	I.	of the converter (V)
V _w	Wind speed $\left(\frac{m}{s}\right)$	V _{dc}	Output voltage of the
C		04	Ortimel terror
L_p	power coefficient	Otc	optimal torque
0	Diada aitah anala	D	
β	(dagraa)	ĸ	i urbine radius (m)
	(degree)	<u> </u>	Movimum coofficient
ω_m	velocity of the roter	$C_{p max}$	of nowon
	(rad ()		or power
	(''''/s)		