
Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

65

An Analytical Model for Estimating the Reliability of Critical

Software Systems by Considering the Self-Healing Property of

Bottleneck Components

Ali Tarinejad1, Habib Izadkhah2,*, Mohammadreza Mollahoseini Ardakani3 , Kamal Mirzaie4

1Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
2Department of Computer Science, University of Tabriz, Tabriz, Iran

3 Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
4 Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran

Email: ali_ahar_tarinejad@yahoo.com , izadkhah@tabrizu.ac.ir , mr.mollahoseini@iau.ac.ir ,

kamal.mirzaie@iau.ac.ir

Receive Date: 20 March 2022, Revise Date: 17 April 2022, Accept Date: 10 June 2022

Abstract

 Architecture-based techniques for assessing the reliability of critical software systems have attracted a lot of

attention in recent years due to the emerging pattern of component-based software development. In order to prevent

the failure of software systems in the final phases of development in critical software systems, we must apply the

software reliability evaluation process to all stages of software development. Reliability evaluation of component-

based critical software systems is very important in the early stages of software system development and from its

architecture as one of the quality attributes of software systems. This article proposes a method to evaluate the

reliability of critical software systems by considering the self-healing effect of bottleneck components on software

reliability. A self-healing component can automatically repair itself and return to a normal state when a failure occurs.

Since the design of a self-healing component is very complicated and costly, it is not possible to create self-healing for

all components. Therefore, identifying bottleneck components in order to self-repair them in the early stages of

software development can have a great impact on reliability. Nowadays, several methods have been proposed based

on design models to evaluate the reliability and software systems, but the effect of self-repair on reliability and also

finding components that have a great impact on software reliability. No report has been provided for self-repairing

the components in the early stages of software development. In this article, first, a method for modeling self-healing

using the Markov chain will be proposed, and then four different methods (without -Taylor series - without self-healing,

without Taylor series - with self-healing, with -Taylor series - without self-healing and with Taylor series - with self-

healing) will be presented to evaluate the reliability of a software system based on its architecture. The relations

proposed will enable a software engineer to identify the influential and bottleneck components for self-healing.

Keywords: Software reliability, Software architecture, Discrete-time Markov chain, Self-healing component, and

Sensitivity analysis

1. Introduction

Due to the dependence of our daily life on the

services of software systems, the reliability

evaluation techniques of these software

systems are of great importance. The impact of

the structure of a software system on its

reliability and correctness has been considered

*- Corresponding author. E-mail address: izadkhah@tabrizu.ac.ir (H. Izadkhah).

for almost two decades. The presence of

software systems in equipment, devices,

services and daily life activities of people has

increased. Computer system failures make

headlines because they cause inconvenience to

people (failure of household appliances),

economic damage (interruptions of banking

services) and in extreme cases death (failure of

flight control systems or medical software).

mailto:ali_ahar_tarinejad@yahoo.com
mailto:izadkhah@tabrizu.ac.ir
mailto:kamal.mirzaie@iau.ac.ir

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

65

 It is important to evaluate the non-functional

needs in the software development levels. In

component-based systems, non-functional

requirements such as reliability, efficiency and

security determine the quality of the final

product and the success of the software [1].

Component-based systems are formed from the

community and the juxtaposition of existing

independent components and interact with each

other to provide services for users. The problem

of evaluating the non-functional needs of each

of the components alone is one of today's

research fields, and on the other hand, even if it

is assumed that a component alone has a

suitable quality, the suitable quality of the

combination of components with each other is

not always guaranteed. Therefore, in the initial

phases of development, in addition to

evaluating each component, it is necessary to

evaluate how they interact with each other.

Software reliability is defined as the probability

that the software will perform its function

correctly (without failure) during a certain

period of time and under specific operational

and environmental conditions that it encounters

[1].

In the literature, the method of evaluating the

reliability of a software system has been

examined from different perspectives, which

are (1) the black box perspective and (2) the

white box perspective [2, 3]. Common

approaches to software reliability assessment

are based on the black box, that is, the software

system is considered as a whole, and only its

interaction with the outside world, without

considering its internal structure, is modeled. is

made The three main problems of these

methods are that (1) because they do not know

enough about the internal functioning of the

software system, so they cannot be accurate

enough in evaluating the reliability of a

software system, (2) if after the evaluation, the

engineers software come to the conclusion that

the system does not have adequate reliability,

replacing this software with new software or

fixing the problems of the current software is

not a good option because it will not be

economically viable, and (3) these methods

cannot be applied in the early stages of software

development and from design models. In

contrast to black box methods, white box

methods, because they know the internal

structure of a software system, can assess the

reliability of the software system with

acceptable accuracy. The main advantage of

these methods is that they can be used in the

early stages of software development. Due to

the fact that checking and evaluating these

features (Functional and non- Functional

requirements) before the design and

implementation stage, spends less time and

money, the best time to assess the evaluable

behavior of the system, is the time when the

architecture of that software is created.

Software architecture, as the first product and

output of the software design stage, plays an

important and direct role in the development of

complex software systems, and with its help,

the evaluable behavior of the system, i.e.

quality attributes, can be determined, like

security, reliability measures usability,

changeability, and efficiency.

Most of the white box methods start to evaluate

and predict the reliability of a software system

based on the software architecture. Software

architecture is how the main components of a

software system are put together [1]. According

to the IEEE standard [1], architecture means

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

65

providing a technical description of a system

that shows the structure of its components, the

relationship between them, and the principles

and rules governing their design and evolution

over time. So software architecture shows how

the main components of a software system are

put together. Software system clustering is the

main activity of finding a suitable architecture.

In fact, clustering of software classes is the

process of grouping software classes so that

classes with the highest degree of dependency

are placed in a cluster. Clustering makes it

easier to understand the software and facilitates

maintenance operations in the future. This

clustering is done based on the connections

between classes. In general, these connections

are shown in the form of Component

Dependency Graphs (e.g., MDG
†) where the

nodes represent the software components and

the edges model the connections between them

[4].

1.1 Statement of the problem

Reliability evaluation from architecture in the

early stages of software production plays a

significant and important role in the

development of software systems with high

reliability [5]. Component-based development

is considered the main solution to overcome

major software challenges. Therefore, it is very

important to provide a model for reliability

evaluation for component-based software from

an architectural point of view. Many methods

have been presented in the literature to describe

the software architecture to evaluate the

reliability, which includes types of Petri nets

(such as HCPN, SPN) [6], automata [7], Markov

Component dependency graphs -†

chains (such as DTMC, CTMC) [5, 8, 9], Bayesian

models [10].

It is clear that the impact of components on the

reliability of a software system is not the same;

Also, the number of times a component is

executed during the execution of a software

system is different from other components. A

component whose number of repetitions is high

has a greater impact on the reliability of a

software system. Among the mentioned

models, only Markov chains have this feature,

they can calculate the number of times a

component is executed during the execution of

a software system. Therefore, in this article, we

used the discrete Markov chain for architecture

modeling.

In recent years, the importance of adding self-

healing capability to components has been

emphasized a lot. Self-healing components try

to automatically detect and repair errors that

occur during their use [11-13]. In this article,

we will present a method for modeling self-

healing components using the Markov chain, by

using which we will be able to evaluate the

reliability of software systems considering the

self-healing property.

Next, in Section 2, the basic concepts and

previous research related to the proposed

solution will be presented, in Section 3, we will

present the proposed solution, in Section 4, we

will present an example of how to evaluate and

the practical results of the description. will be

given, and at the end, in Section 5, we have

given conclusions and future discussions.

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

65

2. Background

In this section, the related works in the field of

evaluating the reliability of software systems

and also the basic concepts related to discrete-

time absorbing Markov chain are examined.

2.1 Previous work

Calculating the reliability of a software system

is done at two levels the component and the

entire software system. At the level of the

component, it is tried to predict the reliability of

the component by combining the results of the

analysis of the internal structure and behavior

of the component with the data obtained from

the test or actual historical experiences

reported. In [14-18], methods to determine the

reliability of a component are presented.

Determining the reliability of a component is

not the subject of this article. At the level of the

entire software system, the goal is to find the

reliability of the software system based on the

configuration and interactions between the

components.

In [19], existing architecture-based models are

divided into three broad categories: state-based,

path-based, and additive. State-based models

(such as Markov chains, Petri nets, and

automata) use control graphs to represent

software architecture and use analytical

methods to predict reliability. Path-based

models calculate the reliability of the software

according to the possible execution paths of the

program. Execution paths may be determined

using simulation, program execution, or

algorithm. Incremental models assume that the

reliability of each component can be modeled

with a non-homogeneous Poisson process

(NHPP), which causes the system failure

process [20]. Among the three categories of

architecture-based software reliability models,

state-based models have been researched more

than the other two methods.

In state-based models, the software architecture

can be modeled by DTMC, CTMC, SMP, DAG, or SPN.

DTMC, CTMC, and SPM can be divided into two

types: irreducible and absorbent. SPN and DAG

can be used to model concurrent applications.

DAG is limited to modeling concurrent

applications without loops, but SPN is also used

for applications with loops. The failure

behavior of a component can be shown by

component reliability, constant failure rate and

time-dependent failure severity. Reliability

estimation methods in state-based approaches

are divided into two categories: hybrid and

hierarchical, which shows how to consider the

failure behavior of components with software

architecture to predict reliability. In the

combined method, the failure behavior of the

components is combined with the program

architecture and a combined model is obtained

to predict the reliability of the system. In the

hierarchical method, first the software

architecture is modeled by state-based models,

and then the reliability is estimated from this

model by considering the failure behavior of the

components.

2.2 Discrete-Time Markov Chain

The Markov chain is a stochastic memory-less

process. Stochastic processes refer to phenomena

whose outcome is not given before they

happen, such as throwing coins or dice. When

the conditional probability distribution for the

system state in the next step depends only on

the current state of the system and is not

dependent on previous states, the Markov chain

is used for modeling. Discrete-time absorbent

Markov chain is a good approach to describe

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

56

the structure of components of the software

system and to predict its reliability description

[1, 5], and it has many uses in real-world

modeling. A Markov chain is a sequence of a

finite or countable number of stochastic

variables  , 0,1,2,...nX n  with Markov property

as follows:

 

 

1 1 1 1 1 0 0

1

 , , ... , ,

|

|

=n n n n

n n ij

p X j X i X i X i X i

p X j X i p

  



   

   

(1)

Discrete-time Markov chain is generally

divided into two categories:

1) Irreducible: each mode of it can be accessed

through all other modes of it.

2) Absorber: it has at least one non-transmittable

mode and when reaching to this mode, its

mode will not change anymore.

The conditional probability  1n nP X j X i  

is called one-stage transition probability, i.e.

transition from state i in step n to state j at step

n+1. As it is apparent from this possibility, it

depends on i, j, and n. Matrix ()xyP p that its

entries denotes one-stage transition probabilities

is called a one-stage transition probability

matrix. P is equal to:

00 01 02

10 11 12

0 1 2i i i

p p p

p p p

P

p p p

 
 
 
 
 
 
  

If P is a transition probability matrix of a

Markov chain, then we have      0n n
p p p ,

0p is the initial distribution or distribution of

the initial probability and np is the n stepwise

probability matrix of the transition.

A discrete-time absorbing Markov chain is

described by its transition probability matrix.

This matrix with n states and m absorbing state

()m n , is divided as follows:

Q C
P=

0 1

 
 
 

Where Q is a matrix with    n m n m  

implying the probability of transition between

non-absorbing states, C or R is a matrix with

 n m m  to show the probability of

transition between non-adsorbent and

absorbent states, 1 is an identity matrix or Unit

matrix with, and 0 is a zero matrix with

dimensions  m n m  .

The fundamental matrix M is a matrix in which

the element  , i j represents the expected

number of expected visits of j to state i. This

matrix is defined as Eq. 2:

-1 2 k

0

M=(I-Q) Q Q ... Q
k

I




    

(2)

The variance of expected expectations from the matrix

M is defined in accordance with Eq. 3:

2 (2)dg sqM M I M    (3)

where
dgM implies a diagonal matrix and

sqM

represents a square matrix.

Suppose
,i jX represents expect the number of jumps

(the mathematical hope) of state j starting from the state

i before entering an absorbing state, which is determined

using the element  , i j of the matrix M.

, ,[]i j i jE X m
(4)

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

56

3. Proposed Approach

The general aims to calculate the reliability of a

software system by considering the self-healing

property of the most influential components.

The flowchart of the proposed approach is

shown in Figure 1. Details of each of the parts

of this flowchart are described in the following.

Step 1: First, we extract the software

architecture using the Bunch tool [1], and

convert this architecture to a discrete time-

absorbing Markov chain and calculate the

transition probability matrix, fundamental

matrix, and variance matrix. Creating a discrete

Markov chain from software architecture is as

follows:

1) Each component in architecture will be

equivalent to each state in the Markov chain,

2) Let Fan-in and Fan-out represent the number

of calls between the two components x and y

and the number of outgoing calls from

component x, respectively, in architecture.

The probability of transfer between x and y is

determined by Eq. 5.

[Fan-in / Fan-out] (5)

For a software system including a number of

clusters, we can show the structure of the

software system (software architecture) with a

Markov chain. The states of the Markov chain

represent the clusters and the edges between the

states represent the transfer of control from one

cluster to another. For example, consider the

famous traveling salesman problem (TSP).

First, we extract the TSP structure from its

source code using the Bunch tool. The input of

the Bunch tool is the call graph and its output is

the software structure (software architecture).

The commercial tool NDepend [21] was used to

extract the TSP call graph from its source code.

The NDepend tool for most of the world's

famous programming languages can extract the

call graph from the source code. After

extracting the call graph, it should be clustered

to extract the appropriate architecture. Figure 1

shows the extracted architecture for the TSP

problem from its source code.

Fig.1. Architecture of the software system for the

Travelling salesman problem using Bunch

After extracting the architecture, we convert

them into Markov chains. The Markov chain

for figure 1 is as figure 2.

Fig.2. Markov chain Figure 1

The numbers on the edges indicate the

probability of moving from one cluster to

another. For example, in Figure 1, a total of 3

edges were removed from cluster 3, 1 of which

went to cluster 4, 1 to cluster 5, and 1 edge to

cluster 6. Cluster 6 is added as a final state to

the Markov chain, which is not usually

represented in architecture. Each of A, B, C, D,

and E are clusters that have at least one or more

components inside them, cluster F is the final

state in the Markov chain, which has no output

edge and is absorbed. We find the transfer

probability matrix P in Figure 2 as follows:

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

56

The first solution to find the basic matrix M by

the inverse method: now we insert the matrices

Q, R, 1, and 0 in the matrix P and we have:

Note: In the P matrix, the sum of the row

probabilities must be equal to 1. And the probability

of each element must be greater than 0 and less than

1.

Now, if we want to calculate the basic matrix M by

the inverse matrix method, that is, M = (I - Q)-1,

Solving this inverse matrix manually is very

time-consuming, one way to solve this is to use

MATLAB software as follows:

Another method is to use the series expansion

or the same Eq. 4, which is enough for about 3

sentences.

The second solution to find the basic matrix M

by Eq. 4: because our Q matrix is a 5x5 matrix,

then our corresponding matrix I also becomes a

5x5 matrix, and we have:

And if we calculate the calculations of each

element, the matrix M will be as follows:

The variance of the number of expected meetings of

the (i, j)th element is calculated from the matrix M

as follows, where Mdg is the diagonal matrix of M

and Msq is the square (quadratic) of the basic matrix

of M.

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

56

Table 1: Probabilities of transmission between components for pacemaker software [7]

=0.008Prog,CDp =0.002Prog,RSp =0.35Start,VTp =0.64Start,ARp =0.01Start,Progp

=0.29VT,ARp =0.34AR,Tp =0.47AR,Heartp =0.19AR,VTp =0.99Prog,Tp

=0.0025CG,VTp =0.005RS,CGp =0.005RS,CDp =0.42VT,Tp =0.29VT,Heartp

=0.64Heart,VTp =0.0025CG,ARp =0.99CD,Tp =0.002CD,CGp =0.008CD,Progp

=1.00T,Tp =0.35Heart,ARp =0.99CG,Tp =0.005CG,CDp =0.005CG,RSp

 =0.01Heart,Tp

Fig.3. The proposed process steps

The First

step

The

second

step

Calculation of the sensitivity of each component to each software reliability and component identification of the

bottleneck

Extract software architecture

Architectural transformation into DTMC

Calculate the repair rate and component failure

Calculation of transition probability matrix

Calculate fundamental Matrix and Variance Matrix

Calculation of reliability

with Taylor series-with

self-healing

Calculation of reliability

without Taylor series-

without self-healing

Calculation of reliability

with Taylor series-without

self-healing

Calculation of reliability

without Taylor series-with self-

healing

The third

step

The Fourth

Step

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

56

Fig4.Equivalent Markov chain for pacemaker software architecture

Case study. The pacemaker is a device for

placement in the heart that helps the cardiac

function when the heart's natural rate is low due

to the disease. The pacemaker is consisting of

the following components: reed switches (RS)

coil driver (CD), communication gnome (CG),

ventricular model (VT), and atrial model (AR)

[7]. Figure 4 shows the Markov chain for the

pacemaker application. The architecture of this

artificial pacemaker has nine components that

in an equivalent Markov chain has turned into

nine modes. The inter-components transition

probabilities for pacemaker architecture are

shown in Table 1. These possibilities are

obtained from data collected during the

simulation of the characteristics of an artificial

pacemaker. The reliability of each component

and other parameters are shown in Table 2.

Where m1,i (x1,i) is equal to the expected number

of encounters from each component starting

from the first component, is equal to the root of

(1, i) or the first row of the basic matrix M and

Var1,i
2 is the first row of the variance matrix.

Table 1: Ri, X1,i, Var1,i
2, mi, ni initial and mi, ni new

in
new

im
new

in
initial

im
initial σ

1,i

2

1,iX iR Comp

0.0133 0.9867 0.0131 0.9750 0.0000 1.0000 1.0000 Start

0.0264 0.9736 0.0231 0.8503 0.0099 0.0100 0.9000 Prog

0.0369 0.9631 0.0345 0.8999 1.3315 1.3481 0.9000 AR

0.0280 0.9720 0.0254 0.8806 1.4658 1.2422 0.9000 VT

0.0378 0.9622 0.0354 0.9003 0.0000 0.0000 0.9000 RS

0.0229 0.9771 0.0209 0.8904 0.0001 0.0001 0.9000 CD

0.0915 0.9085 0.0887 0.8807 0.0000 0.0000 0.9000 CG

0.0200 0.9800 0.0194 0.9508 1.8649 0.9938 1.0000 Heart

0.0210 0.9790 0.0208 0.9678 0.0000 1.0000 1.0000 T

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

56

Step 2: Repair Rate and Failure Rate: in this

step, we propose a method to calculate the self-

healing effect on the components. A

component-based software system consisting

of a combination of several components and

each component has a failure rate and repair

rate. Since component reliability improves with

self-healing properties, it is, therefore,

necessary to calculate the reliability of the self-

heal component. Let mi and ni denote the failure

rate and the repair rate of each component,

respectively. In the beginning, components are

healthy and perform their tasks properly, due to

programming errors or other reasons, the

software system can fail. Depending on its

functionality, it is likely to fail if one or more

components of the system fail. So, for each

component, the repair rate is considered to be

the probability that the component will return to

the correct state if a breakdown occurs (i.e., the

component can repair itself and continue

working). In other words, when the component

is in a failure state, the component is likely to

repair and return to its safe state.

In a software system, the component mode

in the provision of services depends on the

current state, the failure rate, and the repair rate

of the component, and does not depend on the

time and the component states in previous

references, therefore is a stochastic process. It

can be modeled with a discrete-time Markov

chain. In this way, Xn is the component state in

the reference n which takes its values from {0,

1}.

{Xn: n>=0}, M={0,1} (6)

About solving the reliability of the self-healing

component, we must know that starting from

the safe state of a component, what is the

probability of the component being referenced

in a safe state. So, we have:

P(Xn+1=j | Xn=i)=pij (7)

We consider two states, namely state 1 and state

0, for self-healing components, which show,

respectively, safe and failure states. The single-

step probability matrix for these two states can

be as follows.

P = [
1 − mi mi

ni 1 − ni
] P = [

p00 p01

p10 p11
]

The Markov chain for matrix P is shown in Figure 5.

Fig.5. One-step probability matrix Markov chain for

self-healing components

Calculating repair rate and failure rate:

according to a proposition in the Markov chain

model, for an irreducible Markov chain with a

finite number of states, the stable state is

unique.

∏ =𝑗 ∑ ∏ 𝑃𝑖
𝑛
𝑖=1 i,j ,j ∈ M,

∑ ∏ = 1𝑗
𝑛
𝑖=1

 (8)

According to the transition matrix and using

equations relating to the distribution of stable

state, this value with respect to equations of the

Markov model for the component can be

computed as follows:

(9)
1= Π 0Π i+m1)Πin-(1

0= Π 0) Πim-+(11Π in

= 11 + Π0Π

and as a result

(10)]
ni

mi+ni
,

mi

mi+ni
]=[1, Π 0Π = [Π

and value Π1 =
mi

mi+ni
 π1 is called probability

in the safe state.

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

55

Step 3: In this step, four metrics considering

different combinations of Taylor series and

self-healing are proposed to evaluate reliability

of a software system from its architecture. Let

Ri denotes the reliability of component i in the

software system. Then, the overall reliability of

this system is calculated as follows:

1

n

i

i

R R


 (11)

Because components with a high number of

repetitions during a typical run have a great

impact on the reliability of a software system,

to improve accuracy, we consider the number

of repetitions of each component. Let m1,i

denotes the expected number of visits of

component i starting from the first component.

This value is equal to entry (1, i) from the

fundamental Matrix M. Thus, the overall

reliability of a software system will be as

follows:

1,

1

i

n
m

i

i

R R


 
 

(12)

Given that we use the static structure of

software to predict its reliability and it is not

possible to accurately determine the reliability

of each component and the number of

repetitions of each component in the design

stage; so, to reduce error in the estimation of

reliability, we use second-order and third-order

Taylor series approximation. Let Ri, Var(1, i),

mi and ni, respectively, indicate the reliability

of component i, expected visit variance of

component i, the healing rate of component i,

and the failure rate of component i.

Equations 13 to 18 represent metrics for

calculating reliability with consideration of the

following combined modes: without Taylor

series- without self-healing, with second-order

Taylor series-without self-healing, with third-

order Taylor series-without self-healing, with

Taylor series-with self-healing, with second-

order Taylor series-with self-healing, with

third-order Taylor series-with self-healing.

I. without Taylor series- without self-

healing

1,

1

i

n
m

i

i

R R


 
 

 (13)

II. with second-order Taylor series-without self-

healing

   1, 1,
2 2

1,

1

1
. log .

2

i i

n
m m

i i i i

i

R R R R 


 
  

 


 (14)

III. with third-order Taylor series-without self-

healing

     

     

1 , 1 ,

1 , 1 ,

2 2 2

1, 1,

2() 11

1,

1 1
. log . .

2 6

log
. . log 2 .

i i

i i

m m

i i i i i
n

m mi i

i i i i

i

R R R

R
R

m R R R
R

 



 





 
 
 
    

      



 (15)

By replacing the self-healing relationship obtained,

𝑅i=
mi

mi+ni
, into Eq. 13-15, respectively, Eq. 16-18 are

obtained.

IV. without Taylor series-with self-healing

1,

1

im
n

i

i i i

m
R

m n

 
  

 


 (16)

V. with second-order Taylor series-with self-

healing

1 , 1 ,
2

2

1,

1

1
. log .

2

i i
m m

n

i i i

i

i
i i i i i i

m m m
R

m n m n m n




 
  

         
        

         


 (17)

VI. with third-order Taylor series-with self-healing

 
1 , 1 ,

1 , 1

2

2 2

1, 1,

() 1 2

1,

1 1
. log . .

2 6

log

. . log 2 .

i i i

i

m m

i i i

i i

i i i i i i

i

m m

i i i i i

i

ii i i i i i

i i

m m m

m n m n m n

mR

m m m n m
m

mm n m n m n

m n

 



 
  






  



       
       

       

  
                  
         

   
   

,

1
i

n

i 

 
 
 
 
 
 
   
   
   
  



(18)

Step 4- Sensitivity analysis: based on metrics

presented in Step 3, in this step to calculate the

impact of reliability of each component on the

reliability of the entire software system, four

metrics are presented. The sensitivity analysis

is used to identify the bottleneck components.

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

55

Generally, the effect of a change in the

reliability of component k, Rk, on the expected

reliability of the software can be stated by the

differential of software reliability as follows:
dE[R]

dRk

 (19)

By calculating differential Rk relative to the

entire of the software system, the following

metrics are obtained:

A. sensitive impact on the reliability of a

component, without Taylor series-

without self-healing

1, 1,() 1 ()

1,

1,

[]
m .R k i

n
m m

k k i

i i kk

dE R
R

dR



 

 
     

 
 (20)

B. sensitive impact on the reliability of a

component, with second-order Taylor series-

without self-healing

1 , 1 , 1 ,

1 , 1 ,

() 1 () 1 ()2 2

1, 1, 1,

() 1 () 2 2

1,

1,

2[] 1
m . R . m . R .(LogR) .

2

1
R R .(LogR) .

2

k k k

i i

m m mk

k k k k k k k

k k

n

m m

i i i i

i i k

LogRdE R
R

dR R




 



 

   



  
  

  

  
    



(21)

C. sensitive impact on the reliability of a

component, without Taylor series-with self-

healing

1 , 1 ,
() 1 ()

1,

1,

[]
m .() ()

k i

n

m mk i

k

i i k
k k k i i

m mdE R

dR m n m n



 

 
 

   
   
   



(22)

D. sensitive impact on the reliability of a

component with second-order Taylor series-

with self-healing,

1 ,

1 ,

1 ,

1 , 1 ,

() 1

1,

() 1 2

1, 1,

()2

() 1 () 2

1

m .() .

[] 1
m .() . 2

2
(Log) .()

1
() () .(Log) .

2

k

k

k

i i

mk

k

k k

mk k

k k

mk k k k k k k

kk k k k

k k

m mi i i

i i i i i i

m

m n

mdE R m
Log

dR m n m m n m

mm n m n

m n

m m m

m n m n m n













  
 


 




  

  
  
  
  
  
  
  
    

2

,

1,

n

i

i i k 

  
  

  


(23)

4. Evaluation and practical results

In this section, we examine the three

relationships of the third step to calculate

software reliability using a case study, and by

applying the data of Tables 1 and 2 to Eq. 13 to

18, the reliability values in shown in Figure 6,

and at the same time, the sensitivity analysis,

i.e. the effect of the components affecting the

reliability of this study according to the Eq. 20

to 23, is shown in Figures 7 and 8. Suppose pi

is the number of failures observed in

component i. and qi represent the estimated

number of visitors to component i. This value

can be calculated by Markov analysis (DTMC

absorption). The reliability of each component

is valued using Eq. 24 [22].

(24) 1 lim
i

i
i

n
i

q
R

p

 

1.4 Evaluation

The number of components of a software

system cannot be large. For example, in a

university system, the components can be

educational assistant, research assistant,

financial assistant, graduation affairs, nutrition,

library, etc., which are related to each other.

Case study: A pacemaker is an implanted

device that assists cardiac functions when the

underlying pathologies make the intrinsic

heartbeats low. Figure 5 shows the pacemaker

architecture. The pacemaker consists of the

following components:

• Reed Switch (RS): A magnetically activated

switch that must be closed before programming

the device. The switch is used to avoid

accidental programming by electric noise.

• Coil Driver (CD): Receives/sends pulses

from/to the device programmer. These pulses

are counted and then interpreted as a bit of

value zero or one. These bits are then grouped

into bytes and sent to the communication

gnome. Positive and negative acknowledgements,

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

55

as well as programming bits, are sent back to

the programmer to confirm whether the device

has been correctly programmed and the

commands are validated.

• Communication Gnome (CG): Receives bytes

from the coil driver, verifies these bytes as

commands, and sends the commands to the

Ventricular and Atrial models. It sends positive

and negative acknowledgments to the coil

driver to verify command processing.

• Venrticular Model (VT) and Atrial Model

(AR): These two components are similar in

operation. They both could pace the heart

and/or sense heartbeats. Once the pacemaker is

programmed, the magnet is removed from the

Reed Switch. The Atrial Model and Ventricular

Model communicate together without further

intervention. Only battery decay or some

medical maintenance reasons force

reprogramming.

In addition to the above components, a dummy

start component is added to model the three

modes of operation of the pacemaker. These

modes include the programming mode or one

of the operational modes. During

programming, the programmer specifies the

type of the operation mode in which the device

will work. The operation mode depends on

whether the Atrium (A), Ventricle (V), or both

are being monitored or paced. The programmer

also specifies whether the pacing is inhibited

(I), triggered (T), or dual (D). For example, in

the AVI operation mode, the Atrial portion (A)

of the heart is paced (shocked), the Ventricular

portion (V) of the heart is sensed (monitored),

and the Atrial is only paced when a Ventricular

sense does not occur (inhibited mode). The

architecture also includes the heart as an

external component to/from which pulses are

sent/received. A dummy terminator state is also

added to indicate the termination of the

pacemaker operation.

Fig.6.Reliability diagram of the Case study software system

2.4 Discussion

According to the results, the self-healing

property plays an important role in the

reliability of a software system, and also by

considering the second and third order

architecture (second and third order Taylor

series), a more accurate estimate of reliability is

obtained. According to the relationships

obtained from the 3rd step of the fourth step, we

obtain the effect value of the reliability of each

component in relation to the reliability of the

entire software system in order to identify the

bottleneck components (Figures 7 and 8). From

these figures, it is clear that in the case of the

study, AR and VT components have a great

impact on the reliability of the software system.

In fact, reducing the reliability of these

components has a great impact on reducing the

reliability of the entire software system, and it

is suggested that these components are self-

repaired.

0.7000

0.7200

0.7400

0.7600

0.7800

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

Rel (14) Rel (15) Rel (16) Rel (17) Rel (18)

0.7722
0.7843

0.8686 0.8702
0.8827

Reliability studied according to the relationships

of the fourth step

A.Tarinejad, H.Izadkhah, M. Mollahoseini Ardakani. K. Mirzaie: An analytical model …

55

Fig.7.Sensitivity, without Taylor series - without self-

healing (study case)

Fig.8. Sensitivity, with Taylor series - without self-

healing (study case)

Using Taylor's series in calculating the

reliability of a software system can increase the

accuracy of reliability assessment. It considers

more parameters to calculate the reliability

(such as the number of runs of a component and

the variance of the number of runs). Figure 6

shows that using a higher order of Taylor series

improves the evaluation accuracy. Of course,

because the third-order Taylor series requires

higher-order derivatives, its calculation is more

complicated than the second-order Taylor

series. Equations 14 to 18 in Figure 6 show the

effect of self-healing on reliability calculation.

From these figures, it is clear that adding self-

healing properties to components increases the

reliability of a software system significantly.

By adding the self-healing capability to the case

study, for example, according to the third-order

Taylor series (i.e., Eq. 18, the reliability is

improved.

5 Conclusions and Future Works

In this article, the structure of the system, the

time spent in each component per visit, the

reliability and the failure rate of each

component are determined in such a way that

the resulting architecture is converted into a

time-absorbing discrete Markov chain.

Effective relationships were proposed to

calculate the reliability of a software system in

different states. Also, relationships were

proposed to find bottleneck components. The

development of techniques to estimate the

reliability of software systems with multimodal

architecture and the description of the

software reliability assuming random instead of

deterministic components are topics for future

research.

Reference

[1] Isazadeh A, Izadkhah H, Elgedawy I., "Source

Code Modularization Theory and Techniques",

Springer, ISBN 978-3-319-63344-2., 2017.

[2] Patel, D., "Software Reliability:

Models", International Journal of Computer

Applications, 152(9), 2016.

[3] Robidoux, R., Xu, H., Xing, L. and Zhou, M.,

"Automated modeling of dynamic reliability block

diagrams using colored Petri nets", IEEE

Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, Vol. 40, No. 2,

pp.337-351, 2010.

[4] Mancoridis, Spiros, Brian S. Mitchell, Chris Rorres,

Y. Chen, and Emden R. Gansner. "Using automatic

clustering to produce high-level system

organizations of source code." In International

Conference on Program Comprehension, pp. 45-45.

IEEE Computer Society, 1998.

[5] Vibhu Saujanya Sharma, Kishor S. Trivedi.,

"Quantifying software performance, reliability and

security:An architecture-based approach", The

Journal of Systems and Software, Vol. 80, pp. 493–

509, 2007.

[6] Trivedi, Kishor S., and Andrea Bobbio. "DSN 2016

Tutorial: Reliability and Availability Modeling in

Practice", Dependable Systems and Networks

Journal of Artificial Intelligence in Electrical Engineering, Vol.11, No 41, June 2022

56

Workshop, 2016 46th Annual IEEE/IFIP International

Conference on. IEEE, 2016.

[7] Wason, Ritika, P. Ahmed, and M. Qasim Rafiq.

"Automata-based software reliability model: the

key to reliable software", International Journal of

Software Engineering and Its Applications 7.6, pp.

111-126, 2013.

[8] SWAPNA S. GOKHALE., "Software Reliability

Analysis Incorporating Second–Order Architectural

Statistics", International Journal of Reliability,

Quality and Safety Engineering @ World Scientific

Publishing Company, USA 2010.

[9] Yakovyna, V., Fedasyuk, D., Nytrebych, O.,

Parfenyuk, I. and Matselyukh, V., "Software

reliability assessment using high-order Markov

chains", International Journal of Engineering

Science Invention, 3(7), pp.1-6, 2014.

[10] Sander, P. and Badoux, R. eds., " Bayesian

methods in reliability", Springer Science &

Business Media, Vol. 1, 2012.

[11] Monperrus, M., "Automatic software repair: a

bibliography", ACM Computing Surveys, 2017.

[12] Al-Jumeily, D., Hussain, A. and Fergus, P., "Using

adaptive neural networks to provide self-healing

autonomic software". International Journal of

Space-Based and Situated Computing, 5(3),

pp.129-140, 2015.

[13] Drew, P., Walker, T. and Ogden, R., "Self-repair

and action construction", Conversational repair and

human understanding, pp.71-94, 2013.

[14] Zhou, K., Wang, X., Hou, G., Wang, J. and Ai, S.,

"Software Reliability Test Based on Markov Usage

Model. " JSW, 7(9), pp.2061-2068, 2012.

[15] Seth, K., Sharma, A. and Seth, A., "Minimum

Spanning Tree-Based Approach for Reliability

Estimation of COTS-Based Software

Applications". IUP Journal of Computer

Sciences, 4(4), 2010.

[16] Antony, J.P., "Predicting reliability of software

using thresholds of CK metrics". International

Journal of Advanced Networking and

Applications, 4(6), p.1778, 2013.

[17] Antony, J., and H. Dev., "Estimating reliability of

software system using object oriented metrics", Int.

J. Comput. Sci. Eng, 283-294, 2013.

[18] Johny Antony P, Harsh Dev. "Estimating

Reliability of Software System using object-

oriented metrics", International Journal of

Computer Science Engineering and Information

Technology Research. Vol. 3, No 2, pp. 283-294,

2013.

[19] Swapna S. Gokhale and Kishor S. Trivedi.,

"Analytical Models for Architecture-Based

Software Reliability Prediction: A Unification

Framework", IEEE TRANSACTIONS ON RELIABILITY,

VOL. 55, NO. 4, pp. 578-590, USA 2009.

[20] Ravishanker, N., Liu, Z. and Ray, B.K., "NHPP

models with Markov switching for software

reliability", Computational Statistics & Data

Analysis, 52(8), pp.3988-3999, 2008.

[21] Johny Antony P, Harsh Dev. "Estimating

Reliability of Software System using object-

oriented metrics. " International Journal of

Computer Science Engineering and Information

Technology Research. Vol. 3, No 2, pp. 283-294,

2013.

[22] Yacoub S, Cukic B, Ammar H. "A scenario-based

reliability analysis approach for component-based

software." IEEE Trans Reliability 2004;53(4):465–

80.

Ali Tarinezhad is Ph.D. student at the Department of

Computer Engineering, Islamic Azad University,

Maybod Branch, Iran. His-main interests and activities

are in the field of advanced software engineering,

reliability, and security.

Habib Izadkhah is Assistant Professor at the

Department of Computer Science, University of Tabriz,

Iran. His-research interests include software engineering,

software architecture, reverse engineering, and organic

software. More recently he has been working on the

application of reverse engineering and modularization to

the extract of software structure for large scale and multi

programming languages source code.

Mohammadreza Mollahoseini Ardakani is Assistant

Professor at the Department of Computer Engineering,

Islamic Azad University, Maybod Branch, Maybod,

IRAN. His-research interests are Software Engineering,

Cloud Computing, Fog/Edge Computing, and Service

Oriented Architecture.

Kamal Mirzaie is Assistant Professor at the Department

of Computer Engineering, Maybod Branch, Islamic Azad

University, Maybod, Iran. His-research interests include

cognitive science, soft computing, medical data mining,

parallel processing, image processing, and pattern

recognition.

