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Abstract 

Mapping the mineralized zones and providing an appropriate distribution pattern of elements for 

characterizing geochemical system and targeting potentially promising areas of Cu-Au mineralization by 

utilizing an adequate technique and establishing an optimized exploration tool is the main object of this 

study in Meshginshahr, NW of Iran. In this respect 144 stream sediments samples were collected and 

analyzed for Au, Ba, Bi, Cd, Ce, Co, Cr, Cu, Hg, Mo, Ag, As, Sn, Sb, W and Pb. In this study, self-organizing 

map (SOM) and Fuzzy K-means clustering (FKMC) approaches with the aim of pattern recognition were 

employed. The SOM as a dimension reduction approach was introduced to recognize geochemical 

dispersion patterns with high certainty while preserving the originality of data.. During data processing, 

SOM appropriate structure with a pattern including six clusters was selected and the related elements 

distribution model was extracted. Results represent two significant sets of elements in clusters for 

anticipating the mechanism of distribution. In this target pattern, copper and pertaining trace elements 

formation are localized in the north of the area. Also, Au Anomalies and its associated elements are mostly 

elongated from NW to SW of the area. To evaluate the SOM results, a comparative study was carried out 

with the results obtained from Fuzzy K-means clustering (FKMC). FKMC performance showed the proper 

compliance with the SOM results with respect to the relationship between the elements and their 

corresponding membership’s probabilities in different clusters. The results illustrated higher performance 

of the approaches in characterizing geochemical pattern and detecting the element paragenetic sequence 

in the area for locating the exploration targets..   

Keywords: geochemical pattern recognition, elements distribution, Self-Organizing Maps (SOMs), 

Fuzzy K-means clustering (FKMC) , Meshginshahr. 

1-Introduction 
Recognition of geochemical dispersion patterns 

and paragenetic interrelationship between 

different elements and the separation of their 

populations can be effective to more accurately 

identify of anomalies of ore-related elements in 

the geochemical environments. The proper 

mapping of the genetic accumulation of the 

elements and associated minerals is an important 

problem in the prospecting of metals in an area. 

In most cases, due to the large scale of data and 

their empirical analysis,  the lack of proper 

models for describing the source, deposition, and 

the concentration of different elements in rocks 

leads to conceal prone areas and influence the 

factors associated with mineralization 

components in the area. Therefore, it is essential 

to have geochemical models to illustrate the 

nature and origin of the surface expression of 

mineralization. Such models attempt to express 

the spatial and genetical relationship between 

geochemical dispersion process and to apply them 

for optimizing of exploration procedures (Butt, 

2005). Thus, this paper has been introduced with 

the aim of enhancing the optimal recognition of 

geochemical patterns with constraining the 

prospecting uncertainty in order to map the 

mineral potentials in the Meshginshahr, Ardebil, 

NW of Iran. In this respect, integrating and 

analyzing of different spatial data using various 

modeling techniques is essential. Nowadays, 

different modeling techniques have been used in 

mineral exploration programs (Grunsky and 

Agterberg, 1992; Bellehumeur et al., 

1994;Grunsky, 2010), among them, the 

techniques associated with the identification of 
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various exploration patterns are of great 

importance. In this respect, it can be mentioned to 

the Bayesian decision-making theory (Porwal et 

al., 2003), non-linear Kernel methods(Al-Anazi 

and Gates, 2010; Schölkoph et al., 2000; Zuo and 

Carranza, 2011), Neural networks based methods 
(Porwal et al., 2003) and Multivariate statistical 

methods (David and Woussen ,1973; Cazes 

,1970;  Reimann et al., 2002; Lindqvist et 

al.,1987; Javid, et al.,2015; Nasseri, et al., 2015). 

As well as different methods also have developed 

for identifying patterns and clustering variables to 

reduce the dimensions of the data matrix. It is 

essential to note that some aforementioned 

methods, despite their desirability, adhere to the 

statistical assumptions about data distribution 

which affects the nature of the exploration data 

and the final results. Therefore, in order to 

overcome this problem, a self-organizing map 

neural network (SOM) (Kohonen, 1997, 2001) 

was proposed for recognizing geochemical 

patterns in the area. Also, the application of this 

method is important in overcoming the limitations 

of neural network input variables, in improving 

the accuracy of predictions in exploratory 

environments and in recognizing & analyzing the 

nonlinear multi-dimensional spaces in order to 

propose an optimal hybrid method in identifying 

the geochemical patterns. In this respect, the 

assessment of the elements dispersion, 

enrichment, and trend of their linear and nonlinear 

regional variations in the area, was illustrated by 

using the proposed method. 
The Self-Organizing Map (SOM) is a fairly well-

known neural network and indeed one of the most 

popular unsupervised learning algorithms which 

has been introduced by Finnish Professor Teuvo 

Kohonen in the early 1980s. The method 

performs a non-linear projection of multi-

dimensional data onto a two-dimensional map. 

The mapping is topology-preserving from an 

input space onto the 2-D grid of map units. It 

means that the more alike two data samples are in 

the input space, the closer they will appear 

together on the final map. The resulting maps 

comprehensively visualize natural groupings and 

relationships in the data. The method as a 

remarkable tool in information visualization  has 

a  simple basic implementation, capability in data 

structure maintaining, reliable results and the 

algorithm scales exceptionally well (Schatzmann, 

et al., 2003).  

From the SOM training point of view, it can 

express that the SOM consists of a regular, 

usually two-dimensional grid of map units. Each 

unit i is presented by a prototype vector 

 idii mmm ,...,1 , where d is the input vector 

dimension. The units are connected to adjacent 

ones by a neighborhood relation. The SOM is 

trained iteratively and at each training step, a 

sample vector x  is randomly selected from the 

input data set. Distances between x and all the 

prototype vectors are computed. The best 

matching unit (BMU), which is denoted here by 

b, is the map unit with prototype closest to x  

  )1(min ib mxmx                    

Then, the prototype vectors are updated. The 

BMU and its topological neighbors are moved 

closer to the input vector in the input space. The 

updated rule for the prototype vector of unit i is: 
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For a discrete dataset and fixed neighborhood 

kernel, the error function of SOM can be shown 

to be:  
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Neighborhood kernel hbi is centered at unit b, 

which is the BMU of vector ix , and evaluated for 

unit j .If neighborhood kernel value is one for the 

BMU and zero elsewhere, this leads to 

minimization of  the error function (Vesanto and 

alhoniemi, 2000). 

SOM has been successfully applied in a broad 

spectrum of research areas ranging from speech 

recognition to financial analysis and mineral 
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exploration. For instance, it has been used to solve 

the prediction problems in neural networks 

(Kaski, 1997, Pastukhov, A.A. and Prokofiev, 

A.A., 2016). It also as a most reliable clustering 

method in spatial data analysis has widely been 

applied in various fields such as image processing 

(Bação, et al., 2005), precipitation estimation 

(Kalteh, et al., 2008 , 2007; Liu, et al., 2011; 

Nourani, et al., 2013; Hsu, et al., 2002), biology 

and ecology (Chon, 2011; Park et al. 2006), 

underground water investigation (Peeters, et al. 

2007; Lin and Chen. 2005), in seismic attributes 

assessment and interpretation (Strecker and  

Uden. 2002), well logging (Baldwin, et al. 1990; 

Nasseri et al., 2017), in agriculture (Jianwen, and  

Bagan. 2005), hydrology (Herbst, et al. 2009; 

Kalteh, et al., 2008; Hsu, et al., 2002), catchment 

basin classification (Ley,et al. 2011; Céréghino, 

et al., 2001), remote sensing hyperspectral image 

processing(Lin, et al., 2005; Lindqvist, et al., 

1987; Lin, et al., 2011; Lee, et al., 2006; Martinez, 

et al., 2001; Matteoli, et al., 2010; Neagoe, et al., 

2002; Patil, et al., 2011; Tasdemir, et al., 2009; 

Toivanen, et al., 2003; Villmann, et al., 2003), 

landslide zoning (Hentati et al., 2010), metal 

distribution evaluation in soil and sediments 

(Löhr et al., 2010), mineral exploration (Caneiro, 

et al., 2012; Fraser, et al., 2012,2006; Marroquin, 

et al., 2005; Cracknell, et al.2015,2014; Fraser, et 

al., 2007; Choi, et al., 2014; Brehme, et al., 2017; 

Sun, et al., 2009)  and most other fields.  Despite 

of SOM applications in various fields, there are 

still limited implementations in earth sciences. 

Therefore, this study intends to address the 

shortcomings of the research history in applying 

of the SOM method in mineral exploration and 

expresses its practical application in the field of 

geochemical exploration for mapping promising 

areas of probable copper mineralization in the 

Meshgin shahr area of Ardebil province. For 

assessing the effectiveness of SOM in pattern 

recognition in the study area, we employed Fuzzy 

k-means clustering to the geochemical data. 

Fuzzy K-means clustering creates homogeneous 

groups of clusters described by a set of 

quantitative variables. If the dataset contains 

multiple groups which are too close, it is possible 

to introduce a coefficient of fuzziness that allows 

each observation to be linked to each group with 

a probability of membership. Accordingly, the 

cluster with high membership will be significant. 

Moreover, in this model using fuzzy distribution 

of elements within clusters define all elements’ 

properties without ignoring any. Also, the fuzzy 

distribution detects element behavior patterns 

faster than normal clustering of elements. 

Additionally, it recognized elements with multi 

patterns behavior. 

Basically, Fuzzy k-means is a generalization of 

the classical k-means (De Gruijter and 

McBratney, 1988) where each observation is 

associated to each cluster with a probability ij . A 

starting point is chosen by associating the K 

centers to k observations (randomly or not). Then 

the distances between the observations and the 

centers are computed. Next, the membership 

probably ji, is computed for each observation i 

and each center j, and the each center Cj is updated 

using the membership probability and the fuzzy 

coefficient m as follows: 
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The higher the coefficient is, the fuzzier the 

borders of the clusters are. When m value is 1 or 

close to 1, it means the point is closet to cluster 

center and more weight is given to that point. 

Previous studies using the fuzzy k-means 

clustering algorithm have been applied to 

petrophysical logs from boreholes in the Sudbury 

area to characterize rock types (Mahmoodi, 

2016). However, geological differences 

(mineralogy, textures, alteration) amongst 

different lithologies are important in placing data 

into clusters, collecting samples and observing 

the geological changes helps in understanding 

why there is heterogeneity in the data. 

Furthermore, since there can be an overlap of 

chemical properties amongst different lithologies, 

the samples can belong to more than one cluster 

and this leads to reduce the accuracy of predicting 
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the rock type from the cluster information. 

Therefore, this study used the fuzzy k- means 

algorithm to overcome the problems and to 

identify how chemical changes can affect the 

measurements and how the related patterns can be 

recognized accurately.  

In this study it was attempted to combine the 

positive aspects of SOM and Fuzzy k-means 

clustering to avoid forcing every elements and 

samples into a single cluster along with 

considering the linear and nonlinear relationship 

between behavior features of elements, deduce 

feature values similarity within elements. 

Thereby, the epigenetic related elements with 

multiple behavior patterns can be highlighted. 

 

1-1 Study area 

The study area is situated in Meshginshahr 

1:100000 sheet with a longitude of (47°30'18") to 

(47°36'28") and latitude of (38°14'35") to 

(38°19'3") in Ardebil province, NW of Iran. (Fig. 

1). According to the division of structural - 

sedimentary zones of Iran (Aghanabati, 2004), 

Meshginshahr sheet is located in the northwest of 

Alborz- Azerbaijan zone. According to 

lithological similarity of Arasbaran-Garadagh 

(Iran NW-East Azarbaijan) and the presence of 

similar indices and deposits in the area, it is 

essential to study more accurately and recognize 

optimal exploration patterns for targeting mineral 

potentials in the area. Therefore, it is important to 

evaluate the major rock units that are exposed in 

the area and are involved in the evolution of the 

rocks of the area. The igneous, pyroclastic and 

Cenozoic sediments cover more than 95% of  the 

area and from the old to the new are Eocene, 

Oligocene and Quaternary alluvial deposits. 

Eocene volcanic rocks, pyroclastic and 

sedimentary rocks are expanding in the 

northeastern and western parts of the study area 

and their composition is as trachyandesite, trachy 

basalt and trachyte and the parts with acidic 

composition have less expansion.  
1-2-Sampling 

The sampling points on the geological map are 

presented in Fig. 1. Choosing the sampling 

environment and appropriate parts of the stream 

sediment for analyzing is a crucial problem in 

achieving the best possible contrast. The main 

objective is to increase the contrast and reduce the 

natural variation within the communities of 

background and anomalies with low cost and a 

good level of confidence. A total of 144 stream 

sediment samples were collected, especially from 

silica and clay components and prepared up to -

120 mesh for the analysis of As, Au, Ba, Bi, Cd, 

Ce, Co, Cr, Cu, Hg, Mo, Pb,  Sb, Sn and W 

elements and mapping secondary halos. The 

analytical method for the elements Au, Pb, Ag, Sn 

is the emission spectrograph (Es); for Hg, Bi, Sb, 

As, Atomic fluorescence (AF); polarography 

(POL) for Mo, W; atomic absorption (AA) for 

Cd; ICP-OES for other elements and oxides 

which was done in Karaj Applied Research 

Center. 

 
Fig.1. Simplified geological map of the studied area 

along with the sampling point location 

2- Materials & Methods 

In this study, to evaluate the performance of  the 

proposed methods for pattern recognition of 

geochemical data in Meshginshahr, the spatial 

variables and geochemical elements were 

considered as input neurons, whereas the partition 

of input vectors into clusters were presented as 

output neurons in the  mapping space. Every input 

neuron is connected to every output neuron with 

weighted links. For assessing the geochemical 

dispersion patterns and vectoring exploration 

targets in the area, five steps were undertaken. At 

first, all variables were standardized between (0-
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1) based on the Z-score. Considering that, the 

optimal number of clusters is not known from the 

beginning of data analysis, therefore, clustering 

based on SOM  was carried out independently and 

each time by taking a number of different classes. 

In the second stage, the data was divided into 

training and testing data. Then, organizing of  the 

nonlinear relation between geochemical data in 

patterns was made based on Self- Organizing 

Maps (SOMs) (Fig.2). Accordingly, K-means 

clustering technique (Vesanto et al., 2000) was 

employed to classify the SOM topography into 

related conceptual models. Finally, the 

geochemical dispersion model was  constructed to 

illustrate the nature and origin of the surface 

expression of mineralization in the area (Fig.8). 

According to (Kohonen et al., 1997), during the 

process, the algorithm provides a projection of the 

multi-dimensional data into a two-dimentional 

map and preserves the topology of this input data 

space. The presented SOM was trained with 

different numbers of map units and the optimum 

map size was selected based on the R-

Squared(RS) index (Fig.3). The RS index 

measures the dissimilarity of clusters and  has the 

values from 0 to 1 where 0 shows there are no 

differences among the clusters and 1 indicates 

significant differences among them. Noted that, if 

the resulting map size is small, it might not 

explain some important differences in the data 

that should be detected. Conversely, if  the map 

size is too big, the differences are too small 

(Vesanto, et al, 2000). Considering the above 

mentioned context, the results of SOM 

performance on the data are presented in Figs (5-

8) and the optimal patterns were shown in six 

main clusters indicating the individual 

geochemical dispersion pattern. 

Ultimately, the SOM and FKMC results were 

compared. Based on clustering accuracy and 

capability of the implemented methods in 

discriminating optimal geochemical pattern, the 

best option was proposed (Figs .9-10). Noted that, 

pattern recognition techniques are able to 

characterize the rocks and link the geochemical 

and geological data quantitatively. Here, the 

fuzzy k-means algorithm as an unsupervised 

pattern recognition technique can group data into 

clusters based on properties measured. In order to 

implement the FKMC on the data, all 

geochemical stream sediments samples which 

control the lithology and environments was 

undertaken. Normally, The grater the geological 

anisotropy, the higher the number of clusters. 

With respect to this, Figure (4) shows the 

flowchart of FKMC in the present geochemical 

data. 

 

 
Fig.2. Topology of SOM network for geochemical 

pattern recognition in the studied area 

 
Fig.3. RS Index variations based on the number of 

clusters in the data 

At first, the data was prepared and pre-processed. 

Also, a reasonable method was selected (from 

Cosine, Jaccard and Euclidean methods) to 

calculate the distance between elements and 

centers. Then optimal values for class number and 

fuzzy component were determined. To obtain 

centroid and membership based on the mentioned 

equations, it was attempted to apply the iterations 

until the centers or memberships was constant to 

within some small value. Next, we initialized the 

membership as random values using a distribution 

that satisfies all conditions. Then, centers were 

calculated and afterward memberships were 

recalculated according to the new centers. If the 

new memberships did not change compared to the 

older or had a small difference, the clustering 

process is ended. Otherwise, the recalculation of 

new centers and memberships are continued. The 

process repeats until the algorithm converges to a 

point where the relative change in objective 
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function is lesser than 0.001 and saves the best 

memberships and centers that resulted from the 

optimum random initiation corresponding to the 

least objective function (Figs9-10, Tables 3-4). 

3-Results and Discussions 

To demonstrate the effectiveness of the proposed 

model-based clustering method, the performance 

of the SOM algorithm on discriminating of 

geochemical dispersion patterns was tested the 

relevant results are presented in Figs.2-7. Based 

on SOM visualization(Figs 5-6), the data were 

classified into six clusters associated with the 

specific geochemical behavior. Figure 4 presents 

“unified distance matrix” U-matrix which 

indicates the closeness between adjacent nodes on 

the map and Figure 5 which shows a color-

temperature scale where the cooler colors 

separate adjacent nodes that are closer (similarity) 

and the hotter colors indicate larger Eulidean 

separations (difference).  

 
Fig.5. U-matrix representation with white hexagons 

sized proportional to the number of  input samples 

falling on the each node 

 

 
Fig.6. Shows the color-coding of the nodes which can 

be used in distribution patterns 

About the optimal number of clusters, it is 

essential to express that the number of clusters 

depends on the precision, interpretation overview 

and the discrimination quality of clusters. In this 

respect, the separation quality is controlled by RS 

index (Fig.5). Accordingly, the next 

interpretations were performed assuming an 

optimal pattern with six clusters on the data. 

Subsequently, Figures 7-8 show the elements 

dispersion model which provides a proper context 

for interpreting the geochemical expression of 

mineralization by characterizing the principal 

factors influencing elements dispersion in the 

area. In cluster 1, which is elongated the N-NW 

of the region and to some extent in the middle part 

of the studied area, an enrichment of  Ba, Co and 

Cu elements are visible.The 2nd cluster has been 

located in the center and northwest part of the 

studied area (Fig.6) and contains the anomalies of 

As, Au elements. There is a relatively good 

compliance between the anomalies and the 

position of points in the second and sixth clusters. 

Also, 6th cluster has expanded in the south and 

southwest of the studied area (Fig.7). Based on 

Table 2 and Figure 7, W, Sn, Pb, Mo, Ag elements 

show significant anomalies in this cluster. With 

regard to the geochemical distribution pattern of 

Ag in the cluster, it is concluded the fluctuation 

range of Ag concentration in the whole region is 

approximately the same.  

The distribution pattern of Pb, Sn, Ag, Mo, Au, 

Bi, Sb, and W elements on the 6th cluster  is shown 

in Fig. 7, respectively. The enhancement of their 

anomalies, except for Sn, is strong in the sixth 

cluster and has a south-southwest trend. 

Paragenetic sequence of elements which were 

explained in different clusters has been presented 

in Table 1. Accordingly, in the first cluster, the 

group of  Ba, Co and Cu reflect ore-forming 

elements  associated with the base metals.  

 
Table 1: SOM-based clusters and their pertinent 

elements 

-based clustering SOM -based clustering 
SOM 

Cluster 4:Ce, Cr, Co Cluster 1: Ba, Co, Cu 
Cluster 6: Ag, Mo, Pb, Sn, W, 

Au, Bi, Sb 
Cluster 2: As, Au, Hg, 

Ba 
 Cluster 3: Bi, Sb, As, 

Cr, Hg 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 10, No.38 ,September 2021 

26 
 

The explained elements in the second cluster 

show the group of As, Hg, To, Au elements which 

expressing the relative enrichment of Au and the 

relevant trace elements. Also, the dispersion 

characteristics of Cr, Ce and Co elements in the 

fourth cluster was due to lithology and syngenetic 

effects. The enrichment of the oriented elements 

in the sixth cluster, indicates the geochemical 

system of Ag, Mo, Pb, Sn, W, Au, Bi, Sb, 

elements which are associated with the acidic 

solutions resulting from the penetration of 

igneous masses into the acidic volcanic rocks of 

the area.  

In order to evaluate and confirmation of the 

results of SOM in geochemical pattern 

recognition, it was attempted to compare its 

performance with the results obtained from 

FKMC in the area (Figs.9-10). 

 

 
Fig .9. a. Showing the objective function variations 

vs number of clusters 

 
Fig 9. b. Presenting the classification of geochemical 

elements based on silhouette coefficient 

 
Fig.9.c. Showing clusters size resulted from FKMC 

 

So, in this study, it was attempted to apply FKMC 

as a fuzzy-based approach which has a 

remarkable ability in recognizing distribution 

pattern and identify the epigenetic components. In 

this respect, the most reliable cluster structure 

which was compatible with geology, geochemical 

characteristics and paragenesis of minerals in the 

study area, was extracted. In this regard, for 

computing the FKM algorithm, the coefficient of 

fuzziness (m) was 1.05. As mentioned before, this 

parameter is variable and chosen in advance from 

1 to infinity but in most application of FKMC, a 

value between 1 to 2 has provided appropriate 

results. Besides this, the results showed that 

increasing in this coefficient provides greater 

stability in the classification. In view of all 

conditions in this clustering, we had to select the 

optimal pattern. For this,  m equal to 1.05 

represented a good compromise with respect to 

entropy and stability of the classification. Here, 

another point of concern is the optimal fuzzy 

classification which is obtained by minimization 

of the object function to satisfy the conditions. 

The clustering objective function is computed 

depending on the choice of clustering distance. 

Here, with respect to the comparison of the 

distances Jaccard Index distance was more 

adoptable to the studied data. About the number 

of clusters, with respect to the behavior of 

geochemical data in the area, it could be chosen 

from two to six clusters. The four cluster 

alternative exhibits the optimal results in term of 

objective function, stability in classification, 

silhouette coefficient (Fig. 10 a, b) and average 

membership in each cluster.  

The stop conditions of this clustering are the 

iterations and convergence during the process. 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
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 Cluster 4  Cluster 3  Cluster 2  Cluster 1
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Here, the calculations are stopped when the 

maximum number of iterations has been exceeded 

of the considered value and the algorithm running 

will continue until the convergence reach to the 

threshold of convergence. Figure 10 shows the 

cluster size and expresses the number of elements 

for each cluster. Accordingly, the first cluster is 

assigned to make a significant percent of data 

corresponding to a considerable extent of W, Pb, 

Mo, Sn, Bi, Be, Ag mineralization in the area 

(Table 2). The related distribution pattern has 

been depicted in figure (10.a). Consequently, the 

placement of Ag, Mo, Pb in this cluster and their 

associations can be a sign of hydrothermal 

mineralization. Also, in this pattern the 

geochemical system of Bi, W, Pb, Sn, Mo that are 

associated with acidic rocks and it seems that in 

both of the mentioned clustering methods, Mo is 

not only distinct from Cu, but also its 

accumulation has been mostly affected by acidic 

solutions. 

The fourth cluster is related to Au local 

enrichments and has the second priority of halos 

extent in the area especially in center and western 

parts of area (Fig. 10.c).  The placement of Au, 

Sb and As in this cluster indicates the association 

of these elements which is commonly observed in 

Au bearing hydrothermal deposits especially in 

the Au bearing vein deposits.  
The pattern related to third cluster expressed the 

association of Ba, Co, and Cu where copper 

enrichments seem to be occurs in relation to 

secondary processes and mineralization and are 

mostly concentrated in the north of the area. (Fig. 

10.b). 

 

 
Fig. 10. a.  Geochemical distribution pattern of FKMC 

cluster1 

 
Fig. 10. b. Geochemical distribution pattern of  FKMC  

cluster 3 

 
Fig . 10.c. Geochemical distribution pattern of  FKMC 

cluster 4 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 10, No.38 ,September 2021 

28 
 

The second cluster with low size shows the 

relation of Cr, Ce elements whose distributions 

were probably influenced by lithology and 

syngenetic effects. 
Since an increasing in number of classes would 

result in decreasing the average membership, 

therefore, the proper and optimal results in 

accordance with the reality were achieved by four 

clusters. Subsequently, Table 3 shows the 

membership probabilities of each element in 

FKM clusters and highlighted the oriented 

elements with high membership probability in 

related clusters. The table confirmed that the 

discriminations that could be seen in 

classification correspond well to field 

geochemical behaviors. 

Table 3. Membership probabilities of assigned 

elements in related clusters 

Membership probabilities 

Variabl

es 
Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Au 0.015 0.002 0.002 0.981 

Pb 1.000 0.000 0.000 0.000 

Ag 0.997 0.000 0.002 0.001 

Sn 1.000 0.000 0.000 0.000 

Hg 0.000 0.000 0.000 1.000 

As 0.000 0.000 0.000 1.000 

Sb 0.000 0.000 0.000 1.000 

Bi 1.000 0.000 0.000 0.000 

W 1.000 0.000 0.000 0.000 

Mo 0.997 0.001 0.001 0.001 

Ba 0.000 0.000 1.000 0.000 

Cu 0.002 0.003 0.993 0.002 

Be 1.000 0.000 0.000 0.000 

Ce 0.000 1.000 0.000 0.000 

Co 0.000 0.000 1.000 0.000 

Cr 0.003 0.983 0.013 0.001 

 

Comparing the results of two above mentioned 

clustering methods reveals the appropriate 

compliance of them in geochemical pattern 

recognition but the higher capability of the SOM 

method in single-element halos enhancement 

while the FKMC shows a behavior similar to 

composite halos and provides higher accuracy in 

recognizing the patterns originates from various 

geological processes.  Therefore, the results of 

both methods are complementary and are of 

considerable importance in mapping the 

mineralization potential of the area and constrain 

the uncertainty in detecting appropriate 

exploration patterns. 

Ultimately, it was attempted to validate the results 

of above mentioned methods in the area with the 

outcome of alterations obtained from remote 

sensing (Fig.11). 

Well correlation of the ore-related elements 

patterns resulted from the methods with the major 

alteration zones containing Fe-bearing and clay 

minerals in the area shows that most of the major 

anomalies trend correspond to iron minerals in the 

northwest-southwest direction.  

 

4-Conclusions 
In this paper characterizing the distribution 

pattern of elements for a large volume of 

geochemical data have undertaken by SOM and 

FKMC methods. Due to the advantages of the 

SOM method as mentioned, it was applied to 

preserve the nature of the data and recognizing the 

geochemical distribution patterns with high 

certainty. The summary of elements distribution 

pattern and tables derived from the SOM method 

shows that clusters 1, 2, and 6 of this method are 

important from mineralization trend point of view 

in the area. Cluster 1 is important in terms of Cu 

and associated elements Ba, Co anomalies which 

affected by hydrothermal solutions. The results 

suggests a lack of  high erosion and indicates the 

potential for major elements anomalies in depth. 

The focus of these elements is mainly in the 

northern part of the area. The concentration of Au 

in the area is low and the dispersion is highlighted 

in the second cluster. Au anomalies are weak but 

patterned and dispersed in both major rocks 

(intrusive and volcanic) from northwest to 

southwest. 

In order to assess the results of the SOM-based 

clustering, comparison was made with the results 

of the fuzzy k-means clustering (FKMC) that 

revealed well correlation among the results of the 

methods and favorability of the area for Cu-Au 

mineralization. On the other hands, FKMC not 

only confirmed the SOM performance in single-

element distribution pattern recognition, but also, 

highlighted multiple behaviors of patterns and 

thereby, it enhanced the geochemical composite 

halos by considering the inter-relationship of 
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elements and their different membership 

probabilities in the area. 

Finally, this study suggests the higher capability 

of the SOM and FKMC methods in identifying 

elements associations and its competence for 

optimal discriminating of Paragenetic sequence. 

The resulted clean ore-related clusters enable the 

exploratory planning for various purposes and 

reduce uncertainty, leading prospecting programs 

to more reliable promising areas with higher 

accuracy and precision. 

 
Fig.11. Shows the assigning of elements to specific 

clusters discriminated by two methods and their 

compliance with the alteration of the area resulted 

from remote sensing 
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Fig.4. Flowchart illustrating the proposed fuzzy k-means algorithm applied in the area. 

Table 2. Displays some of the important sets of clusters in FKMC 

 

Pre-process on data

(censored and outlier data 

analysis)

start

Stop

Calculate the memberships 

and centroids

Find the necessary cluster 

and recognition the elements 

patterns

Algorithm converged?

choose the number of clusters, FKMC 

components, distance calculation 

Corresponding to geological and 

geochemical behavior

  Cluster Size 

Within-

class 

Minimum 

distance to 

centroid 

Maximum 

distance to 

centroid 

Average 

distance to 

centroid The  elements in each cluster 

 Cluster 1 7 2.224 0.458 0.693 0.556 Be W Pb Sn Bi Mo Ag 

 Cluster 2 2 0.222 0.333 0.000 0.333 Ce Cr      

 Cluster 3 3 0.723 0.420 0.482 0.488 Co Cu Ba     

 Cluster 4 4 1.508 0.544 0.559 0.610 Hg As Sb Au     
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Fig.7. Geochemical distribution pattern of elements in the first cluster resulting from the SOM method 
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Fig.8. Geochemical distribution pattern of the elements justified in the sixth cluster resulting from the SOM method 

 


