
Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.31, December 2019

51

Design of MobileNet algorithm to optimize image classification in
Convolutional Neural Network (CNN) and implementation on FPGA

Akbar Payandan, S. Hossein Hosseini Nejad
Faculty of Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran,

Email: payandan7393@gmail.com, S.hosseininejad@gmail.com

Abstract

Deep learning has developed rapidly in recent years and has been applied in many areas that are major
areas of artificial intelligence. The combination of deep learning and embedded systems has created
good dimensions in the technical field. In this paper, a deep learning neural network algorithm can be
designed that can be implemented on FPGA hardware. The PyTorch and CUDA were used as assistant
methods. Convolution neural network (CNN) was also used for image classification. Three good CNN
models such as ResNet, ResNeXt and MobileNet were reviewed in this article. Using these models in the
design, an algorithm was eventually designed with the MobileNet model. Models were selected from
different aspects such as floating operation point (FLOP), number of parameters and classification
accuracy. In fact, the MobileNet-based algorithm was selected with a top-1 error of 5.5% in software
with a 6-class data set. In addition, hardware simulation in MobileNet-based algorithms was presented.
The parameters were converted from floating numbers to 8-bit integers. The output numbers of each
layer were cut into integer fixed bits to fit the hardware constraint. A method based on working with
numbers was designed to simulate number changes in hardware. The results of simulation show that,
the top-1 error increased to 12.3%, which is acceptable.

Keywords: Artificial Intelligence, Deep Learning, Image Classification, Convolution Neural
Network, Deep Learning Algorithm.

1- Introduction

Deep learning has always been used in
areas such as image classification and voice
recognition with raw data. Compared to
desktops, embedded systems (such as
FPGA) have lower power consumption,
smaller size, and lower unit cost [1]. The
FPGAs are used in several fields such as
robots and smartphones [2].
The FPGA board is using the Xilinx Zynq
UltraScale + MPSoC ZCU104 evaluation
kit with 38 MB of memory [3]. This
memory is small enough to run a CNN
model. Parameters and most workloads are
stored in memory. It therefore needs to
design a CNN model small enough to
overcome the limitations of hardware
memory. In this paper, by combining CNN

and FPGA, an embedded CNN system with
image recognition capability was produced.
It is assumed that it detects the information
on the image in a reasonable period of time
[4].
Previous studies [5] on the use of
specialized devices such as FPGAs and
GPUs in heterogeneous computations to
accelerate deep learning computations with
energy efficiency constraints to evaluate
efficient DNN performance show that using
FPGA for fully connected layer and GPU
for floating point operation can be faster
calculation and much lower power
consumption.
Also, studies on the study of FPGA-based
accelerators from deep learning networks
for learning and classification, recent

mailto:payandan7393@gmail.com
mailto:S.hosseininejad@gmail.com

A.Payandan, S. H. Hosseini Nejad : Design of MobileNet algorithm to optimize image classification…

52

techniques to accelerate deep learning
networks in FPGA reflect recent trends in
FPGA-based accelerators of deep learning
networks [6].
The purpose of this paper is image
recognition and for this purpose, image
classification was performed in the
embedded system. The camera was used to
capture the image and the captured images
were transferred to the FPGA board. FPGA
board is a hardware platform that is the
main part of the system. The CPU on the
FPGA board prepares images with the
given size and type of data and then sends
the data to the programmable logic in which
CNN implements and executes. CNN then
on the board, the FPGA output contains
several digits that indicate the previously
distributed image classification. The result
of the diagnosis is displayed on the screen.
As mentioned earlier in this paper, a
combination of CNN and FPGA produced
an embedded CNN system with image
recognition capabilities. Therefore, provide
a CNN model with an accuracy greater than
90% (top-1 error less than 10%) based on
the target data set; evaluation based on top-
1 error, spatial resource cost, and model
complexity; comparing different models
with the proposed model and select the
appropriate model for hardware
implementation; designing a method to
convert the parameters of the selected
model to format (mobile numeric
numbers); providing a solution for
simulating hardware performance based on
specific features of the FPGA board and
achieving simulation accuracy of more than
85% are important objectives of this paper.

2- Methodology

Quantitative and qualitative methods were
used in this article. Also, in this article, the

deductive method was used. The models
used in this article are: ResNet, ResNeXt,
MobileNet and ShuffNet. Software
performance and cost are shown. The
networks designed in this article are not the
main networks in the articles. The most
important features of these networks were
studied and the basic structure was
maintained. Most importantly, by reducing
the number of layers or channels, space
costs can be reduced to an acceptable level.

3- Data set and analysis method

In this article, the data set containing
fingerprints (representing numbers 0 to 5)
in the Kaggle database was used.
The simulation was performed in
MATLAB V.2015b and was performed on
a system with 7-core processor
specifications with 6 MB of cache and 3.6
MHz and 6 GB of memory in Windows 8.

4- Network training

Samples of datasets used in this paper are
shown in Figure (1). Some methods have
been used to complicate the data set, such
as adding noise and background. Images
include a gray scale channel measuring 128
x 128 x 128.

Fig (1): The main examples of data sets

taken from the kaggle database.
The rest of the data set are all similar
images with finger movements from

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.31, December 2019

53

number 0 to 5. To show more datasets, the
black background of the original dataset
must be changed. These is to add random
backgrounds to the pure black and white
part of the images, which diversifies the
data set and increases the complexity of the
classification.

Fig (2): samples of data sets after

processing.
After applying the background to the main
data set, the images of the data set appear as
Figure (2). According to this figure, the
images of the other hand are not in the
center and the same size. Images of hand
movements are rotated. They are enlarged
or reduced and then placed in different
corners of the image. The background is
real-world images to bring training and
testing data set closer to the real uses. After
using images, it is important to categorize
this data into a file, including their File
names and which class they belong to.

5- CNN models

5-1- ResNet model
To achieve residual deep learning, the open
source ResNet model is used in accordance
with [7] in this paper. This model defines
the Bottleneck and ResNet classes. The
bottleneck structure is made up of two point
rotations and one deep rotation in the
middle. After starting the convolution
layer, there are four layers. Each layer starts

with a max pool layer with stride 2 so that
each layer starts with an input size divided
by 2 in width and height. In this paper, each
layer contains two bottleneck structures. At
the end of each bottleneck structure, the
input futures map is added to the calculated
futures map. If the input and output channel
numbers do not match, there is an
additional layer of convolution that is also
trained to match the channels. Details and
FLOPs of the ResNet model are shown in
Table (1).

Table (1): ResNet structure and FLOPs.

 Ker
nel
size

Outp
ut
chan
nel

Outp
ut
size

Layer
name

padd
ing =
1

3×3 8 128×
128

Initial
convolutio
n

max pool 2×2, stride 2 Max
pool

La
ye

r 1
 Repe

at
once

1×1 4 64×6
4

Pointw
ise*

3×3 4 64×6
4

Depth
wise

1×1 16 64×6
4

Pointw
ise

max pool 2×2, stride 2 Max
pool

La
ye

r 2
 Repe

at
once

1×1 64 32×3
2

Pointw
ise

3×3 64 32×3
2

Depth
wise

1×1 256 32×3
2

Pointw
ise

max pool 2×2, stride 2 Max
pool

La
ye

r 3

Repe
at
once

1×1 64 16×1
6

Pointw
ise

3×3 64 16×1
6

Depth
wise

A.Payandan, S. H. Hosseini Nejad : Design of MobileNet algorithm to optimize image classification…

54

1×1 256 16×1
6

Pointw
ise

max pool 2×2, stride 2 Max
pool

La
ye

r 4
 Repe

at
once

1×1 4 8×8 Pointw
ise

3×3 4 8×8 Depth
wise

1×1 16 8×8 Pointw
ise

16-output fc1، 8-output fc2
and 6-output fc3

Full
connected
layer

1.93×108 FLOPs
*padding = 1
In this model, the test result of the 1800
image dataset is shown in Table (2).
According to this table, ResNet
performance is not good at this size and
data set.

Table (2): ResNet verification result.
5 4 3 2 1 0 Class
97 89 94 90 93 94 Accuracy

(%)
7.2 Top-1

error (%)

5-2- ResNeXt model
The ResNeXt model is similar to ResNet.
ResNet uses fully deep grouped
convolution, and different channels do not
communicate during deep convolution
operations.
As shown in Table (3), the total number of
layers (counting the deep layer as a
reference) is 8, which is ResNet. The initial
convolution is the max pool and fully
connected layers of ResNet.

Table (3): ResNeXt structure and
FLOPs.

 Ker
nel
size

Outp
ut
chan
nel

Outpu
t size

Layer
name

paddi
ng =
1

3×3 8 128×
128

Initial
convolut
ion

max pool 2×2, stride 2 Max
pool 1

Repe
at
once

1×1 64 64×6
4

Pointwis
e*

3×3 64 64×6
4

Depthwi
se**

1×1 32 64×6
4

Pointwis
e

max pool 2×2, stride 2 Max
pool 2

Repe
at 4
times

1×1 128 32×3
2

Pointwis
e

3×3 128 32×3
2

Depthwi
se

1×1 64 32×3
2

Pointwis
e

max pool 2×2, stride 2 Max
pool 3

Repe
at
once

1×1 32 16×1
6

Pointwis
e

3×3 32 16×1
6

Depthwi
se

1×1 16 16×1
6

Pointwis
e

max pool 2×2, stride 2 Max
pool 4

6-output fc3، 8-output fc2
and 16-output fc1

Full
connecte
d layer

2.52×108 FLOPs
*padding = 0
 **group = 8, padding = 0

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.31, December 2019

55

The training and validation process uses the
same dataset. The validation result is shown
in Table (4). The method of calculating
FLOPs is presented in accordance with [8].

Table (4): ResNeXt verification result.

5 4 3 2 1 0 Class
98 95 93 89 92 95 Accuracy

(%)
6.3 Top-1

error (%)

5-3- MobileNet model
The structure of the MobileNet model is
shown in Table (5) in this paper. In addition
to the initial convolution layer, there are
eight pairs of depth-points. The 2×2 max
pool functions with stride 2 are placed after
the second, fourth, fifth and eighth pairs.
After the initial convolution layer, a ReLU
layer is placed. In addition, each depthwise
or pointwise convolution layer is followed
by a batch-norm layer and a ReLU layer.
In this model, the test result on a data set of
1800 images is shown in Table (6).

Table (5): MobileNet structure and

FLOPs.
Paddin
g

Ker
nel
size

Outp
ut
chan
nel

Outpu
t size

Layer
name

1 3×3 8 128×
128

Initial
convolu
tion

1 3×3 8 128×
128

Depthw
ise 1

0 1×1 32 128×
128

Pointwi
se 1

1 3×3 32 128×
128

Depthw
ise 2

0 1×1 64 128×
128

Pointwi
se 2

max pool 2×2, stride 2 Max
pool 1

1 3×3 64 64×6
4

Depthw
ise 3

0 1×1 64 64×6
4

Pointwi
se 3

1 3×3 64 64×6
4

Depthw
ise 4

0 1×1 64 64×6
4

Pointwi
se 4

max pool 2×2, stride 2 Max
pool 2

1 3×3 64 32×3
2

Depthw
ise 5

0 1×1 64 32×3
2

Pointwi
se 5

max pool 2×2, stride 2 Max
pool 3

1 3×3 64 16×1
6

Depthw
ise 6

0 1×1 64 16×1
6

Pointwi
se 6

1 3×3 64 16×1
6

Depthw
ise 7

0 1×1 32 16×1
6

Pointwi
se 7

1 3×3 32 16×1
6

Depthw
ise 8

0 1×1 16 16×1
6

Pointwi
se 8

max pool 2×2, stride 2 Max
pool 4

6-output fc3، 8-output fc2 and
16-output fc1

Full
connect
ed layer

1.02×108 FLOPs

Table (6): MobileNet verification result.
5 4 3 2 1 0 Class
98 94 90 93 91 93 Accuracy

(%)
6.8 Top-1

error (%)

A.Payandan, S. H. Hosseini Nejad : Design of MobileNet algorithm to optimize image classification…

56

6- Comparison and model selection

As shown in Figure (3), the dissipation
curves of the three models are close to zero.
This means that training processes perform
almost at their best in these models.
Comparisons in FLOPs, parameter values,
and top-1 error are presented in Table (7).
The method of calculating FLOPs and the
number of parameters are presented in [8].

Fig (3): The loss curves of the three

models.
Table (7): Comparison between three

models.
MobileN
et

ResNe
Xt

ResN
et

1.02 2.52 1.93 FLOPs
(108%)

43820 213800 36007
0

#paramete
rs

6.8 6.3 7.2 Top-1
error (%)

According to Table (7), the choice is clear.
For FLOPs, ResNeXt is the worst case
scenario because in some layers of
convolution it uses the maximum number
of channels and gives more communication
to the channels than ResNet. ResNet has the

highest number of parameters, while
MobileNet has the lowest number of
parameters with 1.5. ResNet is the worst in
the top-1 error, however, the top-1 error is
acceptable.
These three models all use a large 8-layer
structure (a complete combination as a
large layer, like a depthwise-pointwise
layer combination in MobileNet).
However, in the large layers of each model,
MobileNet uses only two convulsions,
while ResNet and ResNeXt use another
layer of point-wise convulsions.
MobileNet stores resources in the hardware
with fewer layers of convolution. On the
other hand, ResNet and ResNeXt do not
have much advantage over MobileNet.
Therefore, the MobileNet model is selected
for the next steps.

7- Building Integr-Net model

Integer-Net is built on MobileNet and
maintains the same MobileNet structures as
number of layers, layer types and
parameters. The trend can be shown in
Figure (4). This figure shows a layer, also
called a module. The layer change is
detachable.

Fig (4): Copy process from MobileNet to

Integer-Net.
For each layer, the parameters are tensor
and all parameters are less than 1 in this
particular model. They change in the same
way. The change method is shown in Figure
(5), which places these parameters in the

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

15913172125293337414549535761656973778185899397101105109113117121125129

Lo
ss

Epoch

ResNet ResNeXt MobileNet

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.31, December 2019

57

range of -127 to +127 and prevents the
parameters from being overdone.
The classification of parameters is
presented in Table (8). For layers that have
only one type of parameter, such as
convolution layers, they only have a 3 × 3
kernel weight as the parameter. Other
layers, such as batch-norm layers and fully
connected layers, have two types of
parameters: weight and bias. The method of
dealing with these parameters is to change
these two types of parameters in the same
way (multiplied by 2 at a time).

Fig (5): The process of changing the
parameter from the floating point to

integers.
Table (8): MobileNet model parameter

categories and sizes.
Parameters Layer name
Width [1 × Out
Channel × 3 × 3]

Initial convolution

Width [1 × Out
Channel × 3 × 3]

Depthwise
convolution

Width [Out
Channel × In
Channel × 3 × 3]

Pointwise
convolution

Width [1]; Bias [1] Batch-norm
Width [out channel
× in channel]
Bias [Out Channel
× In Channel]

Full connected

No parameters ReLU
The reason that three convolution layers do
not have bias as a parameter is the bias =
False argument, which is set for
convolution layers during network training.

In Equation (1), all parameters change
according to Integer-Net requirements, so
the XBN changes, which is related to the
change in the output of the convolution
layers. However, the Xmiddle feature will not
change. The µ and σ are the mean and the
deviation from the XBN input, so we can
consider Xmiddle unchanged. Accordingly, γ
and α must be multiplied by the same rate
to ensure that the output relationship
remains unchanged.

(1) BN
BN

middle2

XY X−µ
= γ +α = γ +α

σ +∈

8- Accuracy modification of the output
futures map

Rounding the contents of the output futures
map to fixed bit numbers is essential. This
is done for two main reasons. The first
reason is that the hardware must have
numbers in the process with the same
format selected for the integer signed with
a fixed bit.
8-1- Test 1
The first method proposed is to multiply
and divide the complete futures map after
each layer by 2 continuously before the
maximum absolute tensor is greater than
127, which is clearer according to the
following codes.
while (torch . max(torch .abs(x)) > 127):
x = torch . round (x / 2)

This method ensures that each layer makes
full use of 8-bit space.
Table (9): Accuracy result with number

range [127-, 127].
5 4 3 2 1 0 Class
20 47 66 77 78 34 Accuracy

(%)
46.3 Top-1

error (%)

A.Payandan, S. H. Hosseini Nejad : Design of MobileNet algorithm to optimize image classification…

58

However, the result is not acceptable. When
each intermediate futures map is in the
range of -127 to +127, the accuracy is very
poor, as shown in Table (9). This top-1
error means using 8-bit integers because the
pixel size of the resulting content is bad.
The small size may swipe the small
numbers that are affected by the resulting
pixel map variation. So that for the
simulation function, a slightly larger integer
must be used. 9-bit integers are chosen to
improve this experiment. Hence the code
that controls the content range of the output
futures map changes as follows.
while (torch . max(torch .abs(x)) > 255):
x = torch . round (x / 2)

This code only changes the number 127 to
255, however, the accuracy result is quite
different. As shown in Table (10), the top-1
error is acceptable.

Table (10): The result of accuracy with

number range [255-, 255].
5 4 3 2 1 0 Class
87 87 81 88 88 92 Accuracy

(%)
12.8 Top-1

error (%)

8-2- Test 2
Test 2 is based on each futures map output
from each layer. By calculating and
estimating the size of the number of each
layer, the output number range of each layer
is estimated. The output range must be an
8-bit signed integer, and the bit-cutting
method of a result calculated in Table (11)
is presented. The first bit is the sign bit, so
the cutting method deals with 7 bits.

Table (11): Test bit control 2.
Keep bits [big bit,
small bit]

Layer name

[11,5] Depth-wise

[14,8] 64- channel Point-
wise

[13,7] 32- channel Point-
wise

[12,6] 16- channel Point-
wise

[11,5] Batch-norm
[22,16] FC 1 (1024×16)
[13,7] FC 2 (16×8)
[12,6] FC 3 (8×6)

Unfortunately, this method gives bad
results as shown in Table (12).

Table (12): Accuracy results in test 2.
5 4 3 2 1 0 Class
25 51 27 18 12 0 Accuracy

(%)
77.8 Top-1

error (%)

8-3- Test 3
This test is a combination of tests 1 and 2.
The first step is to repeat the process in test
1 with the range [255-, 255] to maintain
good performance. During this process, a
change is recorded in each layer.
The second step is to adjust the amplitude
for each layer, as in test 2. In the simulation
process, the output of each layer changes to
have numbers in the range [255, 255].
Different layers have different parameters
and bit handling is different in layers.
After the two steps mentioned above, each
layer produces a futures map with a 9-bit
signed integer. Smaller bits are swiped in
the torch.round () function. However, there
is still no talk of overflow. According to the
data set, the result will not go beyond the
range.
When numbers are fixed in bit size, we still
need to prevent overflow. The main idea of
preventing overflow is to prevent switching
between positive and negative numbers,
which can lead to major failure.

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.31, December 2019

59

Based on the numbers generated in the
second step, the system wants to perform
the remaining calculation on these numbers
to prevent overflow. The goal is to get the
domain [128-, 127]. We need tricks to
achieve this. The little trick is shown in the
code below. This trick handles positive and
negative numbers differently and simulates
the hardware performance of cutting bits
out of range.
relu_mod = torch .nn. modules .
activation . ReLU ()
x = relu_mod . forward (x)%128 - torch . ceil
(
(relu_mod . forward (0-x *2 -1))%256/2)

Accuracy is not greatly affected by the
number generated by the steps mentioned
above. As Table (13) shows, the top-1 error
is approximately similar to the result in test
1.

Table (13): Accuracy results in test 3.
5 4 3 2 1 0 Class
91 88 84 83 89 91 Accuracy

(%)
12.3 Top-1

error (%)

9- Conclusion

As shown in Table (7), ResNeXt is worst in
FLOPs, ResNet has the highest number of
parameters, and all three models have the
same top-1 errors. Using the quantitative
method, the MobileNet model is the best
choice.
Both quantitative and qualitative methods
have been used in hardware simulation. The
result of Experiment 1 with a top-1 error of
less than 15% is acceptable. However, due
to the quality standard, Test 1 goes beyond
the hardware capability. Therefore, test 1
cannot be the final decision.
Test 2 have more emphasis on hardware
capability as it uses a fixed cutting rule but
produces a bad result.

Test 3 combines the benefits of the previous
2 tests. The only quantitative standard is the
top-1 error after simulation. This test has a
top-1 error of 12.3%, which is less than
15%. Given the details mentioned, there are
no other complex calculations. This does
not add extra cost to the hardware. Hence
the simulation reaches its goal.
The evaluation results of CNN algorithms
based on the current CNN model (ResNet,
ResNeXt and MobileNet) showed that it
has a good accuracy of 93.7%. This article
compared different models by limiting
standards and selecting the MobileNet
model for hardware implementation.
Finally, this article successfully converts
the selected model into a suitable format for
hardware. In particular, the parameters are
changed to an 8-bit integer without
affecting the result.
This paper provides a solution for
simulating network performance on
hardware (especially FPGAs). The
simulation considers the numbers as 8-bit
integers and simulates the performance on
the hardware well, which helps to reflect
the performance on the hardware. The
simulation performance on the hardware
shows that it leads to an accuracy of 87.7%,
which is an acceptable accuracy.
This project can be improved in the future.
To test the performance of the model used
in this paper, different datasets can be
selected. Which can show whether this
model works on public data as well.
Also, more CNN models can be selected
and compared to the current model to
determine the most efficient model. For this
purpose, it is suggested to continue research
on several other efficient models, such as
ShuffleNet and BinaryNet.

A.Payandan, S. H. Hosseini Nejad : Design of MobileNet algorithm to optimize image classification…

60

Refrence
[1] "Andrew G. Howard et al. “MobileNets:

Efficient Convolutional Neural Networks for
Mobile Vision Applications”. In: CoRR
abs/1704.04861 (2017). arXiv: 1704.04861.
url: http://arxiv.org/abs/1704.04861.".

[2] "A. Shawahna, S. M. Sait and A. El-Maleh,
"FPGA-Based Accelerators of Deep Learning
Networks for Learning and Classification: A
Review," in IEEE Access, vol. 7, pp. 7823-
7859, 2019, doi:
10.1109/ACCESS.2018.2890150.".

[3] "Baris Kayalibay, Grady Jensen, and Patrick
van der Smagt. “CNN-based Segmentation of
Medical Imaging Data”. In: CoRR
abs/1701.03056 (2017). arXiv: 1701.03056.
url: http://arxiv.org/abs/1701.03056.".

[4] " Forrest, J. R. K. , Thorp, R. W. , Kremen, C. ,
& Williams, N. M. (2015). Contrasting patterns
in species and functional‐trait diversity of bees
in an agricultural landscape. Journal of Applied
Ecology, 52, 706–715. 10.1111/1365-
2664.12433".

[5] "Y. Tu, S. Sadiq, Y. Tao, M. Shyu and S. Chen,
"A Power Efficient Neural Network
Implementation on Heterogeneous FPGA and
GPU Devices," 2019 IEEE 20th International
Conference on Information Reuse and
Integration for Data Science (IRI), Los
Angeles, CA, US".

[6] "A. Shawahna, S. M. Sait and A. El-Maleh,
"FPGA-Based Accelerators of Deep Learning
Networks for Learning and Classification: A
Review," in IEEE Access, vol. 7, pp. 7823-
7859, 2019, doi:
10.1109/ACCESS.2018.2890150.".

[7] "fmassa. Datasets, Transforms and Models
specific to Computer Vision.
vision/torchvision/models/resnet.py.2O19.".

[8] "Flops counter for convolutional networks in
pytorch framework. URL:
https://github.com/sovrasov/flops-
counter.pytorch.".

	Abstract
	1- Introduction
	2- Methodology
	3- Data set and analysis method
	4- Network training
	Fig (1): The main examples of data sets taken from the kaggle database.
	Fig (2): samples of data sets after processing.

	5- CNN models
	5-1- ResNet model
	Table (1): ResNet structure and FLOPs.
	Table (2): ResNet verification result.

	5-2- ResNeXt model
	Table (3): ResNeXt structure and FLOPs.
	Table (4): ResNeXt verification result.

	5-3- MobileNet model
	Table (5): MobileNet structure and FLOPs.
	Table (6): MobileNet verification result.

	6- Comparison and model selection
	Fig (3): The loss curves of the three models.
	Table (7): Comparison between three models.

	7- Building Integr-Net model
	Fig (4): Copy process from MobileNet to Integer-Net.
	Fig (5): The process of changing the parameter from the floating point to integers.
	Table (8): MobileNet model parameter categories and sizes.

	8- Accuracy modification of the output futures map
	8-1- Test 1
	Table (9): Accuracy result with number range [127-, 127].
	Table (10): The result of accuracy with number range [255-, 255].

	8-2- Test 2
	Table (11): Test bit control 2.
	Table (12): Accuracy results in test 2.

	8-3- Test 3
	Table (13): Accuracy results in test 3.

	9- Conclusion

