
Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

20

Computer Arithmetic in modern computers and usages of
Computer Arithmetic

Pouya Shams Ahari
Department of Electrical Engineering. Ahar Branch, Islamic Azad University, Ahar, Iran

pouyashams1@yahoo.com

1. Introduction

As the ability to perform computation
increased from the early days of computers
and up to the present so was the knowledge
how to utilize the hardware and software to
perform computation. [2]Digital computer
arithmetic emerged from that period in two
ways: one as an aspect of logic design and
other as development of efficient algorithms
to utilize the available hardware.

Given that numbers in a digital computer are
represented as a string of zeroes and ones and
that hardware can perform only relatively
simple and primitive set of Boolean
operations, all of the arithmetic operations
performed are based on a hierarchy of
operations that are built upon the very simple
ones.

What distinguishes computer arithmetic is its
intrinsic relation to technology and the ways
things are designed and implemented in a
digital computer. This comes from the fact
that the value of a particular way to compute,
or a particular algorithm, is directly evaluated
from the actual speed with which this
computation is performed. [4] Therefore
there is a very direct and strong relationship
between the technology in which digital logic
is implemented to compute and the way the
computation is structured. This relationship is

one of the guiding principles in development
of the computer arithmetic.

2. Computer Arithmetic

Arithmetic is a branch of mathematics that
deals with numbers and numerical
computation. Arithmetic operations on pairs
of numbers x and y include :
addition, producing the sum s = x + y,
subtraction, yielding the difference d = x – y,
multiplication, resulting in the product p = x × y,
and division, generating the quotient q = x / y .
Subtraction and division can be viewed as
operations that undo the effects of addition
and multiplication, respectively.
Computer arithmetic is a branch of computer
engineering that deals with methods of
representing integers and real values (e.g.,
fixed- and floating-point numbers) in digital
systems and efficient algorithms for
manipulating such numbers by means of
hardware circuits or software routines. [1] On
the hardware side, various types of adders,
subtractors, multipliers, dividers, square-
rooters, and circuit techniques for function
evaluation are considered. Both abstract
structures and technology-specific designs
are dealt with. Software aspects of computer
arithmetic include complexity, error

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

21

characteristics, stability, and certifiability of
computational algorithms.
Of the various types of data that one normally
encounters, the ones we are concerned with in
the context of scientific computing are the
numerical types.
Computer hardware is organized to give only
a certain amount of space to represent each
number, in multiples of bytes , each
containing 8~ bits . Typical values are 4 bytes
for an integer, 4~or~8 bytes for a real number,
and 8~or~16 bytes for a complex number.
Since only a certain amount of memory is
available to store a number, it is clear that not
all numbers of a certain type can be stored.
For instance, for integers only a range is
stored. (Languages such as Python have
arbitrarily large integers , but this has no
hardware support.) In the case of real
numbers, even storing a range is not possible
since any interval [a,b] contains infinitely
many numbers. Therefore, any representation
of real numbers will cause gaps between the
numbers that are stored. Calculations in a
computer are sometimes described as finite
precision arithmetic . [1] Since many results
are not representable, any computation that
results in such a number will have to be dealt
with by issuing an error or by approximating
the result. In this chapter we will look at the
ramifications of such approximations of the
`true' outcome of numerical calculations.

3. History of Computer Arithmetic

Gottfried Leibniz

• Discovered the binary system in 1679

George Boole

• Wrote a paper about

Boolean algebra in 1854

• Boolean algebra would become important
later for the digital computer

Claude Shannon

• Created a Boolean algebra and binary
arithmetic circuit in 1937

• First practical application to digital circuit
design

George Stibitz

• Worked for Bell Labs

• Created a relay based computer called
“Model K” in 1937

(k stood for kitchen)

Numbers less than zero?

Several ways to represent negative numbers

•Sign-and-Magnitude

•One’s Complement

•Two’s Complement

•Excess-K

•Base -2

Numbers less than zero! [3]

• Sign-and-Magnitude was popular for a
while

o Intel 7090 Architecture (1959) used it

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

22

• 2’s complement won out in the end

o Easier to implement in hardware

o Unique representation of zero
Architectures using 2’s complement

• x86, MIPS, ARM...

Addition

Need for faster ways to add

• Ripple Carry (slow)

• Carry-Lookahead

oGerald Rosenberger (1957)

oExamples

Manchester Carry Chain

Brent-Kung Adder

Kogge-Stone Adder

Multiplication

•Until the 1970s, computers did not have
multiplication hardware

•Motorola 6809 was one of the first
processors to have a multiply instruction
(routine in microcode)

•As transistor count increased, it became
feasible to include enough adders to sum all
partial product simultaneously.

Division Algorithms[3]

• Two types

o Fast

o Slow

• Slow division

oRestoring division

oNon-restoring division

oSRT division

• Fast division

o Newton-Raphson division

o Goldschmidt division

We need more precision!

• Integers just aren’t good enough!

• Floating Vectors

oJanes H. Wilkinson (1951)

oScaled to biggest number

oProblem when dealing with a big range of
numbers

• Fixed point

• Floating Point

oPrevalent by 1957

oDecimal floating-point

oBinary floating-point

Floating Point

•By 1976, floating point functions were
everywhere, but very proprietary

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

23

•IEEE began trying to standardize floating
point in 1977

•Because there were business majors working
in IEEE, it wasn’t until 1985 that IEEE
Standard 754 was put forth.

4. usages of Computer Arithmetic

Data is manipulated by using the arithmetic
instructions in digital computers. Data is
manipulated to produce results necessary to
give solution for the computation problems.
The Addition, subtraction, multiplication and
division are the four basic arithmetic
operations. If we want then we can derive
other operations by using these four
operations.

To execute arithmetic operations there is a
separate section called arithmetic processing
unit in central processing unit. The arithmetic
instructions are performed generally on
binary or decimal data. Fixed-point numbers
are used to represent integers or fractions. [4]
We can have signed or unsigned negative
numbers. Fixed-point addition is the simplest
arithmetic operation.

If we want to solve a problem then we use a
sequence of well-defined steps. These steps
are collectively called algorithm. To solve
various problems we give algorithms.

In order to solve the computational problems,
arithmetic instructions are used in digital
computers that manipulate data. These
instructions perform arithmetic calculations.

And these instructions perform a great
activity in processing data in a digital

computer. As we already stated that with the
four basic arithmetic operations addition,
subtraction, multiplication and division, it is
possible to derive other arithmetic operations
and solve scientific problems by means of
numerical analysis methods.

A processor has an arithmetic processor(as a
sub part of it) that executes arithmetic
operations. The data type, assumed to reside
in processor, registers during the execution of
an arithmetic instruction. Negative numbers
may be in a signed magnitude or signed
complement representation. There are three
ways of representing negative fixed point -
binary numbers signed magnitude, signed
1’s complement or signed 2’s complement.
Most computers use the signed magnitude
representation for the mantissa .

Until now, we have worked with data as
either numbers or strings. Ultimately,
however, computers represent everything in
terms of binary digits, or bits. A decimal digit
can take on any of 10 values: zero through
nine. [3] A binary digit can take on any of two
values, zero or one. Using binary, computers
(and computer software) can represent and
manipulate numerical and character data. In
general, the more bits you can use to represent
a particular thing, the greater the range of
possible values it can take on.

Modern computers support at least two, and
often more, ways to do arithmetic. Each kind
of arithmetic uses a different representation
(organization of the bits) for the numbers.
The kinds of arithmetic that interest us are:

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

24

5. Decimal arithmetic

 This is the kind of arithmetic you learned
in elementary school, using paper and pencil
(and/or a calculator). In theory, numbers can
have an arbitrary number of digits on either
side (or both sides) of the decimal point, and
the results of a computation are always exact.

 Some modern systems can do decimal
arithmetic in hardware, but usually you need
a special software library to provide access to
these instructions. There are also libraries that
do decimal arithmetic entirely in software.

6. Integer arithmetic

 In school, integer values were referred to
as “whole” numbers—that is, numbers
without any fractional part, such as 1, 42, or -
17. The advantage to integer numbers is that
they represent values exactly. The
disadvantage is that their range is limited.

 In computers, integer values come in two
flavors: signed and unsigned. Signed values
may be negative or positive, whereas
unsigned values are always greater than or
equal to zero.

 In computer systems, integer arithmetic is
exact, but the possible range of values is
limited. [3] Integer arithmetic is generally
faster than floating-point arithmetic.

7. Floating-point arithmetic

 Floating-point numbers represent what
were called in school “real” numbers (i.e.,
those that have a fractional part, such as

3.1415927). The advantage to floating-point
numbers is that they can represent a much
larger range of values than can integers. The
disadvantage is that there are numbers that
they cannot represent exactly. [2]

 Modern systems support floating-point
arithmetic in hardware, with a limited range
of values. There are software libraries that
allow the use of arbitrary-precision floating-
point calculations.

POSIX (It is a set of standards defined for
naming and defining an application
programming icon in Unix-like environments
in IT triplets) uses double-precision floating-
point numbers, which can hold more digits
than single-precision floating-point numbers.

Computers work with integer and floating-
point values of different ranges. Integer
values are usually either 32 or 64 bits in size.
Single-precision floating-point values occupy
32 bits, whereas double-precision floating-
point values occupy 64 bits. (Quadruple-
precision floating point values also exist.
They occupy 128 bits.) Floating-point values
are always signed.

Conclusions

We may divide mathematics into three
categories—natural mathematics,
computational or, equivalently, computer
mathematics, and mathematics. Natural
mathematics is the mathematics used by
nature all the time throughout the universe.
This mathematics follows all the laws of
nature (known or unknown to us), knows no
error, represents all quantities exactly, almost
all of which can never be captured by any

Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No.32 ,March 2020

25

means by any human being/living being, and
uses infinite precision always for all
computations. Computer mathematics, on the
other hand, follows only known man-made
rules, knows only errors, represents almost all
quantities nonexactly, and uses finite
precision always for all computations.
[4]Mathematics used by a mathematician are
often expressed symbolically, tends/attempts
to capture some of the aspects of natural
mathematics, and uses the much fewer laws
of nature known to human beings. While it
can never capture error exactly, it
symbolically provides bounds for an error;
such bounds may or may not be useful in
practice.

The computer arithmetic—a vital feature of
computer mathematics—is essentially the
IEEE 754 floating-point arithmetic. It often
uses additional features, taking full advantage
of binary representation in the hardware
computer. The IEEE standard specifies three
formats—single (32 bits), double (64 bits),
and double-extended—of floating-point
numbers. Each format can represent +0, −0,
NaN (Not-a-Number), ±∞ (infinity), and its
own set of finite real numbers all of the
simple form 2k+1−Nn with two integers n
(signed significant) and k (unbiased signed
exponent) that run through two intervals
determined from the format. Each of zero and
infinity has two representations besides NaN
(produced when, for instance, division by
zero is encountered) in this representation.

Besides IEEE 754 which is a binary standard,
there is the IEEE 854 .That represents the
conventional number system used and
thoroughly understood by humans all over the

globe and is specially suitable for calculators.
Unlike IEEE 754, it does not specify how
floating-point numbers are encoded into bits.
The 854 standard specifies constraints on
allowable values of the finite precision p for
the single precision as well as for the double
precision but it does not need a particular
value for p.

The role of universal (absolute/unique) zero
and that of numerical nonabsolute
(nonunique) zero are well adapted in both
IEEE 754 and IEEE 854 standards in a
computer. This adaptation ensures a best
computational accuracy (least computational
error) for a specified precision. It can be seen
that zeros—both absolute and numerical—
play a vital role not only in improving
accuracy and detecting illegal arithmetic
operations (such as NaN’s) but also in taking
care of an overflow and/or an underflow
appropriately. Consequently the possibility of
undetected computational mistakes entering
into the sequence of computations resulting in
wrong/unacceptable outputs/results is
eliminated/minimized unlike many pre-IEEE
standards.

REFERENCES

[1] http://www.wmgallery.com/stibitz/
[2] http://www.loria.fr/zimmerma/mca
[3] http://www.kerryr.net/pioneers/leibniz.html
[4] http://en.wikipedia.org/wiki/Binary_number

#History

