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1. Introduction

As the ability to perform computation 
increased from the early days of computers 
and up to the present so was the knowledge 
how to utilize the hardware and software to 
perform computation. [2]Digital computer 
arithmetic emerged from that period in two 
ways: one as an aspect of logic design and 
other as development of efficient algorithms 
to utilize the available hardware. 

Given that numbers in a digital computer are 
represented as a string of zeroes and ones and 
that hardware can perform only relatively 
simple and primitive set of Boolean 
operations, all of the arithmetic operations 
performed are based on a hierarchy of 
operations that are built upon the very simple 
ones.  

What distinguishes computer arithmetic is its 
intrinsic relation to technology and the ways 
things are designed and implemented in a 
digital computer. This comes from the fact 
that the value of a particular way to compute, 
or a particular algorithm, is directly evaluated 
from the actual speed with which this 
computation is performed. [4] Therefore 
there is a very direct and strong relationship 
between the technology in which digital logic 
is implemented to compute and the way the 
computation is structured. This relationship is 

one of the guiding principles in development 
of the computer arithmetic.  

2. Computer Arithmetic

Arithmetic is a branch of mathematics that 
deals with numbers and numerical 
computation. Arithmetic operations on pairs 
of numbers x and y include : 
addition, producing the sum s = x + y,  
subtraction, yielding the difference d = x – y, 
multiplication, resulting in the product p = x × y,  
and division, generating the quotient q = x / y . 
Subtraction and division can be viewed as 
operations that undo the effects of addition 
and multiplication, respectively.  
Computer arithmetic is a branch of computer 
engineering that deals with methods of 
representing integers and real values (e.g., 
fixed- and floating-point numbers) in digital 
systems and efficient algorithms for 
manipulating such numbers by means of 
hardware circuits or software routines. [1] On 
the hardware side, various types of adders, 
subtractors, multipliers, dividers, square-
rooters, and circuit techniques for function 
evaluation are considered. Both abstract 
structures and technology-specific designs 
are dealt with. Software aspects of computer 
arithmetic include complexity, error 
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characteristics, stability, and certifiability of 
computational algorithms.  
Of the various types of data that one normally 
encounters, the ones we are concerned with in 
the context of scientific computing are the 
numerical types. 
Computer hardware is organized to give only 
a certain amount of space to represent each 
number, in multiples of bytes , each 
containing 8~ bits . Typical values are 4 bytes 
for an integer, 4~or~8 bytes for a real number, 
and 8~or~16 bytes for a complex number. 
Since only a certain amount of memory is 
available to store a number, it is clear that not 
all numbers of a certain type can be stored. 
For instance, for integers only a range is 
stored. (Languages such as Python have 
arbitrarily large integers , but this has no 
hardware support.) In the case of real 
numbers, even storing a range is not possible 
since any interval [a,b] contains infinitely 
many numbers. Therefore, any representation 
of real numbers will cause gaps between the 
numbers that are stored. Calculations in a 
computer are sometimes described as finite 
precision arithmetic . [1] Since many results 
are not representable, any computation that 
results in such a number will have to be dealt 
with by issuing an error or by approximating 
the result. In this chapter we will look at the 
ramifications of such approximations of the 
`true' outcome of numerical calculations. 
 

3. History of Computer Arithmetic 

Gottfried Leibniz 

• Discovered the binary system in 1679 

George Boole 

• Wrote a paper about  

Boolean algebra in 1854 

• Boolean algebra would become important 
later for the digital computer 

Claude Shannon 

• Created a Boolean algebra and binary 
arithmetic circuit in 1937 

• First practical application to digital circuit 
design 

George Stibitz 

• Worked for Bell Labs 

• Created a relay based computer called 
“Model K” in 1937 

(k stood for kitchen) 

Numbers less than zero? 

Several ways to represent negative numbers 

•Sign-and-Magnitude 

•One’s Complement 

•Two’s Complement 

•Excess-K 

•Base -2  

Numbers less than zero! [3] 

• Sign-and-Magnitude was popular for a 
while 

o Intel 7090 Architecture (1959) used it 
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• 2’s complement won out in the end 

o Easier to implement in hardware 

o Unique representation of zero 
Architectures using 2’s complement 

• x86, MIPS, ARM... 

Addition 

Need for faster ways to add 

• Ripple Carry (slow) 

• Carry-Lookahead 

oGerald Rosenberger (1957) 

oExamples 

Manchester Carry Chain 

Brent-Kung Adder 

Kogge-Stone Adder 

Multiplication 

•Until the 1970s, computers did not have 
multiplication hardware 

•Motorola 6809 was one of the first 
processors to have a multiply instruction 
(routine in microcode) 

•As transistor count increased, it became 
feasible to include enough adders to sum all 
partial product simultaneously. 

Division Algorithms[3] 

• Two types 

o Fast 

o Slow 

• Slow division 

oRestoring division 

oNon-restoring division 

oSRT division 

• Fast division 

o Newton-Raphson division 

o Goldschmidt division 

 

We need more precision! 

• Integers just aren’t good enough! 

• Floating Vectors 

oJanes H. Wilkinson (1951) 

oScaled to biggest number 

oProblem when dealing with a big range of 
numbers 

• Fixed point 

• Floating Point 

oPrevalent by 1957 

oDecimal floating-point 

oBinary floating-point 

Floating Point 

•By 1976, floating point functions were 
everywhere, but very proprietary 
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•IEEE began trying to standardize floating 
point in 1977 

•Because there were business majors working 
in IEEE, it wasn’t until 1985 that IEEE 
Standard 754 was put forth. 

4. usages of Computer Arithmetic 

Data is manipulated by using the arithmetic 
instructions in digital computers. Data is 
manipulated to produce results necessary to 
give solution for the computation problems. 
The Addition, subtraction, multiplication and 
division are the four basic arithmetic 
operations. If we want then we can derive 
other operations by using these four 
operations.  

To execute arithmetic operations there is a 
separate section called arithmetic processing 
unit in central processing unit. The arithmetic 
instructions are performed generally on 
binary or decimal data. Fixed-point numbers 
are used to represent integers or fractions. [4] 
We can have signed or unsigned negative 
numbers. Fixed-point addition is the simplest 
arithmetic operation.  

If we want to solve a problem then we use a 
sequence of well-defined steps. These steps 
are collectively called algorithm. To solve 
various problems we give algorithms.  

In order to solve the computational problems, 
arithmetic instructions are used in digital 
computers that manipulate data. These 
instructions perform arithmetic calculations.  

And these instructions perform a great 
activity in processing data in a digital 

computer. As we already stated that with the 
four basic arithmetic operations addition, 
subtraction, multiplication and division, it is 
possible to derive other arithmetic operations 
and solve scientific problems by means of 
numerical analysis methods.  

A processor has an arithmetic processor(as a 
sub part of it) that executes arithmetic 
operations. The data type, assumed to reside 
in processor, registers during the execution of 
an arithmetic instruction. Negative numbers 
may be in a signed magnitude or signed 
complement representation. There are three 
ways of representing negative fixed point - 
binary  numbers  signed  magnitude,  signed  
1’s  complement  or  signed  2’s  complement. 
Most computers use the signed magnitude 
representation for the mantissa . 

Until now, we have worked with data as 
either numbers or strings. Ultimately, 
however, computers represent everything in 
terms of binary digits, or bits. A decimal digit 
can take on any of 10 values: zero through 
nine. [3] A binary digit can take on any of two 
values, zero or one. Using binary, computers 
(and computer software) can represent and 
manipulate numerical and character data. In 
general, the more bits you can use to represent 
a particular thing, the greater the range of 
possible values it can take on. 

Modern computers support at least two, and 
often more, ways to do arithmetic. Each kind 
of arithmetic uses a different representation 
(organization of the bits) for the numbers. 
The kinds of arithmetic that interest us are: 
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5. Decimal arithmetic 

    This is the kind of arithmetic you learned 
in elementary school, using paper and pencil 
(and/or a calculator). In theory, numbers can 
have an arbitrary number of digits on either 
side (or both sides) of the decimal point, and 
the results of a computation are always exact. 

    Some modern systems can do decimal 
arithmetic in hardware, but usually you need 
a special software library to provide access to 
these instructions. There are also libraries that 
do decimal arithmetic entirely in software. 

6. Integer arithmetic 

    In school, integer values were referred to 
as “whole” numbers—that is, numbers 
without any fractional part, such as 1, 42, or -
17. The advantage to integer numbers is that 
they represent values exactly. The 
disadvantage is that their range is limited.  

    In computers, integer values come in two 
flavors: signed and unsigned. Signed values 
may be negative or positive, whereas 
unsigned values are always greater than or 
equal to zero. 

    In computer systems, integer arithmetic is 
exact, but the possible range of values is 
limited. [3] Integer arithmetic is generally 
faster than floating-point arithmetic. 

 

7. Floating-point arithmetic 

    Floating-point numbers represent what 
were called in school “real” numbers (i.e., 
those that have a fractional part, such as 

3.1415927). The advantage to floating-point 
numbers is that they can represent a much 
larger range of values than can integers. The 
disadvantage is that there are numbers that 
they cannot represent exactly. [2] 

    Modern systems support floating-point 
arithmetic in hardware, with a limited range 
of values. There are software libraries that 
allow the use of arbitrary-precision floating-
point calculations. 

POSIX (It is a set of standards defined for 
naming and defining an application 
programming icon in Unix-like environments 
in IT triplets) uses double-precision floating-
point numbers, which can hold more digits 
than single-precision floating-point numbers.  

Computers work with integer and floating-
point values of different ranges. Integer 
values are usually either 32 or 64 bits in size. 
Single-precision floating-point values occupy 
32 bits, whereas double-precision floating-
point values occupy 64 bits. (Quadruple-
precision floating point values also exist. 
They occupy 128 bits.) Floating-point values 
are always signed. 

Conclusions 

We may divide mathematics into three 
categories—natural mathematics, 
computational or, equivalently, computer 
mathematics, and mathematics. Natural 
mathematics is the mathematics used by 
nature all the time throughout the universe. 
This mathematics follows all the laws of 
nature (known or unknown to us), knows no 
error, represents all quantities exactly, almost 
all of which can never be captured by any 
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means by any human being/living being, and 
uses infinite precision always for all 
computations. Computer mathematics, on the 
other hand, follows only known man-made 
rules, knows only errors, represents almost all 
quantities nonexactly, and uses finite 
precision always for all computations. 
[4]Mathematics used by a mathematician are 
often expressed symbolically, tends/attempts 
to capture some of the aspects of natural 
mathematics, and uses the much fewer laws 
of nature known to human beings. While it 
can never capture error exactly, it 
symbolically provides bounds for an error; 
such bounds may or may not be useful in 
practice. 

The computer arithmetic—a vital feature of 
computer mathematics—is essentially the 
IEEE 754 floating-point arithmetic. It often 
uses additional features, taking full advantage 
of binary representation in the hardware 
computer. The IEEE standard specifies three 
formats—single (32 bits), double (64 bits), 
and double-extended—of floating-point 
numbers. Each format can represent +0, −0, 
NaN (Not-a-Number), ±∞ (infinity), and its 
own set of finite real numbers all of the 
simple form 2k+1−Nn with two integers n 
(signed significant) and k (unbiased signed 
exponent) that run through two intervals 
determined from the format. Each of zero and 
infinity has two representations besides NaN 
(produced when, for instance, division by 
zero is encountered) in this representation. 

Besides IEEE 754 which is a binary standard, 
there is the IEEE 854 .That represents the 
conventional number system used and 
thoroughly understood by humans all over the 

globe and is specially suitable for calculators. 
Unlike IEEE 754, it does not specify how 
floating-point numbers are encoded into bits. 
The 854 standard specifies constraints on 
allowable values of the finite precision p for 
the single precision as well as for the double 
precision but it does not need a particular 
value for p. 

The role of universal (absolute/unique) zero 
and that of numerical nonabsolute 
(nonunique) zero are well adapted in both 
IEEE 754 and IEEE 854 standards in a 
computer. This adaptation ensures a best 
computational accuracy (least computational 
error) for a specified precision. It can be seen 
that zeros—both absolute and numerical—
play a vital role not only in improving 
accuracy and detecting illegal arithmetic 
operations (such as NaN’s) but also in taking 
care of an overflow and/or an underflow 
appropriately. Consequently the possibility of 
undetected computational mistakes entering 
into the sequence of computations resulting in 
wrong/unacceptable outputs/results is 
eliminated/minimized unlike many pre-IEEE 
standards. 
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