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Abstract 
This paper presents a multi-objective daily voltage and reactive (Volt/VAr) control in radial 

distribution systems including distributed generation (DG) units. The main purpose is to 
determine optimum dispatch schedules for on-load tap changer (OLTC) settings at 
substations, substation switched capacitors and feeder-switched capacitors based on the day-
ahead load forecast. The objectives are selected to minimize the voltage deviation on the 
secondary bus of the main transformer, total electrical energy losses, the reactive power flow 
through the OLTC and voltage fluctuations in distribution systems, for the next day.  Since the 
objectives are not the same, a fuzzy system is used to calculate the best solution. In order to 
simplify the control actions for OLTC at substations, a time-interval based control strategy is 
used for decomposition a daily load forecast into several sequential load levels. A binary ant 
colony optimization (BACO) method is used to solve the daily voltage and reactive control 
which is a non-linear mixed-integer problem. To illustrate the effectiveness of the proposed 
method, the Volt/VAr control is performed in IEEE 33-bus and 69-bus distribution systems 
and its performance is compared with genetic algorithm and hybrid binary genetic algorithm 
and particle swarm optimization algorithms. Simulation results show the BACO algorithm 
has better outperforms than other algorithms.  

Keywords: Distributed generators, Binary ant colony optimization, Fuzzy system, Multi-
objective, Reactive power and voltage control 

1.  Introduction 

Volt/VAr control in conventional 
distribution systems is normally achieved 
through incorporating an on-load tap 
changer (OLTC) and switched shunt 
capacitors. The OLTC keeps the voltage 
constant at the secondary side of the 
transformer, which will be called the 
substation secondary bus voltage, by 
adjusting the tap position. The switched 
shunt capacitor is used to compensate the 
reactive power demand and thereby 
decreases the voltage drop [1]. Reactive 
power and voltage are efficiently controlled 
to improve voltage quality and decrease 
power generation cost.  

 Nowadays, research in the Volt/VAr 
control for distribution systems can be 
divided into two categories: offline setting 
control and real-time control. Research in 
offline setting control [2-4] aims to find 
dispatch schedules for switching capacitors 
and OLTC setting at substations for the day 
ahead according to optimization calculations 
based on load forecasts for the day ahead, 
while research for real time control aims to 
control the aforementioned devices based on 
real-time measurements and experiences. 
The second category of control requires a 
higher level of distribution system 
automation and more hardware and software 
support [5].  
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Recently, multi-objective optimization 
approaches for reactive power control have 
become more attractive [6–14]. But, the 
attention has been focused on power losses 
and voltage deviation. Up to now, various 
mathematical optimization algorithms, such 
as gradient-based algorithms, linear 
programming, non-linear programming and 
interior point methods, have been widely 
used to solve this problem [15-17]. 
However, the Volt/VAr control is an 
optimization problem of non-continuous and 
non-linear function. These conventional 
techniques need many mathematical 
assumptions, such as differential properties 
of the objective functions and unique 
minimum existing in problem domains, and 
often trap in local optimal solutions. In 
recent years, evolutionary algorithms [6-12], 
such as genetic algorithm, particle swarm 
optimization and evolutionary strategy, have 
been applied to Volt/VAr control problem. 
Theoretically, these techniques converge to 
the global optimum solution with 
probability one. They are useful especially 
when other optimization methods fail in 
finding the optimal solution.  

In [10] proposed a method to optimize 
reactive power flow (ORPF) with regard to 
multiple objectives while maintaining 
system voltage security across a time-
domain. R.h Liang et al. presented a fuzzy 
optimization approach for solving the 
Volt/VAr control problems in a distribution 
system with uncertainties. Wind turbines are 
being considered in the study distribution 
system in [11]. In this paper, the Volt/VAr 
control is formulated as a multi-objective 
optimization problem. The objectives 
consist of the voltage deviation on the 
secondary bus of the main transformer, 
Total electrical energy losses, Reactive 

power flow through the OLTC and voltage 
fluctuation in distribution systems. In this 
paper a method based on fuzzy optimization 
strategy and Binary ACO (BACO) 
algorithm is employed that uses a special 
encoding method to avoid such problems. 
The DG considered in this paper is of a 
synchronous machine-based DG, which is 
normally used for combined heat and power 
(CHP) applications, one of the most 
significant DG applications in MV 
distribution systems [1]. 

2. Problem Formulation 
With the development of a distribution 

management system, loads along each 
feeder bus and substation secondary bus can 
be obtained for the upcoming day by 
employing short-term load forecasting 
techniques [4]. Generally, in a distribution 
system, a main transformer is installed with 
a load tap changer (LTC) which can adjust 
its voltage ratio with respect to the present 
or expected load, to compensate the voltage 
drop over the transformer and upstream 
lines [5]. Voltage at the primary bus of a 
substation changes slightly over a day and is 
therefore assumed to have a constant value 
in this paper. Shunt capacitors that are 
installed on the secondary bus (Substation 
capacitors) are intended to compensate the 
reactive power flow through the substation 
transformer. In addition, the feeder 
capacitors that are installed on each feeder 
will maintain the voltage on the feeder, as a 
supplement to the voltage regulation by the 
OLTC, and will compensate reactive power 
on the feeder.  

The objective of the Volt/VAr control 
considering DG is to determine a proper 
dispatching schedule of OLTC tap position 
and shunt capacitors status for the day 
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ahead. Meanwhile, the voltage deviation on 
the secondary bus of the main transformer, 
Total electrical energy losses, the Reactive 
power flow through the OLTC and voltage 
fluctuations in distribution systems can be 
minimize. To do this, the study period is 
divided into 24 time intervals and the 
Volt/VAr control problem in a distribution 
system considering DG can be formulated as 
follows:. 

2.1 Objective functions 

In this paper, The objective function of 
Volt/VAr control consist of the voltage 
deviation on the secondary bus of the main 
transformer, real power loss on feeders, the 
Reactive power flow through the OLTC and 
voltage fluctuations in distribution systems: 

2.1.1  Total electrical energy losses 

The first objective is to minimize total 
active power losses for the day ahead. The 
losses considered here are the losses in the 
distribution system plus the transformer 
losses. The load profile is developed with a 
1h interval between two subsequent stages: 

 

(1) 

Where PLoss,i is total system losses 
during i-th interval, N is the number of 
stages in a day, which is 24 for a 1h interval 
between i and i+1. 

2.1.2 Voltage deviation on the secondary bus 

During the dispatching period, the voltage 
deviation on the secondary bus of main 
transformer should be improved and can be 
expressed as. 

 

 

(2) 

Where ΔV2,i = V2,i  -1 is  voltage deviation 
on the secondary bus of main transformer at 
time i and V2,i is voltage at bus-2 at time i 

2.1.3 Voltage violation 

Treating bus voltage limits as constraints often 
make all the voltages move toward their 
maximum limits after optimization. One of the 
effective ways to avoid this situation is to 
choose the voltage violation as an objective 
function, that is: 

 
(3) 

 
Where f3 is average of steady-state voltage 
fluctuation, Vh,i is voltage at bus-h at time i and 
NL is total number of the system load buses. 

2.1.4  Reactive power flow through the OLTC 

To arrest the reactive power flow through the 
OLTC can improve the voltage profile and 
reduce power loss. The mathematical expression 
can be written as 

 (4) 

Where QOLTC,t is the reactive power flow 
through the OLTC at time i. 

2.2  Constraints      

The objective function is subject to standard 
power balancing equality constraints as well as 
the following additional inequality constraints: 

Bus voltage magnitude: 

 (5) 

 

 (6) 

Daily number of OLTC operations limits: 

 
(7) 

Daily number of switching operations for 
shunt capacitors limits: 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 7, No.30 ,September 2019 
  

19 
 

 
(8) 

Where STX,i is apparent power flow on 
substation transformer at time, STX,rat is the 
substation transformer rating, The symbol ⨂ 
will represent the logical Exclusive-OR 
operator, Vmin is the minimum allowed voltage, 
Vmax is the maximum allowed voltage, TAPmax is 
the maximum switching operation for OLTC 
and CMk is the maximum switching operation 
for capacitor k. 

3. Fuzzy Optimization Strategy 

In this section, a fuzzy optimization 
approach for the multi-objective daily 
Volt/VAr control problem is proposed. The 
method proposed here, optimizes the 
performance with respect to four important 
Objective functions described above, at the 
same time minimum degree of satisfaction 
among the Objective functions must be 
maintained. Therefore, the problem stated in 
section (2) is transformed into a single-
objective model based on fuzzy membership 
functions. A fuzzy set is a set without crisp 
boundary [18] i.e., transition from “belong 
to a set” to “not belong to a set” is gradual. 
This smooth transition from “belong to” to 
“not belong to” is characterized by a 
membership function (MF). MF gives 
desired flexibility to a fuzzy set. There are 
several classes of parameterized 
membership functions, such as Triangular 
membership function, Trapezoidal membership 
function, Gaussian membership function, 
Generalized bell membership function, etc 
[19]. The choice of membership function 
and its parameters depends on the desired 
input/output mapping. In this work, 
Trapezoidal membership function is used 
for fuzzification of the objectives. 

 In the fuzzy optimization, the i-th 
objective function is modeled by a linear 
membership function (shown in Fig. (1)) as 
follows:    

 
(9) 

Where fimax and fimin are the maximum and minimum 
possible values in the feasible interval for the 
function fi(X), respectively. In the proposed 
algorithm, fimax is the initial value of objective 
function and fimin is the optimal value when an 
optimization problem with fi(X) as the single-
objective function is solved. High objective is given a 
low value, whereas low objective is assigned a high 
value. For fuzzy multiple objectives, the fuzzy 
solution can be calculated as: 

 
(10) 

 
The maximum value of µD(X) is considered as the 

optimal solution. 

fi,min
fi,max

µ(fi)

 
Fig.1. Membership function of the i-th objective 

function 
 
 
 

4. Ant Colony Optimization 
 
4.1 Binary Ant Colony Optimization 

 
A continuous optimization problem can be 

described as 
    (11) 

 
 
The feasible regions of all variables in x 
should be represented by binary strings in 
order to construct search space before binary 
ACO (BACO) begins. Every variable xi in 
candidate solution {x1,x2, …,xn) is expressed 
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by an N-bits long binary string { bN , bN-

1,…,b1},  where bj {0,1}, j= 1,2,…,N and N 
is the string length. The best solution can be 
considered as a problem of searching the 
best path in a directed graph, as shown in 
Fig.2. The nodes of the graph consist of 0 
and 1 which are the state candidates of every 
bit. The graph arcs connect possible state 
transition routes between two adjoining bits.  
In each iteration, every ant travels all N 
nodes of n variables to construct a solution 
candidate. Its trace generates n binary 
strings, and the kth binary string can be 
decoded and mapped into Xk by converting 
it to a decimal number. Then a solution 
candidate x = (xl,…,xk,… ,xn) is constructed.  
Let  represent the pheromone on the arc 
from the state a to b at the jth bit of the 
variable xk, with a,b {0,1}. As shown in 
Fig. 2, there are two arcs leading to next 
vertex for every bit. An ant selects its route 
according to the pheromone distribution on 
both arcs. It moves towards next node 
according to the probability distribution 
given by (12), 

 
(12) 

 
After time period’s n, ant completes one 

circle, and information on every routine will 
adjust as follows: 

 (13) 
 
Where, ρ represents the durability of the 

track (0 ≤ ρ≤1),  is the incremental 
pheromone, which can be computed by [22]: 

 
(14) 

 
Where sib is iteration-best and f(sib) is the 

solution cost of sib.  
Such a strategy may lead to a stagnation 

situation in which all the ants follow the 

same tour, because of the excessive growth 
of pheromone trails on arcs of a good, 
although suboptimal, tour. To counteract 
this effect, a modification applied in this 
paper is introduced by MMAS1 that it limits 
the possible range of pheromone trail values 
to the interval [τmin , τmax] [24]. In MMAS, 
lower and upper limits τmin and τmax on the 
possible pheromone values on any arc are 
imposed in order to avoid search stagnation. 
The upper and lower pheromone trail limit 
on any arc is bounded by [24]:  

 

 

(15) 

 
Where  is the global-best solution. 

The steps of BACO algorithm are as 
follows: 
Step 1: Initialize parameters. 

For the BACO proposed in this paper, the 
parameters choosing is researched 
meanwhile, so as to get the best effect. It is 
very important to select the parameter of 
BACO and different parameters will have 
the different result. At the start of the 
algorithm, the initial pheromone trails τ0 are 
set to an estimate of the upper pheromone 
trail limit.  
Step 2: Encoding Design 

Binary encoding is adopted. The 
dimension of the optimization function 
decides the number of the routines that ants 
traverse in every circle. The first routine that 
an ant has traversed is the first variable of 
the corresponding function, and so is the 
second routine, by analogy. 
Step 3: Compute transition probability of 
each ant and select next route 
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The node is selected by ant k according to 
each element’s transition probability is 
defined as in equation (12). 
Step 4: Fitness evaluation 

 In this step, after all ants have completed 
their tours, the control variable x is 
computed and the Fitness evaluation is 
performed. 
Step 5: Apply updating rule 

The pheromone amount is calculated as in 
equation (13). 
Step 6: Pheromone trail limits 

Lower and upper limits τmin and τmax on the 
possible pheromone values on any arc are 
imposed in order to avoid search stagnation 
where is described in equation (15). 
Step 7: End condition 

 The algorithms stop the iteration when a 
maximum number of iterations have been 
performed; otherwise, repeat step 3. The 
best path selected between all iterations 
engages the optimal scheduling solution. 

The Flow chart of the proposed ant colony 
algorithm is shown in Fig 2. 
 

 
4.2 Encoding 
4.2.1 Shunt capacitors 

 
    Feeder capacitors and substation 

capacitors are allowed at most to switch 3 
and 4 in a day, respectively. If for any 
capacitor, 24-bit  is consider, which each bit 
represents  capacitors on/off status in the 
hour, then the total number of bits of the 
problem is very much and therefore the time 
to achieve optimal solution increases. So in 
this paper, for capacitors just the time of 
capacitor switches is considered. Since each 
day is 24 hours for each switch operation 
five bits is considered. So the number of bits 
intended for encoding the feeder capacitors 

and substation capacitors are equal to 15 and 
20, respectively, which this value is not 
greater than 24. If this number is multiplied 
by the total number of capacitors the 
genome length will be significant and 
therefore the search space to achieve 
optimal solution will decrease.  

4.1.1 OLTC 
 

It is difficult to specify the controlling 
parameters when applying automated 
techniques to control OLTC at a substation 
level. It should also be noted that, because 
of the probabilistic nature of load 
forecasting, it could be construed as 
inaccurate to determine a dispatch schedule 
of OLTC settings based only on load 
forecasting [1, 2]. However, to achieve the 
24-h optimization of multi-objective 
reactive power and voltage control requires 
excessive calculation. Thus, to speed up the 
calculation process and to simplify the 
control actions, it is necessary to divide the 
load curve into several intervals. In each 
interval control actions are performed only 
once. So in this study the method described 
in [4] is applied. 
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Fig.2. Flowchart of the BACO 

 
To meet this goal, Firstly, the number of 

load levels in a day (M), is assumed as a 
known parameter based on the load forecast 
and control engineer experience. After that, 
the BACO algorithm is employed to 
determine the start and end times of each 
load level. The fitness function is [4]: 

 (16) 
 
Where: 

Pij : active power of the jth load point of the 
ith load level 
Qij : reactive power of the jth load point of 
the ith load level 
AVPi : average active power of the ith load 
level 
AVQi : average reactive power of the ith 
load level 

The operational characteristic is that the 
tap position can be different at different load 
levels and remains constant during each load 
level.  

5. The Proposed Agorithm for Volt/VAr 
Control 

The multi-objective Volt/Var control 
problem can be converted into a single-
objective optimization by the fuzzy 
optimization method. A single-objective 
optimization problem will easily be handled 
by the BACO approachA schematic 
flowchart of the computational procedure is 
shown in Fig. 3 and is described as follows: 

Step 1:  The input data including network 
configuration, line impedance and status of 
DGs, loads, transformers and shunt 
capacitors, forecasted loads, a specified 
number of load levels (M), etc. have to be 
read. 

Step 2: Determine the start and end times 
of each load level based on section 4-3 

Step 3: In order to determine fuzzy 
objective function for each individual, at 
first, the distribution load flow is run based 
on the state variables. Based on the results 
of distribution load flow, the objective 
function values (f1(x), f2(x), f3(x) and f4(x)) 
are calculated and the constraints are 
checked. Then, the membership function 
values are calculated by using the values of 
objective functions. The minimum value of 
these is considered as the objective function. 

Step 4: Apply BACO 
Step 5: Check the stop criterion, usually a 

sufficiently good fitness value or a 
maximum number of iteration. 
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6. Simulation Results 

 
START

Load level detection

Initial distribution load flow

Calculate membership 
function values  for fuzzy 

model 

Output result

Input data  BACO

Determine the optimal 
dispatch schedule for OLTC 

and capacitors

End  
Fig.3. Flowchart of the Volt/VAr control 

algorithm 
In this part, the multi-objective Volt/VAr 

control in distribution networks considering 
DG is tested on an IEEE 33-bus distribution 
system. A single diagram of this network is 
shown in Fig. 4. The detailed specification 
of this network is presented in [25]. The 
total real power and reactive power loads on 
this system are 3.72 MW and 2.3 MVAr. 
The initial real and reactive power losses in 
the system are 0.211 MW and 0.143 MVAr. 
Tables. 1 and 2 show specifications of 
capacitors and DGs used in the network. 
The impedance of the transformer between 
nodes 0 and 1 is (0.012+j0.12) per unit. The 
OLTC has 17 tap positions ([-8, -9, . . . , 0, 
1, 2, . . . , -8]). It can change the voltage 

from -5% to +5%. The upper and lower 
limits of voltage for each bus are 1.05 per 
unit and 0.95 per unit, respectively. Voltage 
at the primary bus of a substation is 1.0 per 
unit. Loads are constant power loads with a 
daily profile according to Fig. 5. 

For the case of M=8, the resulted load 
profile are shown in Fig. 6, where the dash 
dot lines indicate the boundaries between 
load levels.  

 

S

1substation 2 1514131211109876543 1716 18

22212019

252423
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Fig. 4. A single line diagram of IEEE 33-

bus distribution system 
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Fig. 5. Daily load profile 

 

 
Fig. 6. Eight-load level partition results 
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Table. 1. Characteristic of capacitors of 33-bus 
distribution system 

Capacito

r 
C1 C2 C3 C4 C5 C6 C7 C8 

Capacity 

(KVAr) 

15

0 

15

0 

15

0 

15

0 

15

0 

15

0 

15

0 

15

0 

Location 1 12 16 28 29 30 31 32 

Table.2. Characteristic of Distributed Generations 
of 33-bus distribution system 

 
Capacity 

(kw) 
Location 

Power factor 

Case 3 

Power factor 

Case 4 

G1 400 10 0.97 lag 
0.97 lag to 0.97 

lead 

G2 400 16 0.97 lag 
0.97 lag to 0.97 

lead 

G3 400 32 0.97 lag 
0.97 lag to 0.97 

lead 

The DG considered in this paper is of a 
synchronous machine-based DG. The 
Volt/VAr control presented in this paper 
will be tested on four different cases, i.e., 
without DG in the system (which will be 
called as case 1), with DG operating at a 
unity power factor (case 2), at a constant 
reactive power output (case 3), and at a 
constant voltage with reactive power limits 
(case 4).  

DG impacts on Volt/VAr control can be 
investigated from the Total energy losses, 
reactive power flow through the OLTC, 
voltage deviation on the secondary bus of 
the main transformer and voltage 
fluctuations shown in Table. 3. The 
simulation results show that the DGs 
improve performance of the system. If the 
DG generates constant reactive power, the 
reactive power flow through the OLTC is 
minimized. The energy losses shown in 

Table.3 indicate that the DG operating at 
unity pf will give lower losses than DG 
which generates constant reactive power. 
The daily voltage fluctuation shown in 
table.3 indicates that the presence of the DG 
decreases the bus voltage fluctuation, where 
the most significant reduction will be 
obtained in case 4.  

Table. 4 shows daily optimal dispatch 
schedule of capacitors and OLTC in case 3 
based on the load levels shown in Fig. 6 The 
number of switching operations for OLTC 
in the whole day is 4. C1 switch one time in 
a day. Feeder capacitors switch 11 times for 
the whole day. The voltage at bus-18 is the 
lowest in the test system. Table.5 shows the 
daily variation of active power losses, 
reactive power flow through the OLTC, 
voltage deviation on the secondary bus of 
the main transformer and voltage 
fluctuations for the best solutions in two 
cases1 and 3. Voltage profile at bus-18, 
before control and after using proposed 
algorithm in all cases is shown in Fig. 7 the 
figure indicates that in all cases, the voltages 
always stay within the allowed range given 
by (5), and the voltage profile at bus-18 is 
greatly improved in the presence of the DG 
units. Fig. 8 shows voltage deviation for all 
cases using BACO. A daily real power loss 
comparison between four cases is shown in 
Fig. 9 

 
Fig.7. Voltage profile for bus-18 for different 

cases in 33-bus IEEE distribution system 
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Fig. 8.Voltage deviation for four cases in 33-bus 
IEEE distribution system 

 

 

Fig. 9.Comparison of daily real power losses in 33-
bus distribution system in four cases 

 
Table 3. The best results for different cases using 

BACO in 33-bus distribution system 

Case 4 Case 3 Case 2 Case 1  

0.4381 0.4318 0.4302 1.3764 (MWh) 1f 

0.1140 0.0815 0.1490 0.5631 (pu)2 f 

0.1426 0.1556 0.1544 0.2785 (pu)3 f 

9.1570 7.2393 9.1008 9.9837 (MVAr)4 f 

 

 

Table 4. Daily optimal dispatch schedule of capacitors and 
OLTC in case 3 

8C 7C 6C 5C 4C 3C 2C 1C TAP Hour 

0 1 0 1 0 0 0 1 +1 1 

0 1 0 1 0 0 0 1 0 2 

0 1 0 1 0 0 0 1 0 3 

1 0 0 1 0 0 0 1 0 4 

1 0 0 1 0 0 0 1 0 5 

1 0 0 1 0 0 0 1 0 6 

1 0 0 1 0 0 0 1 0 7 

1 0 1 1 0 0 0 1 0 8 

1 1 1 1 0 0 1 1 0 9 

1 1 1 1 0 0 1 1 0 10 

1 1 1 1 0 0 1 1 0 11 

1 1 1 1 1 0 1 1 0 12 

1 1 1 1 1 0 1 1 0 13 

1 1 1 1 1 0 1 1 0 14 

1 1 1 1 1 0 1 1 0 15 

1 1 1 1 1 0 1 1 0 16 

1 1 1 1 1 0 1 1 0 17 

1 1 1 1 1 0 1 1 0 18 

1 1 1 1 1 0 1 1 +2 19 

1 1 1 1 1 1 1 1 +2 20 

1 1 1 1 1 1 1 1 +2 21 

1 1 1 1 1 1 1 1 +2 22 

1 1 1 1 1 1 1 1 +2 23 

1 1 1 0 1 1 1 1 +2 24 

 

With the same control variable limits, 
initial conditions and other system data, the 
best, average, and worst results of 100 trials 
and their average computation time for total 
voltage deviation on the secondary bus, 
Total energy losses, the reactive power flow 
through the OLTC and voltage fluctuations 
in distribution systems obtained by using the 
three procedures: genetic algorithm, 
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HBGAPSO2 [26] and BACO in case 3 are 
given in Table. 6. It is obvious that the 
average values of four objective functions 
considered in this paper, from the BACO are 
lower than those from the HBGAPSO and 
GA. For example, the Total energy losses 
with using GA, HBGAPSO and BACO 
algorithms are 436.5, 434.3 and 432.6 KWh, 
respectively. It is clear that Total energy 
losses are greatly reduced by using the 
BACO algorithm.  

 In addition, this result shows that the 
proposed method has the ability to find a 
good solution. The difference of Total 
energy losses, total reactive power flow 
through the OLTC, total voltage deviation 
on the secondary bus and voltage 
fluctuations in the system between the best 
and worst results is only 1.9 KW, 19 KVAr, 
0.0003 and 0.0005 P.U, respectively. In 
other words, the differences are just only 
0.44%, 0.27%, 0.37% and 0.32%, 
respectively. It is obvious that the proposed 
algorithm outperforms the other methods 

Fig. 10 shows the convergence 
characteristics of GA, HBGAPSO and BACO 
for the best solution in case 3. For the sake 
of conciseness, Fig. 10 shows only the 
convergence characteristics of Total energy 
losses objective function. It can be seen that 
the value of the Total energy losses using 
GA, HBGAPSO and BACO algorithms are 
converges to the global minimum point after 
about 90, 80 and 65 iterations, respectively.  

The proposed method is coded in 
MATLAB R2008a and implemented on a 
personal computer P4-2.4 GHz. According 
to Table. 6, the average computing time for 
the GA, HBGAPSO and BACO algorithms is 
19.6, 16.2 and 14.8 min, respectively. It can 

                                                 
 

be seen that the BACO algorithms has a 
minimum execution time between three 
methods. 
7.1. IEEE 69-bus distribution system 
In order to evaluate the applicability of the 
proposed method to larger scale systems, it 
has been applied to IEEE 69- bus 
distribution system. The study 69-bus test 
distribution system shown in Fig. 11. The 
detailed specification of this network is 
presented in [27], where, the specifications 
of capacitors and DGs used in 69-bus 
distribution system are shown in Table. 7 
and Table. 8, respectively. The impedance 
of the transformer between nodes 0 and 1 is 
(0.012+j0.12) per unit. The other conditions 
of this system are considered  
like the 33-bus distribution system. The 
daily profile of the system is according to 
Fig. 5. In the case of M=8, the resulted load 
profile are shown in Fig. 6. Similar to 33-
bus system, the Volt/VAr control will be 
tested on four different cases.  
Among four cases the best simulation results 
obtained by BACO which are presented in 
Table 9. It can be seen from Table. 9 that the 
presence of DG, will give minimum results 
when compared with the results obtained in 
the case without DG. The most significant 
reduction of energy losses will be obtained 
when the DG generates constant reactive 
power. The system voltage profile at Bus 
65, for initial state and after optimization in 
four cases is shown in Fig. 12. It can be 
concluded that the voltage profiles are 
greatly improved after optimization and the 
system performance can be improved under 
the proper control.  
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Table.5. Daily variations of four objective functions for the best solutions in two cases 1 and 3. 

our 
Case 1 Case 3 

f1 (KW) f2 (pu) f3 (pu) f4 (Mvar) f1 (KW) f2 (pu) f3 (pu) f4 (Mvar) 

1 40.7785 0.0103 0.0182 0.5638 11.9058 0.0056 0.0050 0.5223 
2 27.0271 0.0091 0.0059 0.1558 10.9303 0.0004 0.0060 0.2690 
3 22.3695 0.0065 0.0061 0.0297 11.8642 0.0002 0.0080 0.1523 
4 15.7891 0.0042 0.0061 0.0061 14.7433 0.0000 0.0111 0.0100 
5 15.1649 0.0037 0.0062 0.0187 15.2846 0.0000 0.0115 0.0330 
6 12.4508 0.0053 0.0062 0.0448 15.8604 0.0001 0.0120 0.0561 
7 18.4051 0.0063 0.0062 0.0466 12.9269 0.0001 0.0093 0.0825 
8 34.7366 0.0077 0.0124 0.0102 10.3742 0.0004 0.0051 0.2571 
9 40.9442 0.0100 0.0123 0.1185 12.1986 0.0002 0.0059 0.0675 

10 47.6769 0.0101 0.0186 0.2313 12.4514 0.0004 0.0050 0.1888 
11 50.8456 0.0110 0.0185 0.2833 12.8195 0.0004 0.0050 0.2375 
12 56.9449 0.0111 0.0249 0.3705 14.5392 0.0004 0.0047 0.1835 
13 60.5788 0.0118 0.0248 0.4229 15.1632 0.0004 0.0048 0.2328 
14 62.4636 0.0121 0.0248 0.4492 15.5342 0.0005 0.0049 0.2576 
15 64.3941 0.0125 0.0248 0.4755 15.9448 0.0005 0.0050 0.2823 
16 58.7392 0.0114 0.0249 0.3967 14.8316 0.0004 0.0048 0.2081 
17 66.3703 0.0129 0.0247 0.5018 16.3952 0.0005 0.0051 0.3071 
18 73.6055 0.0135 0.0312 0.5897 18.5978 0.0007 0.0065 0.4066 
19 104.5914 0.0173 0.0443 0.9262 30.4745 0.0115 0.0046 0.7307 
20 118.6708 0.0186 0.0441 1.0613 36.3828 0.0116 0.0051 0.7028 
21 112.8945 0.0181 0.0442 1.0072 33.9616 0.0116 0.0051 0.6514 
22 107.3112 0.0175 0.0443 0.9532 31.7098 0.0117 0.0051 0.6001 
23 101.9191 0.0171 0.0443 0.8993 29.6257 0.0118 0.0052 0.5490 
24 61.6980 0.0204 0.0450 0.4215 17.2427 0.0122 0.0105 0.2512 

 

 

Table 7. Characteristic of capacitors in 69-bus distribution system 

Capacitor number C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Capacity (KVAr) 150 150 150 150 150 150 150 150 150 150 

Location 1 1 20 43 59 60 62 63 64 65 

 
Table 8. Characteristic of Distributed Generations of 69-bus distribution system 

 Capacity(kw) Location 
Power factor 

Case 3 

Power factor 

Case 4 

G1 400 19 0.97 lag 0.97 lag to 0.97 lead 

G2 400 61 0.97 lag 0.97 lag to 0.97 lead 

G3 400 62 0.97 lag 0.97 lag to 0.97 lead 

 
Table 9. The best results for different cases using BACO in 69-bus distribution system 

Case 4 Case 3 Case 2 Case 1  

0.3086 0.2823 0.3135 1.4611 h)(MW 1f 

0.0949 0.0369 0.0419 0.3618 (pu)2 f 

0.1342 0.0959 0.1022 0.2907 (pu)3 f 

8.8254 6.5514 10.2517 10.2773 (MVAr)4 f 



R.Azimi: An efficient algorithm for Volt/VAr control in distribution systems... 

28 
 

 
Table 10. Statistical results of 100 simulation tests form different optimization procedures: GA, HBGAPSO and 

BACO for 69-bus distribution system 

Method BACO HBGAPSO GA 

Best 

(KWh) 1f 282.3 284.7 285.9 

(pu)2 f 0.0369 0.0370 0.371 

(pu)3 f 0.0959 0.0962 0.0966 

(KVAr)4 f 6551.4 6564.4 6572.8 

Average 

(KWh) 1f 283.6 286.4 287.9 

(pu)2 f 0.0370 0.0373 0.0373 

(pu)3 f 0.0961 0.0965 0.0969 

(KVAr)4 f 6568.3 6586.3 6592.3 

 

Worst 

(KWh) 1f 285.1 288.2 290.4 

(pu)2 f 0.0372 0.0375 0.0377 

(pu)3 f 0.0963 0.0968 0.0973 

(KVAr)4 f 6587.2 6603.4 6627.3 

 
 

Table 6. Statistical results of 100 simulation tests form 

different optimization procedures: GA, HBGAPSO and 

BACO for 33-bus distribution system 

Method BACO HBGAPSO GA 

Best 

(KWh) 1f 431.8 432.5 434.3 

(pu)2 f 0.0815 0.0818 0.0818 

(pu)3 f 0.1556 0.1558 0.1560 

(Kvar)4 f 7239.5 7252.4 7264.6 

Average 

(MWh) 1f 432.6 434.3 436.5 

(pu)2 f 0.0816 0.0820 0.0821 

(pu)3 f 0.1558 0.1561 0.1563 

(Mvar)4 f 7252.2 7267.1 7284.3 

Worst 

(MWh) 1f 433.7 436.5 438.1 

(pu)2 f 0.0818 0.0822 0.0824 

(pu)3 f 0.1561 0.1564 0.1568 

(Mvar)4 f 7258.7 7294.2 7312.4 

Calculation 

time (min) 
 14.8 16.2 19.6 

Fig. 13 shows voltage deviation for four 
cases using BACO. It can be seen that the 
average voltage deviations are reduced 
evidently when DG exist in the system. A 
daily real power loss comparison between 
four cases is shown in Fig. 14. Table 10 
provides the simulation results obtained by 
GA, HBGAPSO and BACO algorithms for 100 
random trials. Comparisons of the best, 
average, and worst results of the BACO 
algorithm with the corresponding results 
obtained using the other methods confirm 
the effectiveness of the proposed method 

 
Fig.10.Convergence characteristics of the GA, 
HBGAPSO and BACO for the best solutions in case 3 
 
 
 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 7, No.30 ,September 2019 
  

29 
 

S
substation

1 20191817161554 141312111098763 262524232221

424140393837 43

59585756555453 656463626160

3534333231302928

36 4544 46

2 27

6968

6766

525150494847
 

 
Fig. 11. A single line diagram of 69-bus IEEE 

distribution system 
 

 
Fig. 12. Voltage profile for bus 65 in 69-bus distribution 

system for different cases 
 

 
Fig. 13. Voltage deviation for four cases in 69-

bus distribution system 
 

 
Fig. 15. Comparison of daily real power losses 

in 69-bus distribution system in four cases 
 
 
 

Conclusion 

A new multi-objective daily Volt/VAr 
control approach for distribution systems 
including DG is proposed in this paper. The 
main purpose was to determine optimum 
dispatch schedules for OLTC settings, 
substation switched capacitors and feeder-
switched capacitor based on the day-ahead 
load forecast. The voltage deviation on the 
secondary bus of the main transformer, 
Total energy losses, the reactive power flow 
through the OLTC and voltage fluctuations 
in distribution systems have been considered 
as objectives. The multi-objective problem 
has then been solved by fuzzy optimization 
strategy and BACO algorithm. To illustrate 
the efficiency of the proposed method, a 33-
bus and 69-bus distribution power systems 
were performed. Simulation results revealed 
that the proposed method is very effective in 
reaching a proper dispatching schedule and 
the bus voltage magnitude with the desired 
limits. The simulation results of BACO 
algorithm in compare of GA and HBGAPSO 
algorithms indicate that the BACO leads to 
very accurate results and converges very 
rapidly. 
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