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Abstract 

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. 
Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such 
lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several 
methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines is 
obtained. According to the advanced mathematical theories about compressed sensing, images entailing 
sparse representation within a certain area can be restored through a random subsampling of K-space 
data. MRI images are often sparse in an appropriate conversion range, where imaging speed can be 
significantly improved through the compressed sensing theory. The complete random subsampling of K-
space creates an extremely high degree of incoherent artifacts for simplifying the mathematical 
calculations. Random sampling of K-space points is generally impractical in all dimensions, because the 
K-space paths will be smooth only when hardware and physiological considerations have been met. Our 
goal is to design practical decoherence subsampling models simulating the interference properties of the 
pure random subsampling until it is possible to quickly gather information. This paper introduces 3 
subsampling techniques for K-space data, providing the best efficiency in the production of sparse 
incoherent artifacts based on the compressed sensing theory. All the proposed methods were simulated on 
real-life data compared against the MRI results. 

Keywords: compressed sampling, X-and Y-axis, contrast, stochastic processes, K-space, sparse 
representation  
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1. Introduction 

Magnetic Resonance Imaging (MRI) in a 
noninvasive imaging technique capable of 
delivering images with various contrast 
levels from soft tissues and excellent 
visualization of anatomical structures and 
physiological functions. However, this 
imaging method is excessively time-
consuming, and a lengthy scan may lead to a 
severe decline in image quality due to 

voluntary and involuntary movements of the 
patient and other artifacts. The scan time can 
no longer be reduced due to technological 
limitations and physiological. The only 
strategy is to increase the imaging speed is 
lower data acquisition. In fact, a desirable 
quality of images can be obtained when the 
number of data acquired is minimized. 
Therefore, several imaging techniques have 
been proposed on how to correctly sample 
and reconstruct an image through lower 
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number of data, such as parallel imaging and 
partial Fourier imaging. Parallel imaging 
involves multiple coils each with a particular 
sensitivity to certain parts of the image. The 
image is reconstructed using the receiver coil 
sensitivity models and acquired data. In this 
way, the imaging speed can be increased to 
about two times. One of the most important 
elements of parallel imaging is the receiver 
coil with suitable arrays selected based on 
their functionality. The coil arrays entail two 
to eight elements.  

The geometric arrangement to achieve the 
available signal-to-noise ratio (SNR) is 
extremely difficult. Moreover, it is crucial to 
maintain the coils distance sensitivity during 
imaging. Besides, it is critical to determine 
the specific sensitivity to ensure the image 
reconstruction in parallel imaging. And that 
is fulfilled by making additional reference 
measurements at the beginning of the 
experiment.  

A special reference can be applied 
periodically by capturing any image. Since 
the MRI images can entail sparse 
representation through a linear transform 
such as wavelet etc. the compressed sensing 
theory argues that the image can be desirable 
reconstructed by selecting a small number of 
k-space data [13,11]. This theory can be 
used to reduce the duration of MRI scan, 
which is important in medical imaging. 

Magnetic resonance imaging (MRI) 

Magnetic resonance imaging is a time-
consuming medical procedure. The MRI 
scanners require large amounts of 
measurements to construct an image, making 
the scan too lengthy. Magnetic resonance 

imaging does not expose the patients to 
ionizing radio waves, even though the longer 
scanning time is not desirable and imposes 
discomfort to many patients, especially 
children. The sampling speed is limited to 
physical (such as the gradient range) and 
physiological characteristics. Therefore, 
many researchers have attempted to curtail 
the amount of incoming data without 
compromising the image quality. Many of 
these efforts have taken inspiration from the 
idea that IMR data are iterative or can be 
converted repeatedly. Efforts to reduce data 
acquisition can be called compressed 
sampling [17]. 

Compressed Sensing (CS)  

Compressed sensing is a new method of 
sampling, allowing to sample below the 
Nyquist rate without reducing the 
reconstruction quality, providing minimum 
quality loss. This method involves the sparse 
feature of the signals in various fields. 
Reduced processing time, cost and hardware 
requirements are the characteristic features 
of this method. There are multiple potential 
applications for this theory in signal 
processing, including analog to digital 
conversion, radar, sensor networks and 
medical imaging.  Although compressed 
sampling is a new method, there have been 
various strategies proposed so far to 
reconstruct the original signal. Moreover, 
there have been numerous criteria for 
assessing algorithms in signal reconstruction 
such as speed convergence, reconstruction 
error, the number of samples required, 
computational complexity and so on. This 
algorithm requires to meet three conditions 
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including sparseness, decoherence and non-
linear reconstruction [9,3]. 

Compressed Sensing in MRI (CS-MRI) 

According to advanced mathematical 
theories in the CS, images with sparse 
representation can be retrieved by random 
sampling of k-space data. Random sampling 
can leave noisy effects. In a sparse space, the 
main factors stand against the interference of 
such effects. A non-linear thresholding can 
recover sparse coefficients and recovered the 
image. The incoherent sampling procedure 
has been analyzed and developed through 
the effects of their artifacts. Incompatibilities 
are introduced by the random variable 
density sampling of the coding phase. 
Reconstruction takes place by minimizing, 
transformed soft image [13]. 

 Sparseness refers to a sparse transform, i.e. 
the basic concept for random recovery for 
sparse representation in a specific area of 
mathematical transform. To begin with, if 
the transform area is the image itself, then 
sparseness refers to relative reduction of the 
original pixels with a non-zero value. 
Sparseness is a fundamental limit, 
generalized from the concept of limited 
object backup. It is understandable why the 
restriction on the image space facilitates a 
sparser sampling in K-space. Sparseness 
limitations are general because all non-zero 
coefficients are not collected within a range. 
Sparseness is more general transform 
because it only requires to be revealed in an 
area. Sparseness limitation enables sparser 
sampling in the K-space [4,5]. 

2. Background research 

2.1 Full acquisition of K-space data 

Coils choose a cutting and a displacement in 
production of a cutting axis and phase 
displacement produces a cutting along the 
other axis. This system can specify the status 
of coils around the direction of signal 
rotation (phase) by measuring the number of 
times the magnetic torque cuts the receiver 
coil (frequency). After collecting the data for 
each signal status, the information is stored 
as data points in the onboard computer 
system. These data points are stored within 
the K-space. K-space is where the 
information is stored concerning the signal 
frequency and location [11,15].  The K-
space lines are usually numbered from the 
lowest number close to the central axis 
stretching to the highest number on the outer 
edge. The gradient range of frequency is 
indicated by field of view (FOV), where the 
points are usually filled from left to right in 
sampling. The number of collected points 
will form the image frequency matrix. An 
image can be produced from spatial point 
through the Fourier transform, obtaining the 
final image. The K-space data are 
symmetric, i.e. data from the upper half are 
identical to those from the lower half [17]. 
The duration of filling K-space is specified 
by the scan duration, which depends on the 
iteration time, the matrix phase and the 
number of stimulations. If the entire K-space 
data are obtained, there will be an image 
with ideal contrast and resolution. If part of 
the K-space data are obtained, however, 
there will be a low-contrast or low-resolution 
image. Magnetic resonance imaging requires 
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longer scan duration to achieve the desired 
images, because obtaining good quality 
images to be applied in medical procedures 
need a greater number of data rows of K-
space, which is excessively time-consuming 
[11]. It can be argued that the main 
disadvantage of this imaging method is slow 
speed. And most recently, certain techniques 
have been adopted to solve this problem to 
some extent [13]. 

2-2 Partial Fourier  

This method was first proposed by MacFall 
JR et al. Since the magnetic resonance 
imaging data are collected in this area, the 
first and third spatial quarters can be 
obtained to achieve the rest of data through 
the data symmetry feature within the Fourier 
range [14]. The imaging can be accelerating 
by obtaining half of the K-space data and 
then reconstruct the other hand of data using 
the data symmetry in Fourier range, which is 
known as partial Fourier. In this technique, 
the greatest reduction factor is equal to 2, 
and no image can be reconstructed by less 
than half of the MRI image data. In addition, 
this method is not resistant to external noise 
and unwanted elements [12]. 

2.3 Data acquisition with multiple coils 

Known as parallel imaging, this technique 
was first proposed by Sodickson [16]. In this 
method, multiple coils are used to 
simultaneously obtain MRI data, thus 
enhancing the imaging speed in proportion 
to the number of coils involved. In addition, 
each of the coils has a sensitivity function 
applied to reconstruct the final image [11]. 
The main disadvantages of this method can 

be excessive hardware requirements and 
reduction factor limited to the number of 
coils. These techniques were integrated 
through a set of coils placed side by side and 
simultaneous acquisition of multiple datasets 
[6,10]. Accordingly, an array of receiver 
coils is used to further reduce the data 
collection time. This method generally 
differs from other conventional methods of 
accelerating imaging. The sensitivity of each 
coil is a function of spatial position. In 
parallel imaging, data of each section is 
collected through all receiver coils.  If the 
subset from K-space obtained by each coil is 
used alone to create the image, it will entail 
bad representation due to non-compliance 
with the Nyquist frequency requirement. 
This problem may be fixed in the image 
space or K-space. There are various 
algorithms adopted to reconstruct images in 
parallel imaging such as sensitivity coding 
(SENSE), parallel imaging spatial sensitivity 
(SMASH), (PILS) and (GRAPPA) [2,10]. 
Some of the final image reconstruction 
algorithms take place within the Fourier 
range and in others such as GRAPPA. One 
of the most important components of parallel 
imaging is the receiver coils with appropriate 
arrays, which are selected according to the 
application. Coils arrays include, for 
example, 2 to 8 elements [10]. 

2.4 Adaptive subsampling 

This technique involves adaptive algorithms 
such as singular value decomposition (SVD) 
and principal component analysis (PCA) for 
sparse representation of MRI images. These 
methods were described fully in references 
[8,18]. The main advantage of this method is 
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the reduction of the errors in the image 
reconstruction. Moreover, these adaptive 
algorithms can be adopted in most MRI 
applications such as encephalography, 
cardiography and angiography. The main 
disadvantage of these methods is the longer 
processing time. Given that very large 
volumes of data are involved in practical 
tasks, we need much faster algorithms [8]. 

3. Methodology 

This paper intended to propose several 
strategies to accelerate the acquisition of 
MRI images through the compressed sensing 
theory. For this purpose, there has been 
some research conducted so far to improve 
the three conditions required by the 
compressed sensing theory for 
reconstruction of MRI images. We used a 
MATLAB code [13] upon which the 
proposed algorithms were applied. In the 
same procedure, several subsampling models 
were considered for sampling of K-space 
data in the compressed sensing theory, 
where all these models met the decoherence 
conditions. Finding the best sampling is an 
essential step to be taken in the compressed 
sensing theory. When subsampling the K-
space, the image contrast or the K-space 
center and incoherent artifacts produced by 
random sampling should be considered. 

4. The proposed method 

Due to the rapid growth of compressed 
sensing theory and adoption of new 
algorithms to improve this theory, it was 
crucial to carry on the previous studies so as 
to implement and develop new algorithms. 
In this article, effort was made to review the 

relevant literature and select SparseMRI as 
the main reference [13]. Moreover, all the 
proposed methods served to improve this 
method or apply new algorithms based on it.  

4.1 K-space sampling models in 
compressed sensing 

Finding the best sampling is an essential step 
to be taken in the compressed sensing 
theory. When subsampling the K-space, the 
image contrast or the K-space center and 
incoherent artifacts produced by random 
sampling should be considered. This article 
introduced subsampling models for K-space 
data with the best efficiency in the 
production of sparse incoherent artifacts 
applied within the compressed sensing 
theory. Evidently, equidistant sampling 
would not satisfy the requirements in 
compressed subsampling. In subsampling, it 
is crucial to examine the decoherence 
conditions in the specific sparse range as 
well as the main lobe to side lobe of impulse 
response (PSF) [1]. Sampling with random 
functions such as Gaussian, Bernoulli and 
partial Fourier will fulfill the requirements in 
the compressed sensing theory, even though 
the main disadvantage of these methods are 
difficult implementation on hardware. For 
sampling in MRI images, it should be noted 
that only the phase coding directions (PF) 
are effective at the time of scanning. Hence, 
we can fully obtain the readout lines. The 
methods discussed in this for K-space data 
sampling were as follows: 

The full sampling of K-space center and 
application of Gaussian probability function 
for the rest of this space. In this method, the 
decoherence conditions and image contrast 
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were met at the early stages of the algorithm. 
Hence, this method guarantees the 
conditions of compressed sensing theory. 
The figure below demonstrates 33% of total 
K-space data using the sampling model. This 
was employed as a basis for comparing the 
newly proposed methods. 

 

Fig.1. The subsampling of K-space data 
using the Gaussian probability function met 
the requirements of the compressed sensing 

theory 
1- The previous method proposed for the 

subsampling of 3D K-space is effective 
because subsampling was carried out in 
two directions and the coding phase in the 
three-dimensional MRI data is in two 
dimensions. It is better to subsample two-
dimensional data in one single direction 
while the other direction (the direction of 
frequency coding) is fully obtained. In 
this method, subsampling is done in the 
direction of the X axis randomly or 
through the Gaussian probability function 
while sampling is completely done in the 
other direction. This method has very low 
computational complexity and its 
implementation on hardware is simpler. 
All conditions of compressed sampling 
are not fulfilled in this sampling model, 
although this model yields better results 

in the first iterations for Zero Filling (ZF). 
The figure below displays the sampling 
model. 

 

Fig.2. Sub-sampling model of K-space data 
using the random function in one direction 

2- Changing axes in the second method 
implies that sampling was fully in 
direction of X-axis and randomly in the 
direction of the Gaussian probability 
function for the y-axis. In this sampling 
procedure, the directions of phase 
coding and readout were switched and 
the results were the same as expected 
from the previous method. The 
following figure displays the sub-
sampling model used in this method. 

 
Fig.3. Sub-sampling model of K-space data, 
using the random function in the direction of 

y-axis  

3- This method involved the total half of K-
space data from the second and third 
methods. In this way, effort was made to 
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obtain mostly the data of K-space center. 
Hence, the reconstructed image in this 
situation has a good contrast between the 
early iterations, indicating the desirability 
of this model for the ZF method. 
However, RIP conditions are completely 

met due to lack of random structure in 
this model, rendering a reconstructed 
image with misrepresented artifacts. The 
following figure displays this model with 
acceleration factor of 3 (3-fold). 

 

 

Fig.4. Sub-sampling model of K-space data, ideal for the ZF method 

 
4.2 Non-linear conjugate gradient 
(NLCG) 

This algorithm was adopted from the article 
of Sparse MRI to solve the non-constrained 
equation in the final image reconstruction 
using the compressed sensing theory [13]. 

arg min
𝑚𝑚

‖𝐹𝐹𝑢𝑢𝑚𝑚 − 𝑦𝑦 ∥22 + 𝜆𝜆‖𝜓𝜓(𝑚𝑚)‖1  

In the above equation: m: Reconstructed 
image  y: K-space data measured in the 
scanner 

λ : Setting parameter ψ: Linear function that 
converts pixel representation to sparse 
representation 

Where 𝛌𝛌 is the setting parameter applied to 
maintain compromise between sparseness 
and error. The above equation is solved 
through the NLCG algorithm, and the above 
equation is known as the cost function [7]. 

5. Analysis of Results 

Due to the rapid growth of compressed 
sensing theory and adoption of new 
algorithms to improve this theory, it was 
crucial to carry on the previous studies so as 
to implement and develop new algorithms. 
That is why the proposed methods were 
compared against Sparse MRI and zero 
filling (ZF). All the proposed methods were 
simulated on real-life data compared against 
the MRI results. In all simulations, 0.3 of K-
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space data was used. To compare the 
proposed methods together with previous 
methods through several criteria such as the 
similarity of the original image, signal to 
noise ratio (SNR) and PSNR. Moreover, 
advantages and disadvantages of each set of 
data for the proposed methods and 
previously proposed methods were 
discussed. 

5.1. First data  

The methods described in the previous 
section were applied on magnetic resonance 
imaging data. The results obtained from 
complete sampling methods were examined 
through the Gaussian random process and 
zero filling (ZF). Given that these images lie 

within the pixels entailing sparse 
representation, this area was used for 
sparseness. Furthermore, Table 1 displays 
the numerical results, where proposed 
methods 2 and 3 outperformed the other 
algorithms [13]. Figure 5 displays the 
reconstructed images with the original 
images. The images involved 0.3 of K-space 
data. Numerical results have been given in 
Table 1. Computational time for 
reconstruction of images through NLCG 
algorithm was about 40 seconds due to the 
expanded volume of images. ZF method 
does not require special reconstruction time. 
The non-acquired data in this method were 
zero filled and the run-time was about 5 
seconds. 

 

 
Fig.5. With the order from left to right, top, original image with the total K-space data, images 

reconstructed through subsampling with Gaussian in two directions, the proposed methods 1, 2 and 3 
image reconstructions with ZF. 
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Table.1. The numerical results obtained from application of the proposed algorithm and the 
previous methods on the second dataset 

Time(S) SSIM PSNR SNR Methods: 
40 84% 23.17 21. 17 Proposed method 1 
40 91% 26.49 18.46 Proposed method 2 
40 93% 26.92 18.49 Proposed method 3 

42 78% 24.02 17.92 Gaussian Sampling 
Method 

5 61% 17.79 11.32 Zero Filling (ZF) 

 

5-2 Second data  

To obtain better results, the proposed 
algorithms were implemented on this series 
of data. The results showed that the proposed 
methods 1 and 3 are better than others [18]. 
Figure 6 shows the images reconstructed by 
algorithms together with the numerical 
results. Given that the images are the sparse 
pixels, there is more consistency with the 

compressed sensing theory. The results also 
showed such consistency. Computational 
time for reconstruction of images through 
NLCG algorithm was about 20 seconds due 
to the expanded volume of images. ZF 
method does not require special 
reconstruction time. The non-acquired data 
in this method were zero filled and the run-
time was about 2 seconds. 

 

Fig.6. Order from left to right, top, original image with the total K-space data, images 
reconstructed through methods 1, 2, 3 and 4 subsampling through Gaussian in two directions, 

image obtained by ZF. 
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Table.2. The numerical results obtained from application of the proposed algorithm and the 
previous methods on the third dataset 

Time(S) SSIM PSNR SNR Methods: 
20 94٪ 27.92 19.88 Proposed method 1 
20 83% 25.98 18.06 Proposed method 2 
20 89% 26.34 18.86 Proposed method 3 

21 78٪ 24.26 17.82 Gaussian sampling 
method 

2 66٪ 21.75 12.52 Zero filling (ZF) 

6. Conclusion 

Given that many aspects and applications of 
compressed sampling have not yet fully 
known, this paper intended to examine the 
application of this theory in the magnetic 
resonance imaging through a review of 
relevant literature. The essential conditions 
for compressed sensing theory were first 
evaluated and then effort was made to assess 
the entire features and requirements of the 
theory. In general, this theory can be applied 
on MRI images given the fact that most MRI 
images have good sparse areas, and 
sparseness is the basic condition required by 
compressed sensing theory. The second 
condition is the subsampling model of K-
space data. 

 This paper proposed three methods, given 
that a great deal of work has been done in 
this realm and both the magnetic resonance 
imaging hardware and decoherence in 
compressed sampling theory should have 
been fulfilled. Each of the proposed methods 
were fully investigated and compared 
against the previous methods. The results 
showed that if the subsampling models such 
as Gaussian random processes was 
conducted in the coding phase direction and 

frequency coding direction, the quality of 
reconstructed images will be desirable. In 
addition, given that the frequency coding 
was not effective in the data acquisition 
time, this sampling method could curtail the 
volume and data acquisition speed as well. 
Many non-linear reconstruction algorithms 
have been proposed for compressed 
sampling theory in the field of mathematics, 
where this algorithm should have great 
convergence and high implementation speed. 
This paper involved the nonlinear conjugate 
gradient algorithm (NLCG) after reviewing 
several reconstruction algorithms. 

 The sparse areas vary with respect to the 
characteristics of images. For example, brain 
images have sparse representation in wavelet 
domain, while the heart images within the 
cosine transform entail a better sparse 
representation. Finally, great effort was 
made to focus more on sampling models of 
K-space data. In this regard, taking into 
account the limitations of hardware devices, 
magnetic resonance imaging conditions were 
proposed for decoherence compressed 
sampling methods. The results indicated that 
the newly proposed method improves the 
quality of reconstructed images better with 
identical data.  
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