
 F. G. Communication & IOT 1(1): 40-50, 2021

Doi:

Future Generation of Communication and Internet of Things (FGCIOT)

Journal homepage: http://fgciot.semnaniau.ac.ir/

PAPER TYPE? (Research paper.)

A Framework for Model-based Testing

 Arash Sabbaghi 1
1
 Department of Computer Engineering, Semnan Branch,Islamic Azad University, Semnan, Iran

a.sabbaghi@semnaniau.ac.ir

Article Info Abstract

Article History:
Received
Revised
Accepted

Model-based testing (MBT) has attracted a lot of attention and has been
extensively applied in different areas such as probabilistic systems, mobile
systems, concurrent systems, real-time systems, software product lines, etc.
However, MBT approaches have some limitations and challenges that are mostly
related to the incompleteness, high level of abstraction, complexity, and also the
informal nature of input models. In the literature, there are different studies
addressing these problems. In this paper, we represent a framework for model-
based test case generation approaches according to the aforementioned
challenges. In this regard, firstly, we categorize different coverage criteria used
in MBT, and then show that MBT approaches have three main steps:
preprocessing, test scenario generation, and concrete test case generation.
Finally, for each step, we represent its necessity and classify the proposed
methods.

Keywords:
Software testing, Model-based
testing, Automatic test case
generation, Test models.

*Corresponding Author’s Email
Address:

a.sabbaghi@semnaniau.ac.ir

Introduction

 Test case generation is one of the most expensive

parts of software testing [1], which includes a series of

operations to generate a test set that satisfies a certain

coverage criterion. There are different techniques for

automated test case generation, such as symbolic and

concolic execution [2], random testing [3],

combinatorial testing [4], search-based testing [5], and

model-based testing (MBT) [6]. To generate test cases,

these techniques utilize different software artifacts,

which lead to testing different aspects of the system

under test (SUT). Among these artifacts, SUT models,

which are utilized in MBT, represent a significant

opportunity for software testing. One of the greatest

achievements of MBT is the earlier detection of faults.

Meanwhile, it allows the improvement of specifications

and design. Therefore, MBT approaches have attracted

a lot of attention and have been extensively used in

different areas such as probabilistic systems [7], mobile

Systems [8], concurrent systems [9, 10], real-time

systems [11], and software product lines [12]. But, on

the other hand, they face some limitations and

challenges.

In MBT, the quality of input models has a direct impact

on the quality of the test suite, and subsequently, on

the effectiveness of the whole testing process.

Incompleteness, high level of abstraction, complexity,

and also the informal nature are the hallmarks of many

input models, which adversely affect their usefulness in

MBT. In case of incompleteness and high level of

abstraction, input models should be augmented with

necessary information that may not be readily available

in the design artifacts [13]. Also, according to the

informal nature and structural complexity of most input

models, it is often needed to convert them into

intermediate forms in order to formalize them and

make them more practical for automatic test case

generation process. After all, it should be noted that

some models may not have a good representation of

repetition, recursion, or conditional sequences,

omitting many control and interface details [14].

Therefore, some preprocessing should be

accomplished to make test model ready for test case

generation.

F. Author et al.

In this paper, we represent a framework for model-

based test case generation approaches. In this regard,

firstly, we categorize different coverage criteria used in

MBT. Then we introduce the general process of MBT.

We show that MBT approaches have three main steps:

preprocessing, test scenario generation, and concrete

test case generation. The preprocessing phase includes

model augmentation and transformation, whose goal is

to prepare models for test scenario generation. In this

phase, according to the desired coverage criterion,

some test sequences are extracted from the prepared

models. These test sequences are finally concretized to

be ready for use. We also classify and discuss the

proposed methods for each step in full detail.

The rest of the paper is organized as follows: in section

2, we categorize the different coverage criteria used in

MBT. Section 3 introduces the general process of MBT

and represents each step, including model

augmentation, model transformation, test scenario

generation, and concrete test case generation in

further detail. Finally, section 4 is dedicated to the

conclusion and future works.

I. Coverage Criteria In MBT

 The effectiveness of a test is based on how well the

information provided by a model is covered and

exercised. Test coverage criteria [15] are a set of rules

which impose test requirements, direct the test case

generation process toward covering appropriate

elements, and give testers an adequacy criterion to

measure the completeness of testing. The different

coverage criteria used in MBT can be divided into five

categories.

A.Structural Coverage Criteria:

 These criteria target to cover building blocks of the

test models and are widely used in MBT. Transition

coverage criterion (covering all transitions in activity

diagram [16], EFSM [17], etc.), path coverage criterion

(covering all paths in the model [18]), state coverage

criterion (covering all states in the state-based models

[19]), each message on link criterion in communication

diagram [20], and class attribute criterion in class

diagrams are some examples of this category.

B.Predicate-oriented Coverage Criteria:

 The goal of these criteria is to test whether the

predicates in the models and in the implementation are

formulated correctly. For example, the full predicate

coverage [21, 22] enforces the tester to provide inputs

derived from each clause in each predicate on each

transition.

C.Stochastic Coverage Criteria:

 In some models like Markov usage models, the

stochastic criteria are used based on their nature and

the probabilities of actions [23].

D.Data Flow Coverage Criteria:

 This criterion uses the data flow relations to guide

the test selection process and considers the assignment

(definition) and usage (use) of variables along paths

[24]. For example, all-du-Paths coverage demands that

every simple definition-use path from the assignments

of a variable to its usages, without reassignment,

examines at least once. To perform data flow testing,

test models should be augmented with definitions and

uses of data variables.

E.Custom Coverage Criteria:
 Some researchers tried to find certain problems in

the SUT and defined some custom criteria which is

dependent on their application. For example, authors

in [25] tried to generate test cases from UML sequence

diagrams for detecting deadlocks during the design

phase. They first converted the sequence diagram into

a wait for graph, and then by identifying the possible

deadlock points, traversed the graph using all

deadlocks as coverage criterion to generate deadlock

paths. Sun et al. [9] proposed an approach to generate

test cases for concurrent programs using activity

diagrams. They proposed three coverage criteria as

weak concurrency coverage, moderate concurrency

coverage, and strong concurrency coverage. For

example, for weak concurrency coverage, test cases are

generated to cover only one feasible sequence of

parallel activities between a pair of fork and join

activity, without considering the interleaving of

activities between parallel activities.

II. Process of Model Based Testing

 In this section, we discuss the inputs, outputs, and

operations that are usually performed in MBT. For each

operation, we represent its necessity and classify the

proposed methods.

 The general architecture of model-based test case

generation is depicted in Figure 1. The input of the

process is test models, and the output is a set of test

cases. The main operations are model augmentation,

model transformation, test scenario generation, and

concrete test case generation. The solid transitions

show the general workflow of MBT, and transitions

with dashed lines are shortcuts. For example, there is a

dashed transition between Test Models and

Intermediate Form, which shows that it is possible to

build an intermediate form from test models without

augmentation (e.g., [19, 26]).

Paper Title

Test Models

Requirements,
Specifications
or even GUI

Augmented Test
Models

Intermediate Form

Test Specifications
Test Set

Implementation

Include some test
paths or test

scenarios

Graphs, Trees,
XML, Petri Nets ...

 with regards to
coverage criteria

Verify
Implementation

against
Test Models

Improve Models

extending, refining,
and optimize test

models

Figure1. : General architecture of automated model-based
testing

 Model augmentation and transformation, are

some preprocessing on test models to prepare them for

extracting test cases. In fact, many test models may be

incomplete, complex, and informal, which causes

problems for their further analysis. Therefore, their

improvement leads to more successful testing. After

preparing test models, it is turn to generate test paths,

test sequences, or generally test scenarios. Finally, test

scenarios are analyzed to generate concrete test cases.

SUT is then executed with the generated test cases, and

the results are used to verify implementation against

test models. Notice that model-based generated test

cases can also be used to verify models and improve the

design by finding ambiguities and inconsistencies

between requirements, specifications, and design [15,

16, 27-29]. For example, authors in [27] addressed the

problem of inconsistencies between the class diagram,

sequence diagram, and OCL constraints, or Eshuis [29]

proposed an approach to verify the consistency of a

UML activity diagram against a set of class diagrams.

Notice that some papers cover all steps of the

presented architecture [30, 31], while others focus on

some special steps like test scenario generation and

don’t present any way for automatically generating

concrete test cases [26, 32]. In the following, we explain

the model augmentation, model transformation, test

scenario generation, and concrete test case generation

steps in further detail.

III. Model Augmentation

 Augmentation is mainly performed to enrich test

models by extending, refining, and optimizing them.

This can be done by updating or adding some test

information into test models. Model augmentation

increases the accuracy of test models by decreasing

their level of abstraction and can help in generating

oracles [33], concretizing test scenarios, and reducing

the number of test cases that result in facilitating the

efficiency of the testing process. On the other hand,

extracting required information and the way of

incorporating them into test models may pose a threat

to automation. In the following, we mention some

model augmentations that have been carried out in the

literature.

 Authors in [30] annotated use cases with pre- and

post-conditions, which are used to infer the correct

partial ordering of functionalities that the system

should offer. Chow et al. [28] annotated FSMs with

inputs and the expected outputs. Nayak et al. [34]

enriched sequence diagrams with attributes and

constraint information derived from class diagrams and

Object Constrained Language (OCL) constraints,

because in sequence diagram the parameters of

messages, i.e. method calls, lacks the constraint and

type information. In [13], the nodes of the sequence

diagram graph are augmented, and the information

needed for augmentation are mined from use case

templates, class diagrams, and data dictionary

expressed in the form of OCL. This augmentation

helped them incorporating oracle information and the

data needed for concretizing test scenarios into the test

model. Vieira et al. [35] augmented activities in the

activity diagram with custom annotations in the form of

stereotypes, which represent different information

such as the definition and usage of test variables. Test

variables are obtained by considering all data objects

relevant for corresponding use case diagrams. Their

achievements were recognizing feasible and infeasible

paths, helping to concretize test scenarios, and

reaching the desired functional coverage. Kurth et al.

[36] augmented activity diagrams with constraints in

the form of OCL and then converted it to an 'A

Mathematical Programming Language' (AMPL)

program using symbolic execution [2, 37]. The AMPL

program is also augmented with an objective function

to generate boundary test data. Eshuis et al. [29]

considered forks and joins as transitions rather than

nodes in the activity diagram and extended it by adding

some extra nodes, to be prepared for model

transformation. Authors in [18, 38] enhanced the

generated intermediate graphs from UML behavioral

diagrams by adding weights to edges and nodes,

respectively, in order to be able to prioritize test paths.

Wang et al. [39] proposed to generate test cases for

system testing of timing requirements from timed

automata using the information provided by use case

F. Author et al.

specifications. They augment the set of user-provided

timed automata to capture timing requirements by

identifying their dependencies with functional

scenarios. The augmented automata were issued to

UPPAAL model checker for symbolic reachability

analysis and generating test cases. Murthy et al. [40]

augmented UML statechart diagrams by adding test

statements to the state transitions or state nodes. Test

statements are incorporated into test scenarios and

helped to generate test scripts.

 Gebizli et al. [41] proposed to refine system models

based on the experience and domain knowledge of test

engineers by collecting and analyzing their test

execution traces. In this way, the experience gained

from exploratory testing is used to improve test

models. Note that in their approach, collection and

analysis of execution traces are performed

automatically, and the model refining phase is

performed manually. Also, authors in [42] successively

refined Markov usage models by updating transition

probabilities to direct test case generation process

toward different parts of the test model.

 Another advantage of model augmentation is that it

enables the testers to incorporate non-functional and

quality-of-service test information into models in order

to make them ready for generating test cases to test

the system from different points of view. For example,

Ryser et al. [43] annotated statechart diagrams with

performance and timing constraints to allow for

performance testing. In [44], the authors extended

sequence diagrams to annotate timing constraints for

messages. These annotations constraint the time

between occurrences of events and specify which

events have to happen before the annotated

timestamp and which one has to happen at least after

the specified time.

IV. Model Transformation

 Test models based on their types are usually

transformed into an intermediate form to be

formalized and prepared for test path or test scenario

generation [26]. This transformation is done to resolve

the nonstructural problems of test models and to

facilitate scenario representation, which results in an

easier generation of test sequences with respect to the

given coverage criteria. Intermediate forms used in the

literature are usually XML [31], table [45-48], tree [20,

49, 50], graph [19, 26], Petri nets [44, 51], other test

models [52], different types of automata such as timed

automata [53] or descriptive languages like input

language of NuSMV [16, 29].

 XML is a generic and standard language that can be

easily parsed, and many tools have the capability of

translating input models into XML. The XML parser

extracts necessary information and elements from test

models and stores them in an appropriate form to be

used for generating subsequent intermediate forms

[20, 31, 54] or for later use in the next steps. Also, the

XML Metadata Interchange (XMI) which is a standard

for exchanging metadata information via XML between

UML modeling tools defined by Object Management

Group (OMG) is widely used for UML models [9, 21, 45,

55]. Using this standard allows reusing UML test

models, which are drawn in different testing tools.

 Tables are widely used to store information that is

needed for test scenario generation and subsequent

model transformations. This information can be the

objects and messages presented in the sequence

diagram [26], the domain information of input variables

[34], or can be the information of activities extracted

from activity diagrams [32, 46, 48].

 Tree and graph are the most widely used structures

as intermediate forms in the literature because of their

structural similarities to test models and also their

harmony with test scenario generation techniques. Sun

et al. [50] proposed to transform activities in activity

diagram specifications into an equivalent tree via a set

of transformation rules in order to resolve the non-

structural problem of activity diagrams. Test cases are

then extracted using generated trees; definitely, it is

more convenient to generate test scenarios from a

normalized tree than a non-structural form. Authors in

[49] mapped class and object diagrams into tree

structures. The tree structure enabled them to apply

the genetic algorithm’s tree crossover due to

generating new test scenarios. Sarma et al. [13]

translated sequence diagrams into a graph structure

called sequence diagram graph (SDG). Each node in the

SDG is mapped to an interaction between two objects

through a message. In other words, SDG nodes

represent method calls. This transformation helped

them having better augmentation by adding the

required test information such as arguments in the

methods and expected outputs into SDG nodes.

Authors in [25] represent an equivalent wait for graph

Paper Title

for sequence diagram, which helps to identify the

deadlock points in concurrent systems by detecting

cycles using the Tarjan algorithm. Also, several studies

(e.g., [26, 54]) attempt to gather information provided

by different test models such as use case, sequence,

collaboration, and activity diagrams by integrating

them to carry out more effective, in-depth, and broader

testing. In order to pave the way for the integration,

they first transformed these inherently different input

models into standard intermediate graphs or trees.

 Petri nets, a well-known mathematical modeling

language, are another useful intermediate form with a

rich and strict theory and a wide range of available

supporting tools. Petri nets have many variations such

as colored, hierarchical, event-driven, or timed-arc,

which can be used in MBT for test model formalization

depending on the application. Petri nets are well-suited

for expressing concurrency and parallelism and are

well-known for their capabilities to deal with the

interaction fragments properties of sequence diagrams

[56]. Authors in [57] suggested formalizing sequence

diagrams by translating them into colored Petri nets. By

selecting this variant, colors can be used to distinguish

between object types. Sieverding et al. [44] chose

timed-arc Petri nets to formalize sequence diagrams

annotated with timing information to better

incorporate timing constraints into the model. Authors

in [51] proposed formalizing requirement specifications

written in Restricted-form of Natural Language (RNL) by

automatically translating them into executable Petri

net models. Then the reachability tree is extracted and

traversed to generate test scenarios.

 Timed automaton is a state-based model which can

precisely specify timing constraints. Mücke et al. [53]

automatically transformed the UML state diagram into

timed automata, which is a suitable formal model as

input to the UPPAAL model checker. Before translation,

the state diagram is flattened to remove hierarchy

structures because timed automata lack hierarchy. The

generated test cases are used to validate the real-time

behavior of state diagrams.

 Note that some studies used multiple intermediate

forms [31, 52]. For example, Kim et al. [52] proposed to

generate test cases based on control-flow and data-

flow in UML state diagrams. They first transformed the

state diagrams into EFSMs for flattening the

hierarchical and concurrent structure of states and also

eliminating the broadcast communication. Control-

flow in UML state diagrams is identified in terms of

paths in the resulting EFSMs. Then to generate test

cases based on data-flow, EFSMs were converted into

flow graphs in order to be able to apply conventional

data-flow analysis techniques.

 It should be mentioned that model transformation

is a complex and costly operation in which the excessive

and misplaced use of intermediate forms may prolong

the test case generation process and pose a threat to

automation [32]. Also, a sort of traceability and

synchronization [58] should exist between the original

models and their corresponding intermediate forms,

which are mostly neglected in the literature. This

traceability enables the changes in the SUT models to

be reflected immediately in their corresponding

intermediate forms saving a lot of time and resources

for regression testing and also for future test case

generations.

V. Test Scenario Generation

 After preparing test models, it is turn to generate

test paths, test sequences, or generally test scenarios.

Test scenarios contain a high-level description of input

data, and may also include the expected output and the

state of the SUT before and after execution of the test.

Test scenarios are known as abstract test cases and are

later used to extract concrete tests. As an example, a

test scenario can be any path from the initial activity

state to the final activity state consisting of activities

and transitions guards in an activity diagram, or can be

any sequence of message paths in a sequence diagram.

Notice that the selected coverage criterion decides

about the required test scenarios.

 Test scenarios can be extracted from test models by

traversing intermediate forms in a random manner

using random-walk [23], or in a systematic manner

using depth-first search (DFS) [19, 31, 34, 46], breadth-

first search (BFS) [26, 30], post-order traversal [20], etc.

There are also other approaches such as symbolic

execution [36], model checking [16, 29], and search-

based techniques [17, 18, 59].

 With regard to the structure of test models in MBT,

using traversal-based approaches are very common,

easy to implement, and straightforward. The reason for

choosing any of the aforementioned traversing

methods is dependent on the application; for example,

F. Author et al.

Nebut et al. [30] chose breadth-first traversal of their

proposed use case transition system in order to obtain

small test objectives, i.e. sequences of use cases. This

ensures that the size of the computed paths is minimal,

with this motivation that small tests are more

meaningful and understandable by humans than large

ones. Samuel et al. [20] carried out post-order traversal

of the tree representation of communication diagram

(Communication Tree) for selecting conditional

predicates, to reduce the number of execution steps in

the function minimization process.

 Symbolic execution is a promising technique for

generating high coverage test suites and for finding

deep errors in complex software systems [2, 37]. It

explores SUT paths symbolically using symbolic values

for variables and generates a path constraint for each

path by accumulating predicates in branching nodes

and updating its state in assignment statements . The

generated path constraints are fed to a constraint

solver to decide about their feasibility and generating

concrete inputs. Symbolic execution is generally used in

white box testing utilizing the program source code but

is infiltrated to the MBT too. For example, the approach

proposed by Kurth et al. [36] symbolically executes

control-flow paths in the activity diagram and encodes

them as AMPL programs. They used AMPL to formalize

the execution of control flow paths in activity diagrams.

A constraint solver is then used to generate concrete

test cases. They also performed early infeasible path

elimination by querying constraint solver at branching

nodes.

 Model checking is a well-known technique for

verifying models and detecting errors in behavioral

designs. In model checking, a desired set of formal

properties of the system are specified by the user,

expressed as temporal logic formulas, and is given to a

model checker along with formalized test model. The

properties can be test purposes or coverage criteria

which are formulated as reachability formulas. The

negated version of the properties is applied to the

formal model using model checking to generate traces.

These traces are then translated to generate test cases.

Note that the generated test cases by model checking

can be used to verify the implementation as well as

verifying the specifications [16].

 Search-based techniques are widely used in MBT,

which apply metaheuristic search algorithms such as

genetic algorithm (GA) [17, 18, 49], memetic algorithm

[59], ant colony optimization [38], etc. to different

model-based testing problems. These techniques can

be used either directly [17, 18, 59] or indirectly [49] for

generating and prioritizing test scenarios. Kalaji et al.

[17] proposed generating test sequences from

extended finite state machines (EFSMs) using genetic

algorithm by defining a suitable fitness function that

guides the search toward likely feasible transition

paths. Their fitness function employed dataflow

dependencies among transition guards of paths. It

should be noted that in these techniques, solution

encoding and defining proper fitness function is so

crucial, and the success, efficiency, and convergence of

the algorithm are directly dependent on it.

VI. Concrete Test Case Generation

 Since test scenarios contain an abstract

representation of test cases and are mostly incomplete,

generally they cannot be directly used as executable

test cases. So, based on the type and the complexity of

test models, some works such as handling abstract

information, concretizing input variables, and solving

path constraints must be done manually [9, 10, 21, 32]

or automatically [30, 34] on the test scenarios to make

them concrete and executable. For automatically

concretizing test scenarios, input models should be

well-specified using detailed and additional

information.

 In order to concretize test scenarios, the first step is

to replace abstract information. As an example of the

presence of abstract information in the test scenarios,

consider a simplified test scenario T for an Automated

Teller Machine (ATM):

𝑇: 𝐺𝑒𝑡𝑃𝑖𝑛(𝑃𝐼𝑁)[𝑉𝑎𝑙𝑖𝑑𝑃𝐼𝑁]𝐺𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡(𝑎𝑚𝑜𝑢𝑛𝑡)

[𝑉𝑎𝑙𝑖𝑑𝐴𝑚𝑜𝑢𝑛𝑡]𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑒𝐶𝑎𝑠ℎ()

 For the sake of simplicity, we omit some details such as

message prompts to the user and also operations on

the banking side. As can be seen, in this test scenario it

is not known what an invalid 𝑃𝐼𝑁 is and also the valid

value for 𝑎𝑚𝑜𝑢𝑛𝑡 is not specified. That is why we call it

an abstract test case. If instead of 𝑉𝑎𝑙𝑖𝑑𝐴𝑚𝑜𝑢𝑛𝑡 we

had 𝐴𝑚𝑜𝑢𝑛𝑡 > 5000 ∧ 𝐴𝑚𝑜𝑢𝑛𝑡 < 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ∧

𝐴𝑚𝑜𝑢𝑛𝑡 𝑚𝑜𝑑 50 = 0, it would be easier to concretize

the 𝐴𝑚𝑜𝑢𝑛𝑡 variable automatically; otherwise, the

tester must carefully read the specifications to exploit

the validity conditions of Amount. The same is true

Paper Title

about 𝑉𝑎𝑙𝑖𝑑𝑃𝐼𝑁 which may follow some domain rules

and patterns.

After replacing abstract information, we are generally

faced with some input variables and path constraints.

Input variables can be method parameters, instance

variables that set the states of classes, parameters of

events and actions in the UML state diagram, etc. Note

that there is zero- or one-to-many relation between

test scenarios and concrete test cases, which means

that for each test scenario, there can be more than one

test case. Sometimes with regards to the coverage

criteria, there is a need for more than one

concretization for a test scenario, i.e., a path may need

to be tested several times with different concrete data.

For example, full predicate coverage requires that each

clause in each predicate on each guard condition is

tested independently [22] which means that all

combinations of truth values of clauses should be

concretized.

 Concretizing test scenarios is mainly done by

utilizing pre-defined information incorporated into test

models [13, 43], constraint solving [17, 34, 36], search-

based techniques like GA [17], category-partition

method [10, 15, 32, 47], random [9], and function

minimization technique [19, 20].

 Annotating test models and adding suitable test

information can help to concretize test scenarios. For

example, in T, by choosing purely random values for

𝑃𝐼𝑁, it may be unlikely to obtain a valid value. But data

annotations can specify its form and pattern. Also, data

annotations can determine the type and the range of

valid values for input variables. For example, authors in

[55] used labels with textual stereotypes representing

data flow for the edges of the activity diagram. These

stereotypes contain the name and the type of variables.

Also, some approaches utilize OCL constraints to

specify the information needed for concretization (e.g.,

[13]).

 There are many off-the-shelf constraint solvers that

can be used to solve path constraints, but the existence

of nonlinear arithmetic and floating-point

computations makes a path constraint complex, and

this may lead to difficulty in translating the constraints

into the theory of the underlying solver. In other words,

the efficiency and usability of this approach are based

heavily on the theory supported by the constraint

solver and its constraint solving abilities.

 Search-based techniques can be used to extract

input data by converting path predicates into fitness

function. Since these techniques require the calculation

of fitness functions in a large number of times, they

should be computationally as simple as possible and

effective in order to guarantee the efficiency of the

approach.

 It should be noted that, performing boundary value

analysis along with these techniques increase the

quality of test set. Domain boundaries are particularly

fault prone [36], so choosing boundary test cases to

execute a control-flow path are more valuable than

arbitrary test cases. In this regard, some studies used

boundary testing [9, 19, 20] to generate concrete test

cases to ensure that boundaries are tested adequately.

Conclusion

 Model-based testing has some limitations and

challenges that are mostly related to the

incompleteness, high level of abstraction, complexity,

and also the informal nature of input models. In fact, in

MBT, the quality of input models has a direct impact on

the quality of the test suite, and subsequently, on the

effectiveness of the whole testing process. In the

literature, there are different studies addressing these

problems.

 In this paper, we represent a framework for model-

based test case generation and show that MBT

approaches have three main steps: preprocessing, test

scenario generation, and concrete test case generation.

We represent the necessity of each step and

summarized the proposed methods. We also

categorized different coverage criteria used in MBT.

References

1. Anand, S., et al., An orchestrated survey of

methodologies for automated software test case

generation. Journal of Systems and Software, 2013.

86(8): p. 1978-2001.

2. Sabbaghi, A. and M.R. Keyvanpour, A

Systematic Review of Search Strategies in Dynamic

Symbolic Execution. Computer Standards & Interfaces,

2020: p. 103444.

3. Bidgoli, A.M. and H. Haghighi, Augmenting ant

colony optimization with adaptive random testing to

F. Author et al.

cover prime paths. Journal of Systems and Software,

2020. 161: p. 110495.

4. Sabbaghi, A. and M. Keyvanpour, A novel

approach for combinatorial test case generation using

multi objective optimization, in Computer and

Knowledge Engineering (ICCKE), 2017 7th International

Conference on. 2017, IEEE.

5. Jatana, N. and B. Suri, An improved crow

search algorithm for test data generation using search-

based mutation testing. Neural Processing Letters,

2020. 52(1): p. 767-784.

6. Sabbaghi, A. and M.R. Keyvanpour. State-

based models in model-based testing: A systematic

review. in Knowledge-Based Engineering and

Innovation (KBEI), 2017 IEEE 4th International

Conference on. 2017. IEEE.

7. Gerhold, M. and M. Stoelinga, Model-based

testing of probabilistic systems. Formal aspects of

computing, 2018. 30(1): p. 77-106.

8. Gudmundsson, V., et al., Model-based Testing

of Mobile Systems--An Empirical Study on QuizUp

Android App. arXiv preprint arXiv:1606.00503, 2016.

9. Sun, C.a., et al., A transformation‐based

approach to testing concurrent programs using UML

activity diagrams. Software: Practice and Experience,

2016. 46(4): p. 551-576.

10. Nayak, A. and D. Samanta, Synthesis of test

scenarios using UML activity diagrams. Software &

Systems Modeling, 2011. 10(1): p. 63-89.

11. Poncelet, C. and F. Jacquemard, Model-based

testing for building reliable realtime interactive music

systems. Science of Computer Programming, 2016.

132: p. 143-172.

12. Damiani, F., et al., A novel model-based testing

approach for software product lines. Software &

Systems Modeling, 2017. 16(4): p. 1223-1251.

13. Sarma, M., D. Kundu, and R. Mall. Automatic

test case generation from UML sequence diagram. in

15th International Conference on Advanced Computing

and Communications (ADCOM 2007). 2007. IEEE.

14. Cartaxo, E.G., F.G. Neto, and P.D. Machado.

Test case generation by means of UML sequence

diagrams and labeled transition systems. in 2007 IEEE

International Conference on Systems, Man and

Cybernetics. 2007. IEEE.

15. Andrews, A., et al., Test adequacy criteria for

UML design models. Software Testing, Verification and

Reliability, 2003. 13(2): p. 95-127.

16. Chen, M., P. Mishra, and D. Kalita. Coverage-

driven automatic test generation for UML activity

diagrams. in Proceedings of the 18th ACM Great Lakes

symposium on VLSI. 2008.

17. Kalaji, A.S., R.M. Hierons, and S. Swift, An

integrated search-based approach for automatic

testing from extended finite state machine (EFSM)

models. Information and Software Technology, 2011.

53(12): p. 1297-1318.

18. Sharma, C., S. Sabharwal, and R. Sibal,

Applying genetic algorithm for prioritization of test case

scenarios derived from UML diagrams. arXiv preprint

arXiv:1410.4838, 2014.

19. Swain, R., et al., Automatic test case

generation from UML state chart diagram.

International Journal of Computer Applications, 2012.

42(7): p. 26-36.

20. Samuel, P., R. Mall, and P. Kanth, Automatic

test case generation from UML communication

diagrams. Information and software technology, 2007.

49(2): p. 158-171.

21. Ali, S., et al., A state-based approach to

integration testing based on UML models. Information

and Software Technology, 2007. 49(11): p. 1087-1106.

22. Offutt, J., et al., Generating test data from

state‐based specifications. Software testing,

verification and reliability, 2003. 13(1): p. 25-53.

23. Prowell, S.J. Using markov chain usage models

to test complex systems. in System Sciences, 2005.

HICSS'05. Proceedings of the 38th Annual Hawaii

International Conference on. 2005. IEEE.

24. Prasanna, M., K. Chandran, and D.B. Suberi,

Automatic test case generation for UML class diagram

using data flow approach. Academia. Education, 2011.

25. Mallick, A., N. Panda, and A.A. Acharya,

Generation of test cases from uml sequence diagram

Paper Title

and detecting deadlocks using loop detection

algorithm. International Journal of Computer Science

and Engineering, 2014. 2: p. 199-203.

26. Sumalatha, V.M. and G. Raju, Uml based

automated test case generation technique using

activity-sequence diagram. International Journal of

Computer Science Applications, 2012. 1(9).

27. Pilskalns, O., et al., Testing UML designs.

Information and Software Technology, 2007. 49(8): p.

892-912.

28. Chow, T.S., Testing software design modeled

by finite-state machines. IEEE transactions on software

engineering, 1978(3): p. 178-187.

29. Eshuis, R., Symbolic model checking of UML

activity diagrams. ACM Transactions on Software

Engineering and Methodology (TOSEM), 2006. 15(1): p.

1-38.

30. Nebut, C., et al., Automatic test generation: A

use case driven approach. IEEE Transactions on

Software Engineering, 2006. 32(3): p. 140-155.

31. Boghdady, P.N., et al. An enhanced test case

generation technique based on activity diagrams. in

The 2011 International Conference on Computer

Engineering & Systems. 2011. IEEE.

32. Linzhang, W., et al. Generating test cases from

UML activity diagram based on gray-box method. in

11th Asia-Pacific software engineering conference.

2004. IEEE.

33. Sabbaghi, A., M.R. Keyvanpour, and S. Parsa,

FCCI: A fuzzy expert system for identifying coincidental

correct test cases. Journal of Systems and Software,

2020: p. 110635.

34. Nayak, A. and D. Samanta, Automatic test data

synthesis using uml sequence diagrams. Journal of

Object Technology, 2010. 9(2): p. 75-104.

35. Vieira, M., et al. Automation of GUI testing

using a model-driven approach. in Proceedings of the

2006 international workshop on Automation of

software test. 2006.

36. Kurth, F., S. Schupp, and S. Weißleder.

Generating test data from a UML activity using the

AMPL interface for constraint solvers. in International

Conference on Tests and Proofs. 2014. Springer.

37. Sabbaghi, A., H.R. Kanan, and M.R.

Keyvanpour, FSCT: A new fuzzy search strategy in

concolic testing. Information and Software Technology,

2019. 107: p. 137-158.

38. Elghondakly, R., S. Moussa, and N. Badr, An

optimized approach for automated test case

generation and validation for UML diagrams. Asian J Inf

Technol, 2016. 15(21): p. 4276-4290.

39. Wang, C., F. Pastore, and L. Briand. System

Testing of Timing Requirements based on Use Cases

and Timed Automata. in Software Testing, Verification

and Validation (ICST), 2017 IEEE International

Conference on. 2017. IEEE.

40. Murthy, P., et al. Test ready UML statechart

models. in Proceedings of the 2006 international

workshop on Scenarios and state machines: models,

algorithms, and tools. 2006.

41. Gebizli, C.S. and H. Sözer. Improving models

for model-based testing based on exploratory testing.

in 2014 IEEE 38th International Computer Software and

Applications Conference Workshops. 2014. IEEE.

42. Gebizli, C.S., H. Sözer, and A.Ö. Ercan.

Successive refinement of models for model-based

testing to increase system test effectiveness. in

Software Testing, Verification and Validation

Workshops (ICSTW), 2016 IEEE Ninth International

Conference on. 2016. IEEE.

43. Ryser, J. and M. Glinz. A scenario-based

approach to validating and testing software systems

using statecharts. in Proc. 12th International

Conference on Software and Systems Engineering and

their Applications. 1999.

44. Sieverding, S., C. Ellen, and P. Battram,

Sequence diagram test case specification and virtual

integration analysis using timed-arc Petri nets. arXiv

preprint arXiv:1302.5170, 2013.

45. Briand, L. and Y. Labiche, A UML-based

approach to system testing. Software and systems

modeling, 2002. 1(1): p. 10-42.

F. Author et al.

46. Jena, A.K., S.K. Swain, and D.P. Mohapatra. A

novel approach for test case generation from UML

activity diagram. in 2014 International Conference on

Issues and Challenges in Intelligent Computing

Techniques (ICICT). 2014. IEEE.

47. Boghdady, P., et al. An enhanced technique for

generating hybrid coverage test cases using activity

diagrams. in 2012 8th International Conference on

Informatics and Systems (INFOS). 2012. IEEE.

48. Pechtanun, K. and S. Kansomkeat. Generation

test case from UML activity diagram based on AC

grammar. in 2012 International Conference on

Computer & Information Science (ICCIS). 2012. IEEE.

49. Prasanna, M. and K. Chandran, Automatic test

case generation for UML object diagrams using genetic

algorithm. Int. J. Advance. Soft Comput. Appl, 2009.

1(1): p. 19-32.

50. Sun, C.-a. A transformation-based approach to

generating scenario-oriented test cases from UML

activity diagrams for concurrent applications. in 2008

32nd Annual IEEE International Computer Software and

Applications Conference. 2008. IEEE.

51. Sarmiento, E., et al., Test Scenario Generation

from Natural Language Requirements Descriptions

based on Petri-Nets. Electronic Notes in Theoretical

Computer Science, 2016. 329: p. 123-148.

52. Kim, Y.G., et al., Test cases generation from

UML state diagrams. IEE Proceedings-Software, 1999.

146(4): p. 187-192.

53. Mücke, T. and M. Huhn. Generation of

optimized testsuites for UML statecharts with time. in

IFIP international conference on testing of

communicating systems. 2004. Springer.

54. Sarma, M. and R. Mall. Automatic test case

generation from UML models. in 10th International

Conference on Information Technology (ICIT 2007).

2007. IEEE.

55. Teixeira, F.A.D. and G.B. e Silva, EasyTest: An

approach for automatic test cases generation from

UML Activity Diagrams, in Information Technology-New

Generations. 2018, Springer. p. 411-417.

56. Bouabana-Tebibel, T. and S.H. Rubin, An

interleaving semantics for UML 2 interactions using

Petri nets. Information Sciences, 2013. 232: p. 276-293.

57. Bowles, J. and D. Meedeniya. Formal

transformation from sequence diagrams to coloured

petri nets. in 2010 Asia Pacific Software Engineering

Conference. 2010. IEEE.

58. Ding, Z., M. Jiang, and M. Zhou, Generating

petri net-based behavioral models from textual use

cases and application in railway networks. IEEE

Transactions on Intelligent Transportation Systems,

2016. 17(12): p. 3330-3343.

59. Nejad, F.M., R. Akbari, and M.M. Dejam. Using

memetic algorithms for test case prioritization in model

based software testing. in 2016 1st Conference on

Swarm Intelligence and Evolutionary Computation

(CSIEC). 2016. IEEE.

