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Model-based testing (MBT) has attracted a lot of attention and has been 
extensively applied in different areas such as probabilistic systems, mobile 
systems, concurrent systems, real-time systems, software product lines, etc. 
However, MBT approaches have some limitations and challenges that are mostly 
related to the incompleteness, high level of abstraction, complexity, and also the 
informal nature of input models. In the literature, there are different studies 
addressing these problems. In this paper, we represent a framework for model-
based test case generation approaches according to the aforementioned 
challenges. In this regard, firstly, we categorize different coverage criteria used 
in MBT, and then show that MBT approaches have three main steps: 
preprocessing, test scenario generation, and concrete test case generation. 
Finally, for each step, we represent its necessity and classify the proposed 
methods. 
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Introduction 

     Test case generation is one of the most expensive 

parts of software testing [1], which includes a series of 

operations to generate a test set that satisfies a certain 

coverage criterion. There are different techniques for 

automated test case generation, such as symbolic and 

concolic execution [2], random testing [3], 

combinatorial testing [4], search-based testing [5], and 

model-based testing (MBT) [6]. To generate test cases, 

these techniques utilize different software artifacts, 

which lead to testing different aspects of the system 

under test (SUT). Among these artifacts, SUT models, 

which are utilized in MBT, represent a significant 

opportunity for software testing. One of the greatest 

achievements of MBT is the earlier detection of faults. 

Meanwhile, it allows the improvement of specifications 

and design. Therefore, MBT approaches have attracted 

a lot of attention and have been extensively used in 

different areas such as probabilistic systems [7], mobile 

Systems [8], concurrent systems [9, 10], real-time 

systems [11], and software product lines [12]. But, on 

the other hand, they face some limitations and 

challenges. 

In MBT, the quality of input models has a direct impact 

on the quality of the test suite, and subsequently, on 

the effectiveness of the whole testing process. 

Incompleteness, high level of abstraction, complexity, 

and also the informal nature are the hallmarks of many 

input models, which adversely affect their usefulness in 

MBT. In case of incompleteness and high level of 

abstraction, input models should be augmented with 

necessary information that may not be readily available 

in the design artifacts [13]. Also, according to the 

informal nature and structural complexity of most input 

models, it is often needed to convert them into 

intermediate forms in order to formalize them and 

make them more practical for automatic test case 

generation process. After all, it should be noted that 

some models may not have a good representation of 

repetition, recursion, or conditional sequences, 

omitting many control and interface details [14]. 

Therefore, some preprocessing should be 

accomplished to make test model ready for test case 

generation.  
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In this paper, we represent a framework for model-

based test case generation approaches. In this regard, 

firstly, we categorize different coverage criteria used in 

MBT. Then we introduce the general process of MBT. 

We show that MBT approaches have three main steps: 

preprocessing, test scenario generation, and concrete 

test case generation. The preprocessing phase includes 

model augmentation and transformation, whose goal is 

to prepare models for test scenario generation. In this 

phase, according to the desired coverage criterion, 

some test sequences are extracted from the prepared 

models. These test sequences are finally concretized to 

be ready for use. We also classify and discuss the 

proposed methods for each step in full detail.  

The rest of the paper is organized as follows: in section 

2, we categorize the different coverage criteria used in 

MBT. Section 3 introduces the general process of MBT 

and represents each step, including model 

augmentation, model transformation, test scenario 

generation, and concrete test case generation in 

further detail. Finally, section 4 is dedicated to the 

conclusion and future works. 

 

I. Coverage Criteria In MBT 

       The effectiveness of a test is based on how well the 

information provided by a model is covered and 

exercised. Test coverage criteria [15] are a set of rules 

which impose test requirements, direct the test case 

generation process toward covering appropriate 

elements, and give testers an adequacy criterion to 

measure the completeness of testing. The different 

coverage criteria used in MBT can be divided into five 

categories. 

 

A.Structural Coverage Criteria:  

      These criteria target to cover building blocks of the 

test models and are widely used in MBT. Transition 

coverage criterion (covering all transitions in activity 

diagram [16], EFSM [17], etc.), path coverage criterion 

(covering all paths in the model [18]), state coverage 

criterion (covering all states in the state-based models 

[19]), each message on link criterion in communication 

diagram [20], and class attribute criterion in class 

diagrams are some examples of this category.  

 

B.Predicate-oriented Coverage Criteria: 

      The goal of these criteria is to test whether the 

predicates in the models and in the implementation are 

formulated correctly. For example, the full predicate 

coverage [21, 22] enforces the tester to provide inputs 

derived from each clause in each predicate on each 

transition.  

 

 

C.Stochastic Coverage Criteria: 

     In some models like Markov usage models, the 

stochastic criteria are used based on their nature and 

the probabilities of actions [23]. 

 

D.Data Flow Coverage Criteria: 

      This criterion uses the data flow relations to guide 

the test selection process and considers the assignment 

(definition) and usage (use) of variables along paths 

[24]. For example, all-du-Paths coverage demands that 

every simple definition-use path from the assignments 

of a variable to its usages, without reassignment, 

examines at least once. To perform data flow testing, 

test models should be augmented with definitions and 

uses of data variables. 
 

E.Custom Coverage Criteria:  
      Some researchers tried to find certain problems in 

the SUT and defined some custom criteria which is 

dependent on their application. For example, authors 

in [25] tried to generate test cases from UML sequence 

diagrams for detecting deadlocks during the design 

phase. They first converted the sequence diagram into 

a wait for graph, and then by identifying the possible 

deadlock points, traversed the graph using all 

deadlocks as coverage criterion to generate deadlock 

paths. Sun et al. [9] proposed an approach to generate 

test cases for concurrent programs using activity 

diagrams. They proposed three coverage criteria as 

weak concurrency coverage, moderate concurrency 

coverage, and strong concurrency coverage. For 

example, for weak concurrency coverage, test cases are 

generated to cover only one feasible sequence of 

parallel activities between a pair of fork and join 

activity, without considering the interleaving of 

activities between parallel activities. 

II. Process of Model Based Testing 

     In this section, we discuss the inputs, outputs, and 

operations that are usually performed in MBT. For each 

operation, we represent its necessity and classify the 

proposed methods.    

     The general architecture of model-based test case 

generation is depicted in Figure 1. The input of the 

process is test models, and the output is a set of test 

cases. The main operations are model augmentation, 

model transformation, test scenario generation, and 

concrete test case generation. The solid transitions 

show the general workflow of MBT, and transitions 

with dashed lines are shortcuts. For example, there is a 

dashed transition between Test Models and 

Intermediate Form, which shows that it is possible to 

build an intermediate form from test models without 

augmentation (e.g., [19, 26]). 
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Figure1. : General architecture of automated model-based 
testing 

 

       Model augmentation and transformation, are 

some preprocessing on test models to prepare them for 

extracting test cases. In fact, many test models may be 

incomplete, complex, and informal, which causes 

problems for their further analysis. Therefore, their 

improvement leads to more successful testing. After 

preparing test models, it is turn to generate test paths, 

test sequences, or generally test scenarios. Finally, test 

scenarios are analyzed to generate concrete test cases. 

SUT is then executed with the generated test cases, and 

the results are used to verify implementation against 

test models. Notice that model-based generated test 

cases can also be used to verify models and improve the 

design by finding ambiguities and inconsistencies 

between requirements, specifications, and design [15, 

16, 27-29]. For example, authors in [27] addressed the 

problem of inconsistencies between the class diagram, 

sequence diagram, and OCL constraints, or Eshuis [29] 

proposed an approach to verify the consistency of a 

UML activity diagram against a set of class diagrams.  

Notice that some papers cover all steps of the 

presented architecture [30, 31], while others focus on 

some special steps like test scenario generation and 

don’t present any way for automatically generating 

concrete test cases [26, 32]. In the following, we explain 

the model augmentation, model transformation, test 

scenario generation, and concrete test case generation 

steps in further detail. 

III. Model Augmentation 

     Augmentation is mainly performed to enrich test 

models by extending, refining, and optimizing them. 

This can be done by updating or adding some test 

information into test models. Model augmentation 

increases the accuracy of test models by decreasing 

their level of abstraction and can help in generating 

oracles [33], concretizing test scenarios, and reducing 

the number of test cases that result in facilitating the 

efficiency of the testing process. On the other hand, 

extracting required information and the way of 

incorporating them into test models may pose a threat 

to automation. In the following, we mention some 

model augmentations that have been carried out in the 

literature.      

       Authors in [30] annotated use cases with pre- and 

post-conditions, which are used to infer the correct 

partial ordering of functionalities that the system 

should offer. Chow et al. [28] annotated FSMs with 

inputs and the expected outputs. Nayak et al. [34] 

enriched sequence diagrams with attributes and 

constraint information derived from class diagrams and 

Object Constrained Language (OCL) constraints, 

because in sequence diagram the parameters of 

messages, i.e. method calls, lacks the constraint and 

type information. In [13], the nodes of the sequence 

diagram graph are augmented, and the information 

needed for augmentation are mined from use case 

templates, class diagrams, and data dictionary 

expressed in the form of OCL. This augmentation 

helped them incorporating oracle information and the 

data needed for concretizing test scenarios into the test 

model. Vieira et al. [35] augmented activities in the 

activity diagram with custom annotations in the form of 

stereotypes, which represent different information 

such as the definition and usage of test variables. Test 

variables are obtained by considering all data objects 

relevant for corresponding use case diagrams. Their 

achievements were recognizing feasible and infeasible 

paths, helping to concretize test scenarios, and 

reaching the desired functional coverage. Kurth et al. 

[36] augmented activity diagrams with constraints in 

the form of OCL and then converted it to an 'A 

Mathematical Programming Language' (AMPL) 

program using symbolic execution [2, 37]. The AMPL 

program is also augmented with an objective function 

to generate boundary test data. Eshuis et al. [29] 

considered forks and joins as transitions rather than 

nodes in the activity diagram and extended it by adding 

some extra nodes, to be prepared for model 

transformation. Authors in [18, 38] enhanced the 

generated intermediate graphs from UML behavioral 

diagrams by adding weights to edges and nodes, 

respectively, in order to be able to prioritize test paths. 

Wang et al. [39] proposed to generate test cases for 

system testing of timing requirements from timed 

automata using the information provided by use case 
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specifications. They augment the set of user-provided 

timed automata to capture timing requirements by 

identifying their dependencies with functional 

scenarios. The augmented automata were issued to 

UPPAAL model checker for symbolic reachability 

analysis and generating test cases. Murthy et al. [40] 

augmented UML statechart diagrams by adding test 

statements to the state transitions or state nodes. Test 

statements are incorporated into test scenarios and 

helped to generate test scripts.  

     Gebizli et al. [41] proposed to refine system models 

based on the experience and domain knowledge of test 

engineers by collecting and analyzing their test 

execution traces. In this way, the experience gained 

from exploratory testing is used to improve test 

models. Note that in their approach, collection and 

analysis of execution traces are performed 

automatically, and the model refining phase is 

performed manually. Also, authors in [42] successively 

refined Markov usage models by updating transition 

probabilities to direct test case generation process 

toward different parts of the test model.  

     Another advantage of model augmentation is that it 

enables the testers to incorporate non-functional and 

quality-of-service test information into models in order 

to make them ready for generating test cases to test 

the system from different points of view. For example, 

Ryser et al. [43] annotated statechart diagrams with 

performance and timing constraints to allow for 

performance testing. In [44], the authors extended 

sequence diagrams to annotate timing constraints for 

messages. These annotations constraint the time 

between occurrences of events and specify which 

events have to happen before the annotated 

timestamp and which one has to happen at least after 

the specified time.  

IV. Model Transformation 

      Test models based on their types are usually 

transformed into an intermediate form to be 

formalized and prepared for test path or test scenario 

generation [26]. This transformation is done to resolve 

the nonstructural problems of test models and to 

facilitate scenario representation, which results in an 

easier generation of test sequences with respect to the 

given coverage criteria. Intermediate forms used in the 

literature are usually XML [31], table [45-48], tree [20, 

49, 50], graph [19, 26], Petri nets [44, 51], other test 

models [52], different types of automata such as timed 

automata [53] or descriptive languages like input 

language of NuSMV [16, 29].  

      XML is a generic and standard language that can be 

easily parsed, and many tools have the capability of 

translating input models into XML. The XML parser 

extracts necessary information and elements from test 

models and stores them in an appropriate form to be 

used for generating subsequent intermediate forms 

[20, 31, 54] or for later use in the next steps. Also, the 

XML Metadata Interchange (XMI) which is a standard 

for exchanging metadata information via XML between 

UML modeling tools defined by Object Management 

Group (OMG) is widely used for UML models [9, 21, 45, 

55]. Using this standard allows reusing UML test 

models, which are drawn in different testing tools.   

      Tables are widely used to store information that is 

needed for test scenario generation and subsequent 

model transformations. This information can be the 

objects and messages presented in the sequence 

diagram [26], the domain information of input variables 

[34], or can be the information of activities extracted 

from activity diagrams [32, 46, 48]. 

    Tree and graph are the most widely used structures 

as intermediate forms in the literature because of their 

structural similarities to test models and also their 

harmony with test scenario generation techniques. Sun 

et al. [50] proposed to transform activities in activity 

diagram specifications into an equivalent tree via a set 

of transformation rules in order to resolve the non-

structural problem of activity diagrams. Test cases are 

then extracted using generated trees; definitely, it is 

more convenient to generate test scenarios from a 

normalized tree than a non-structural form. Authors in 

[49] mapped class and object diagrams into tree 

structures. The tree structure enabled them to apply 

the genetic algorithm’s tree crossover due to 

generating new test scenarios. Sarma et al. [13] 

translated sequence diagrams into a graph structure 

called sequence diagram graph (SDG). Each node in the 

SDG is mapped to an interaction between two objects 

through a message. In other words, SDG nodes 

represent method calls. This transformation helped 

them having better augmentation by adding the 

required test information such as arguments in the 

methods and expected outputs into SDG nodes. 

Authors in [25] represent an equivalent wait for graph 
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for sequence diagram, which helps to identify the 

deadlock points in concurrent systems by detecting 

cycles using the Tarjan algorithm. Also, several studies 

(e.g., [26, 54]) attempt to gather information provided 

by different test models such as use case, sequence, 

collaboration, and activity diagrams by integrating 

them to carry out more effective, in-depth, and broader 

testing. In order to pave the way for the integration, 

they first transformed these inherently different input 

models into standard intermediate graphs or trees.  

       Petri nets, a well-known mathematical modeling 

language, are another useful intermediate form with a 

rich and strict theory and a wide range of available 

supporting tools. Petri nets have many variations such 

as colored, hierarchical, event-driven, or timed-arc, 

which can be used in MBT for test model formalization 

depending on the application. Petri nets are well-suited 

for expressing concurrency and parallelism  and are 

well-known for their capabilities to deal with the 

interaction fragments properties of sequence diagrams 

[56]. Authors in [57] suggested formalizing sequence 

diagrams by translating them into colored Petri nets. By 

selecting this variant, colors can be used to distinguish 

between object types. Sieverding et al. [44] chose 

timed-arc Petri nets to formalize sequence diagrams 

annotated with timing information to better 

incorporate timing constraints into the model. Authors 

in [51] proposed formalizing requirement specifications 

written in Restricted-form of Natural Language (RNL) by 

automatically translating them into executable Petri 

net models. Then the reachability tree is extracted and 

traversed to generate test scenarios.  

       Timed automaton is a state-based model which can 

precisely specify timing constraints. Mücke et al. [53] 

automatically transformed the UML state diagram into 

timed automata, which is a suitable formal model as 

input to the UPPAAL model checker. Before translation, 

the state diagram is flattened to remove hierarchy 

structures because timed automata lack hierarchy. The 

generated test cases are used to validate the real-time 

behavior of state diagrams.   

       Note that some studies used multiple intermediate 

forms [31, 52]. For example, Kim et al. [52] proposed to 

generate test cases based on control-flow and data-

flow in UML state diagrams. They first transformed the 

state diagrams into EFSMs for flattening the 

hierarchical and concurrent structure of states and also 

eliminating the broadcast communication. Control-

flow in UML state diagrams is identified in terms of 

paths in the resulting EFSMs. Then to generate test 

cases based on data-flow, EFSMs were converted into 

flow graphs in order to be able to apply conventional 

data-flow analysis techniques.   

       It should be mentioned that model transformation 

is a complex and costly operation in which the excessive 

and misplaced use of intermediate forms may prolong 

the test case generation process and pose a threat to 

automation [32]. Also, a sort of traceability and 

synchronization [58] should exist between the original 

models and their corresponding intermediate forms, 

which are mostly neglected in the literature. This 

traceability enables the changes in the SUT models to 

be reflected immediately in their corresponding 

intermediate forms saving a lot of time and resources 

for regression testing and also for future test case 

generations.     

V. Test Scenario Generation 

      After preparing test models, it is turn to generate 

test paths, test sequences, or generally test scenarios. 

Test scenarios contain a high-level description of input 

data, and may also include the expected output and the 

state of the SUT before and after execution of the test. 

Test scenarios are known as abstract test cases and are 

later used to extract concrete tests. As an example, a 

test scenario can be any path from the initial activity 

state to the final activity state consisting of activities 

and transitions guards in an activity diagram, or can be 

any sequence of message paths in a sequence diagram. 

Notice that the selected coverage criterion decides 

about the required test scenarios.  

      Test scenarios can be extracted from test models by 

traversing intermediate forms in a random manner 

using random-walk [23], or in a systematic manner 

using depth-first search (DFS) [19, 31, 34, 46], breadth-

first search (BFS) [26, 30], post-order traversal [20], etc. 

There are also other approaches such as symbolic 

execution [36], model checking [16, 29], and search-

based techniques [17, 18, 59].  

      With regard to the structure of test models in MBT, 

using traversal-based approaches are very common, 

easy to implement, and straightforward. The reason for 

choosing any of the aforementioned traversing 

methods is dependent on the application; for example, 
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Nebut et al. [30] chose breadth-first traversal of their 

proposed use case transition system in order to obtain 

small test objectives, i.e. sequences of use cases. This 

ensures that the size of the computed paths is minimal, 

with this motivation that small tests are more 

meaningful and understandable by humans than large 

ones. Samuel et al. [20] carried out post-order traversal 

of the tree representation of communication diagram 

(Communication Tree) for selecting conditional 

predicates, to reduce the number of execution steps in 

the function minimization process.  

       Symbolic execution is a promising technique for 

generating high coverage test suites and for finding 

deep errors in complex software systems [2, 37]. It 

explores SUT paths symbolically using symbolic values 

for variables and generates a path constraint for each 

path by accumulating predicates in branching nodes 

and updating its state in assignment statements . The 

generated path constraints are fed to a constraint 

solver to decide about their feasibility and generating 

concrete inputs. Symbolic execution is generally used in 

white box testing utilizing the program source code but 

is infiltrated to the MBT too. For example, the approach 

proposed by Kurth et al. [36] symbolically executes 

control-flow paths in the activity diagram and encodes 

them as AMPL programs. They used AMPL to formalize 

the execution of control flow paths in activity diagrams. 

A constraint solver is then used to generate concrete 

test cases. They also performed early infeasible path 

elimination by querying constraint solver at branching 

nodes.  

       Model checking is a well-known technique for 

verifying models and detecting errors in behavioral 

designs. In model checking, a desired set of formal 

properties of the system are specified by the user, 

expressed as temporal logic formulas, and is given to a 

model checker along with formalized test model. The 

properties can be test purposes or coverage criteria 

which are formulated as reachability formulas. The 

negated version of the properties is applied to the 

formal model using model checking to generate traces. 

These traces are then translated to generate test cases. 

Note that the generated test cases by model checking 

can be used to verify the implementation as well as 

verifying the specifications [16].   

      Search-based techniques are widely used in MBT, 

which apply metaheuristic search algorithms such as 

genetic algorithm (GA) [17, 18, 49], memetic algorithm 

[59], ant colony optimization [38], etc. to different 

model-based testing problems. These techniques can 

be used either directly [17, 18, 59] or indirectly [49] for 

generating and prioritizing test scenarios. Kalaji et al. 

[17] proposed generating test sequences from 

extended finite state machines (EFSMs) using genetic 

algorithm by defining a suitable fitness function that 

guides the search toward likely feasible transition 

paths. Their fitness function employed dataflow 

dependencies among transition guards of paths. It 

should be noted that in these techniques, solution 

encoding and defining proper fitness function is so 

crucial, and the success, efficiency, and convergence of 

the algorithm are directly dependent on it.  

VI. Concrete Test Case Generation 

      Since test scenarios contain an abstract 

representation of test cases and are mostly incomplete, 

generally they cannot be directly used as executable 

test cases. So, based on the type and the complexity of 

test models, some works such as handling abstract 

information, concretizing input variables, and solving 

path constraints must be done manually [9, 10, 21, 32] 

or automatically [30, 34] on the test scenarios to make 

them concrete and executable. For automatically 

concretizing test scenarios, input models should be 

well-specified using detailed and additional 

information. 

     In order to concretize test scenarios, the first step is 

to replace abstract information. As an example of the 

presence of abstract information in the test scenarios, 

consider a simplified test scenario T for an Automated 

Teller Machine (ATM):  

𝑇: 𝐺𝑒𝑡𝑃𝑖𝑛(𝑃𝐼𝑁)[𝑉𝑎𝑙𝑖𝑑𝑃𝐼𝑁]𝐺𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡(𝑎𝑚𝑜𝑢𝑛𝑡) 

[𝑉𝑎𝑙𝑖𝑑𝐴𝑚𝑜𝑢𝑛𝑡]𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑒𝐶𝑎𝑠ℎ( ) 

 For the sake of simplicity, we omit some details such as 

message prompts to the user and also operations on 

the banking side. As can be seen, in this test scenario it 

is not known what an invalid 𝑃𝐼𝑁 is and also the valid 

value for 𝑎𝑚𝑜𝑢𝑛𝑡 is not specified. That is why we call it 

an abstract test case. If instead of 𝑉𝑎𝑙𝑖𝑑𝐴𝑚𝑜𝑢𝑛𝑡 we 

had 𝐴𝑚𝑜𝑢𝑛𝑡 > 5000 ∧ 𝐴𝑚𝑜𝑢𝑛𝑡 < 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ∧

𝐴𝑚𝑜𝑢𝑛𝑡 𝑚𝑜𝑑 50 = 0, it would be easier to concretize 

the 𝐴𝑚𝑜𝑢𝑛𝑡 variable automatically; otherwise, the 

tester must carefully read the specifications to exploit 

the validity conditions of Amount. The same is true 
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about 𝑉𝑎𝑙𝑖𝑑𝑃𝐼𝑁 which may follow some domain rules 

and patterns.  

After replacing abstract information, we are generally 

faced with some input variables and path constraints. 

Input variables can be method parameters, instance 

variables that set the states of classes, parameters of 

events and actions in the UML state diagram, etc. Note 

that there is zero- or one-to-many relation between 

test scenarios and concrete test cases, which means 

that for each test scenario, there can be more than one 

test case. Sometimes with regards to the coverage 

criteria, there is a need for more than one 

concretization for a test scenario, i.e., a path may need 

to be tested several times with different concrete data. 

For example, full predicate coverage requires that each 

clause in each predicate on each guard condition is 

tested independently [22] which means that all 

combinations of truth values of clauses should be 

concretized.  

      Concretizing test scenarios is mainly done by 

utilizing pre-defined information incorporated into test 

models [13, 43], constraint solving [17, 34, 36], search-

based techniques like GA [17], category-partition 

method [10, 15, 32, 47], random [9], and function 

minimization technique [19, 20].  

     Annotating test models and adding suitable test 

information can help to concretize test scenarios. For 

example, in T, by choosing purely random values for 

𝑃𝐼𝑁, it may be unlikely to obtain a valid value. But data 

annotations can specify its form and pattern. Also, data 

annotations can determine the type and the range of 

valid values for input variables. For example, authors in 

[55] used labels with textual stereotypes representing 

data flow for the edges of the activity diagram. These 

stereotypes contain the name and the type of variables. 

Also, some approaches utilize OCL constraints to 

specify the information needed for concretization (e.g., 

[13]).  

      There are many off-the-shelf constraint solvers that 

can be used to solve path constraints, but the existence 

of nonlinear arithmetic and floating-point 

computations makes a path constraint complex, and 

this may lead to difficulty in translating the constraints 

into the theory of the underlying solver. In other words, 

the efficiency and usability of this approach are based 

heavily on the theory supported by the constraint 

solver and its constraint solving abilities.  

     Search-based techniques can be used to extract 

input data by converting path predicates into fitness 

function. Since these techniques require the calculation 

of fitness functions in a large number of times, they 

should be computationally as simple as possible and 

effective in order to guarantee the efficiency of the 

approach.  

     It should be noted that, performing boundary value 

analysis along with these techniques increase the 

quality of test set. Domain boundaries are particularly 

fault prone [36], so choosing boundary test cases to 

execute a control-flow path are more valuable than 

arbitrary test cases. In this regard, some studies used 

boundary testing [9, 19, 20] to generate concrete test 

cases to ensure that boundaries are tested adequately.  

Conclusion 

     Model-based testing has some limitations and 

challenges that are mostly related to the 

incompleteness, high level of abstraction, complexity, 

and also the informal nature of input models. In fact, in 

MBT, the quality of input models has a direct impact on 

the quality of the test suite, and subsequently, on the 

effectiveness of the whole testing process.  In the 

literature, there are different studies addressing these 

problems. 

      In this paper, we represent a framework for model-

based test case generation and show that MBT 

approaches have three main steps: preprocessing, test 

scenario generation, and concrete test case generation. 

We represent the necessity of each step and 

summarized the proposed methods. We also 

categorized different coverage criteria used in MBT. 
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