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 In model-based testing (MBT), the quality of input models and their relevance 
with the testing target has a direct impact on the quality of the test suite and 
the effectiveness of the whole testing process. Choosing inappropriate models 
may increase the number of MBT steps and may not fulfill the testers' 
expectations. In this paper, we focus on different input models of MBT and 
represent a classification framework for them. The classification is performed 
by considering their nature and testing abilities. We discuss the strengths and 
weaknesses of test models regarding their potential for generating test cases, 
and summarize the existing works in the literature based on the proposed 
classification framework. The aim of this paper is to improve the understanding 
of model-based test case generation approaches and help the testers to choose 
appropriate models to exploit test cases with regard to their testing goals and 
purposes. 
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Introduction 

       Due to the increasing complexity of today's 

software systems, automation of the testing process 

has become a must [1-4]. In this regard, model-

based techniques have received much attention and 

showed promising results. In MBT, different models 

can be used as input for test case generation, and 

each one is suitable for specific testing needs and 

has its own advantages and drawbacks. In fact, with 

regard to the testing target, it is very important to 

choose appropriate models [5]. Testing target may 

include different levels of testing, different types of 

system under test (SUT), or different parts of SUT. 

Not every model can be used for every testing 

target. For example, for testing real-time systems, 

input models should incorporate timing constraints 

[6], or for integration testing, input models must 

precisely indicate communications between 

different parts of SUT [7].  

Therefore, choosing inappropriate input models 

may increase the number of MBT steps and may not 

fulfill the testers' expectations. To the best of our 

knowledge, there is no research in which draws a 

complete classification and comparison of input 

models to show their abilities and potentials in MBT 

with regard to the testing target.   

In this paper, we focus on test models, represent our 

classification framework, and show their application 

for MBT. The classification is performed based on 

the information provided by test models to generate 

test cases, which categorize test models into five 

groups: state-based models, interaction-based 

models, structure-based models, operation-based 

models, and hybrid models. The models in each 

category can be used to generate test cases to test 
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SUT from different points of view. In our previous 

work [8], we described state-based models in detail. 

In the following, we describe the other categories 

and discuss their abilities and shortcomings to 

generate test cases. The aim of this survey is to 

improve the understanding of model-based test 

case generation approaches and helps the testers to 

choose appropriate models to exploit test cases with 

regard to their testing goals and purposes. 

Interaction-based models [9, 10] describe the 

dynamics of the system behavior and focus on 

representing interactions between different parts of 

the system. Structure-based models [11] describe 

the static aspects of the system. Operation-based 

models [5, 12] focus on the actions within the 

behavior and depict the operational workflows. 

Studies in the last category (e.g. [13]) use the 

combination of the information provided by 

different models to generate test cases. Each model 

has its own strengths and weaknesses, and using the 

information provided by one model to compensate 

for the lack of such information in another, would 

make test case generation more efficient. 

The rest of the paper is organized as follows: in 

section 2, we present the interaction-based models. 

Section 3 introduces structure-based models, and 

operation- and hybrid models are described in 

Section 4 and 5, respectively. Finally, section 6 is 

dedicated to the conclusion. 

 

I. Interaction-based Models 

      Interaction-based models describe the 

dynamics of the system behavior and focus on 

representing interactions between different parts of 

the system. The most widely used interaction-based 

models in MBT, include UML sequence diagram [9, 

14-17], UML communication diagram [18-20] and 

UML use case diagram [10, 13, 21-24]. 

      UML Sequence diagram is a graphical scenario 

language that consists of objects and messages that 

exchange among the objects in the order they occur 

in the system over time. A sequence diagram 

represents various interactions among different 

objects through the invocation of methods and 

describes how a set of objects interact to achieve a 

behavioral goal.  

The sequence diagram has two dimensions: the 

vertical dimension that represents time, and the 

horizontal dimension that represents object 

instances. The communication between object 

instances is denoted by arrows between lifelines. 

The lifelines are the vertical dashed lines that 

represent the existence of corresponding object 

instances at a particular time. Since UML 2.0, a set of 

interactions can be framed together to form 

interaction fragments, and multiple interaction 

fragments can be combined using combined 

fragments. A combined fragment consists of 

interaction operands whose type is determined by 

the interaction operator. An interaction operand is a 

group of message sequences that run if the guard 

condition is met. An interaction operand without 

guard condition always runs. There are different 

interaction operators such as loop for repetition, 

alt/opt/break for selection, par for concurrencies, 

seq for weak sequencing, etc. Weak sequencing 

allows partial parallel execution between lifelines 

and means that events on different lifelines from 

different operands may occur in any order. A 

combined fragment can also contain nested 

combined fragments. 

Based on [25], A sequence diagram can be defined 

formally as a 9-tuple 𝐷 = (𝑑, 𝐼, 𝐸, <

, Σ𝑚𝑠𝑔 , 𝑀, 𝐹, 𝑋, 𝐸𝑥𝑝), where: 

𝑑 ∈ Σ𝑛𝑎𝑚𝑒  is the name of the diagram and Σ𝑛𝑎𝑚𝑒  

the set of all diagram names; 

𝐼 is a finite set of object instances (lifelines); 

𝐸 = ⋃ 𝐸𝑖𝑖∈𝐼  is a set of events for lifeline 𝑖, s.t. ∀𝑖, 𝑗 ∈

𝐼 ∶ 𝐸𝑖 ∩ 𝐸𝑗 = ∅; 

< is a set of partial orders which defines for instance 

line 𝑖 ∈ 𝐼 a set: <𝑖⊆ 𝐸𝑖 × 𝐸𝑖; 

Σ𝑚𝑠𝑔  is a finite set of message labels 𝑙; 

𝑀 is a set of messages 𝑀 ⊆ 𝐸 × Σ𝑚𝑠𝑔 × 𝐸, s.t. for 

every m1 , m2 ∈ 𝑀 with 𝑚1 = (𝑒11, 𝑙1, 𝑒12) and 

𝑚2 = (𝑒21, 𝑙2, 𝑒22): 𝑚1 ≠ 𝑚2 ⟹ 𝑒11 ≠ 𝑒12 ≠

𝑒21 ≠ 𝑒22; 

𝐹 is a set of interaction fragments for which the 

functions 𝑜𝑝, 𝑒𝑣, 𝑠𝑢𝑏 are defined as: 
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𝑜𝑝: 𝐹 → Ω × ℕ associates an operator Ω ∈

{𝑠𝑡𝑟𝑖𝑐𝑡, 𝑝𝑎𝑟, 𝑜𝑝𝑡, 𝑎𝑙𝑡, 𝑙𝑜𝑜𝑝, 𝑏𝑟𝑒𝑎𝑘, 𝑠𝑒𝑞, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑖𝑔𝑛𝑜𝑟𝑒, 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟, 𝑎𝑠𝑠𝑒𝑟𝑡, 𝑛𝑒𝑔}

 and the number of operands to a fragment; 

𝑒𝑣: 𝐹 × ℕ → 2𝐸  associates a set of events to a 

pair (𝑖𝑑, 𝑛) of a fragment 𝑖𝑑 ∈ 𝐹and an operand 

index number n; 

𝑠𝑢𝑏: 𝐹 × ℕ → 2𝐹associates a set of nested 

fragments to a parent fragment and an operand 

index number; 

𝑋 = {𝑋𝑖}𝑖∈𝐼 a set of local variables indexed by object 

instances 𝑖 ∈ 𝐼. 

𝐸𝑥𝑝 is a set of expressions, where each expression is 

associated as a guard to a message or a fragment 

using the function guard: 𝑀 ∪ 𝐹 → 𝐸𝑥𝑝 

Since sequence diagrams describe the interactions 

among software components, they are a good 

source for integration testing and detecting 

interaction faults. Also, sequence diagrams are 

suitable for the realization of use case specification, 

thus they are useful for functional system testing 

too. 

       The par and seq interaction operators allow 

sequence diagrams to specify concurrent systems, 

and because in such systems complexity arises when 

objects interact with each other [14, 17], they are a 

good choice for testing concurrent systems and 

concurrency. Like all models which allow specifying 

concurrency, the test explosion is a matter of 

concern when using sequence diagrams to generate 

test cases. Khandai et al. [17] considered par 

fragments and proposed to generate test cases for 

concurrent systems by converting sequence diagram 

to a Concurrent Composite Graph (CCG). Each node 

in the CCG represents a sequence of messages 

within one operation fragment. To avoid the issues 

like communication deadlock and synchronization, 

they proposed to use breadth-first traversal on CCG 

when encountering fork nodes (for concurrent 

activities) and to use DFS for the rest of the graph 

(for sequential activities). 

      The main challenge for test case generation 

from sequence diagrams with regards to their 

complex and non-hierarchical structure is extracting 

the flow of control among the fragments and their 

nested occurrences. Sequence diagrams do not have 

a convenient structure for repetition, recursions, 

and conditions. Combined fragments increase the 

ability of sequence diagrams for behavior modeling 

but make scenario representation and their flow 

analysis a challenging task. The studies in this area 

generally generate an intermediate form for 

formalizing and structuring the sequence diagram 

[20, 26, 27]. It should be noted that the formalization 

should be carried out in a way that be 

comprehensive in terms of covering fragments and 

also retain the default behavior and semantic of the 

sequence diagram. For example, some 

formalizations ignore the standard interpretation of 

weak sequencing and force the synchronization of 

lifelines on entering and exiting fragments [28]. 

Cartaxo et al. [26] proposed an approach for feature 

testing of mobile applications by converting 

sequence diagrams into a labeled transition system 

(LTS). They just considered repetitive and 

conditional sequences in their model and eliminate 

the message exchange between internal objects 

since they tend to perform functional testing. The 

test sequences are generated by the depth-first 

traversal of LTS. Nayak et al. [20] proposed to 

convert sequence diagram into a directed graph 

named structural composite graph (SCG) in order to 

systematically investigate the comprehensive flow 

of control by considering loop, alt, opt, break, and 

par combined fragments. In this transformation, 

they show all the interaction fragments and flow of 

control of these operands unambiguously and in a 

structured way. They mapped the messages within a 

fragment into a block node, the entrance to a par 

fragment into a fork node, the exit from a par 

fragment into a join node, the conditional 

expression among operands of a fragment into a 

decision node, and the exit form selection fragments 

into a merge node. Then test scenarios are 

generated by the depth-first traversal of SCG. 

Authors in [27] proposed a toolset for conformance 

testing using sequence diagram, which supports all 

interaction operators including weak sequencing by 

retaining their default semantics. They translated 

sequence diagram into an extended Petri net that 
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combine the characteristics of colored and event-

driven Petri nets.      

 

Communication diagram [18-20, 29], formerly called 

collaboration diagram, like sequence diagram, 

represent the inter-object communications and 

capture the exchange of messages between objects. 

Communication and sequence diagrams can 

represent the same object interactions. The 

sequence diagram emphasizes on time ordering of 

messages, while the communication diagram 

focuses on the structural organization of objects and 

represents a clear visualization of how objects 

communicate to perform a behavioral goal. In a 

communication diagram, the objects are connected 

by links that represent messages. The links are 

labeled with unique sequence numbers, which 

determine the ordering of messages.  

Sequence diagrams are more commonly used in 

practice than communication diagrams [30], and 

naturally, in the literature, there are much more 

approaches for generating test cases from sequence 

diagrams than communication diagrams. The ability 

of communication diagrams in representing the 

structure of objects in communications and also 

their ability to depict the overall design of the 

system have been considered in the literature for 

generating test cases. The communication diagram 

is suitable for integration and cluster-level testing. 

Authors in [19, 31] developed some coverage 

criteria for collaboration diagrams and used them to 

generate test cases for testing implementation and 

design, respectively.  

 

Use case model [10, 23, 24] defines the frontier of 

the SUT, its development begins early and shows the 

main functionality of the system at a high level of 

abstraction. A use case represents different possible 

sequences of interactions between the external user 

and the SUT, and comprises a diagram part and a 

textual description known as use case scenario. The 

diagram part visualizes the interactions among use 

cases and actors. The use case scenario informally 

describes one of the system or subsystem 

functionalities. Each functionality can be realized 

inside a software component, like a module, or can 

be obtained from interactions of several 

components.  

Since use cases show the main functionalities of the 

SUT, they are a good starting point for MBT, tell the 

tester what to test, and are good sources for 

integration, system, and acceptance testing [22]. 

The pre- and post-conditions of use cases are good 

sources for generating the initial state and the oracle 

for test cases, respectively. Also, since the scenarios 

are modeling the system from the user’s perspective 

in a black-box manner, they may not be well-suited 

for unit testing. 

The existence of a large gap between high-level use 

cases and concrete test cases makes the full 

automation of the test case generation process 

difficult. There are two main challenges for 

generating test cases from use case diagrams: first, 

determining sequential constraints and 

dependencies among use cases, and second, dealing 

with the informal nature of use case scenarios.  

Sequential constraints between use cases can be 

determined by checking if the post-condition of one 

meets the pre-condition of the other. Nebut et al. 

[21] extend use cases with the contracts in the form 

of OCL. Contracts are specified using pre- and post-

conditions. By using the contracts for each use case, 

they built a Use Case Transition System (UCTS) from 

which all valid sequences of use cases are extracted. 

Authors in [32] represent the sequential 

dependencies between use cases for each actor by 

an activity diagram in a way that the vertices are use 

cases and the edges are sequential dependencies 

between them. Independent use cases modeled in 

the fork-join constructs. Swain et al. [13] first 

construct an activity diagram for use case diagram 

and then convert it to Use Case Dependency Graph 

(UDG). Use case dependency sequences are 

generated using UDG.  

After deriving use case sequences, it is turn to derive 

test sequences from use case scenarios. Test 

scenarios can be generated directly from natural 

language requirements using Natural Language 

Processing (NLP) [33], or can be generated indirectly 

by making use case scenarios more formal in 
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different ways such as transforming them into state 

chart diagram [34], sequence diagram [13, 21, 32], 

activity diagram [32, 35], collaboration diagram [31], 

or Petri nets [36, 37]. It is desirable that this 

transformation carry out automatically as the 

proposed approaches in [22, 33, 35-37]. To this end, 

some studies proposed to write requirement 

specifications in strict forms such as Requirements 

Specification Language (RSL) [22] or Restricted-form 

of Natural Language (RNL) [36]. Finally, by replacing 

test sequences generated from use case scenarios in 

the use case sequences, test scenarios can be 

generated.  

 

II. Structure-based Models 

    Structure-based models describe the static 

aspects of the system. The most widely used 

structure-based models in MBT include the UML 

class diagram [11] and UML object diagram [38].  

 

Class diagram captures the static structure of the 

SUT classes and provides information about class 

names, class attributes, type of attributes, class 

cardinality, method signatures, class relationships, 

multiplicities, inheritance, etc. A class diagram can 

be defined formally as a 2-tuple 𝐶𝐷 = (𝐶𝑁, 𝐴𝑁) 

where: 

𝐶𝑁 is a finite set of classes. Each 𝐶𝑖 ∈ 𝐶𝑁is a 2-tuple 

𝐶𝑖 = (𝐴𝑡𝑡𝑟, 𝑀) where: 

𝐴𝑡𝑡𝑟 is a set of class attributes {<

𝑎𝑡𝑡𝑟𝑖: 𝑡𝑦𝑝𝑒𝑖, 𝑐𝑖 >}. Each 𝑎𝑡𝑡𝑟𝑖is the name of the 

attribute with the type 𝑡𝑦𝑝𝑒𝑖and 𝑐𝑖  is the constraint 

over 𝑎𝑡𝑡𝑟𝑖. 

𝑀 is a set of method signatures {<

𝑚𝑖(𝑝1: 𝑡𝑦𝑝𝑒1, … , 𝑝𝑛: 𝑡𝑦𝑝𝑒𝑛), 𝑅𝑡𝑦𝑝𝑒𝑖 >} where 𝑚𝑖 is 

the name of the method, 𝑝1, … , 𝑝𝑛are the 

parameter names, 𝑡𝑦𝑝𝑒1, … , 𝑡𝑦𝑝𝑒𝑛are parameter 

types and 𝑅𝑡𝑦𝑝𝑒𝑖 is the return type. 

𝐴𝑁 = < 𝐶1 , 𝑇𝑦𝑝𝑒, 𝐶2 > is a set of associations 

between classes where 𝐶1, 𝐶2 ∈ 𝐶𝑁and 𝑇𝑦𝑝𝑒 is the 

name of association. 

By providing valuable information such as method 

signatures, which include parameter names, 

parameter types and return type, class attributes 

that include their names and types, and constraints 

in the form of OCL on the class attributes (for 

representing the range of attributes), and on the 

operations (pre- and post-conditions), class 

diagrams are a rich source for representing domain 

model and complementing other test models. For 

this reason, they are mostly used to supply 

complementary information for the testing process 

such as providing the required information for 

model augmentation [39], identifying the entities in 

the system [40], or determining a set of object 

configurations from which the test is started [31]. 

Different types of faults that are related to the 

evaluation of inheritance, object states, and 

associations between objects can be detected by 

class testing. For this, Andrews et al. [31] proposed 

some coverage criteria to generate test objectives as 

follows: Generalization (GN) criterion, class attribute 

(CA) criterion, and association-end multiplicity 

(AEM) criterion. 

 Another approach to generate test cases directly 

from class diagrams is to generate a sequence of 

methods with different ordering by considering the 

relationship between classes [41, 42]. At the end of 

the test execution, it is checked whether the 

resulting states of the involved objects are correct or 

not. Shanti et al. [41] proposed random ordering of 

methods by applying the genetic algorithm’s tree 

crossover [43] on the tree structures obtained from 

class diagrams in order to create a new generation 

of trees. The generated trees are converted into 

binary trees and then traversed in DFS order to 

generate test scenarios. Since class diagrams do not 

provide behavioral view of the system, such blindly 

generated test scenarios may not be effective in 

revealing faults. 

Class diagrams can be used to determine an order to 

integrate and test the classes during integration 

testing. Integration of classes is often incremental 

and needs to generate stubs in order to simulate the 

behavior of classes that have not been already 

tested. The main challenges in this area are 

minimizing the number of required stubs and 

breaking dependency cycles in the class diagram. 

Traon et al. [44] proposed to generate Test 
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Dependency Graph (TDG) from class diagrams to 

determine the ordering of classes and methods for 

integration testing. Vertexes of the TDG represent a 

class or a specific method of the class, and directed 

edges represent dependencies. Different 

dependencies in the class diagram, such as class-to-

class and method-to-class are captured to generate 

TDG. Class-to-class dependencies can be easily 

identified through class relationships in the class 

diagram. A method-to-class dependency exists if a 

method has an object of a class declared in its 

signature. The presence of dependency cycles in the 

class diagrams is the main obstacle to the 

topological ordering of classes. So, they refined TDG 

in order to apply graph-based algorithms for 

breaking cycles and determining the ordering of 

classes. Zhang et al. [45] proposed an approach for 

determining optimal class integration test order 

with the minimum number of stubs, considering 

abstract classes and polymorphism. They mapped 

class diagram relationships into Object Relation 

Diagram (ORD), found out the strongly connected 

components using Tarjan’s algorithm, and then used 

graph-based heuristic algorithm to break cycles. In 

addition to the graph-based algorithm to break 

cycles, search-based algorithms can be employed 

too.  

 

Object diagram shows a snapshot of the detailed 

state of the system at a certain point in time as a 

collection of objects, each in a particular state, and a 

link between objects indicating a possible 

communication. Each object state may be 

constrained by an assertion or values of its 

attributes. Object diagrams are more concrete than 

class diagrams since unlike class diagrams, their 

elements are in concrete form to represent real-

world objects. Object diagrams are mostly used to 

provide complementary information for the test 

case generation process, such as specifying an initial 

configuration [40]. 

 

 

III. Operation-based Models 

 

Operation-based models focus on the actions within 

the behavior and depict the operational workflows. 

The most widely used operation-based model in the 

literature of MBT is the UML activity diagram [5, 12, 

46-52].  

     

UML activity diagram is a powerful tool and one of 

the most important design artifacts used for 

behavior modeling, which can represent the 

business workflow of the SUT in different levels of 

granularity. Activity diagrams capture the key 

system behaviors and perfectly describe the 

realization of the system operations in the design 

phase.  

    An activity diagram comprises a set of nodes, 

edges, and swim lanes. Different types of activity 

nodes occurring in an activity diagram include action 

nodes, control nodes, and object nodes. Each action 

node represents a sequence of statements or an 

operation of the system. An action begins execution 

when receiving data from its incoming edge, waits 

for the completion of its computation, and then the 

execution is directed to the successor nodes. This is 

due to the adoption of activity diagrams with the 

token mechanism of Petri net [53]. Control nodes 

coordinate the control and data flow between other 

nodes and include branch and merge nodes, fork 

and join nodes, and initial and final nodes. Activity 

diagrams support both conditional and concurrent 

behaviors. Conditional behaviors are specified by 

branch and merge nodes, and concurrent behaviors 

are defined by fork and join nodes. A fork node 

generates multiple tokens for its descendent nodes, 

and the join node acts as a synchronization point and 

passes the token to the subsequent nodes only 

when all the synchronized threads become ready.  

Object nodes are used for providing inputs and 

outputs for an action and can be used as oracle too 

[54]. Edges are defined as the transitions, which 

represent control flows and data flows between 

nodes, and swim lanes represent the supplier of the 

activities. Notice that any construct can be nested 
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with any other constructs. An activity diagram can 

be formally defined as a 5-tuple 𝐷 = (𝐴, 𝑇, 𝐹, 𝑎𝐼 , 𝑎𝐹) 

where: 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} is a finite set of action nodes; 

𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑛} is a finite set of completion 

transitions; 

𝐹 ⊆ {𝐴 × 𝑇} ∪ {𝑇 × 𝐴} is the flow relation between 

action nodes and transitions; 

𝑎𝐼 ∈ 𝐴 is the initial activity state, and 𝑎𝐹 ∈ 𝐴 is the 

final activity state; there is only one transition 𝜏 ∈ 𝑇 

such that (𝑎𝐼 , 𝜏) ∈ 𝐹; and (𝜏′, 𝑎𝐼) ∉ 𝐹 and (𝑎𝐹 , 𝜏′) ∉

𝐹 for any 𝜏′ ∈ 𝑇. 

Most of the code-oriented structures are available in 

the activity diagram, and generally, a path in an 

activity diagram is a possible run-time execution 

path of the implemented operation [55]. The 

behavior modeled by activity diagrams is easy to 

understand. Also, activity diagrams are flexible in 

the behavior modeling in such a way that they can 

be used to give a quick overview of the entire system 

or can be used to depict the internal logic of a 

complex operation and details of a procedural 

implementation [50, 52]. Since the activity diagram 

expresses how the system functionalities can be 

exercised and implemented, tells the tester how to 

test, and is a good basis for functional testing.  

UML activity diagrams can be used to model the 

dynamic concurrent scenarios of a group of objects; 

thereby they are a good choice for testing 

concurrency and are widely used in this area [50, 56-

58]. Also, their proximity to code has made them, in 

addition to being widely used in the generation of 

test data, to be a good source for reducing and 

optimizing test cases too. For example, Chen et al. 

[59] proposed an approach to reduce randomly 

generated test cases using activity diagrams. They 

interpret each activity state in the activity diagram 

as the execution of one method in the java program 

and instrument the java program under test 

according to its activity diagram specification for 

gathering the program execution traces. The java 

program execution traces are a sequence of events 

corresponding to method completions. By running 

the instrumented java program with randomly 

generated test cases, a set of program execution 

traces is obtained. Then by matching the obtained 

execution traces with the activity diagram according 

to a specific adequacy criterion, a reduced test set is 

generated. They considered three coverage criteria: 

activity coverage, transition coverage, and simple 

path coverage. For example, with regard to the 

activity/transition coverage, a test case is selected if 

its corresponding execution trace contains some 

activity/transitions which are not covered 

previously.  

The ability of activity diagrams to precisely represent 

operations has led them to be used in regression 

testing for detecting changes in the semantics of 

operations [60, 61]. Ye et al. [60] proposed an 

approach to identify the changes between two 

versions of SUT by comparing the old and new 

activity diagrams. By the comparison, they identified 

the affected, unaffected, removed, and new paths. 

For the new paths, they generate new test cases, 

and for the affected, unaffected, and removed 

paths, they classified previously generated test cases 

into retestable, reusable, and obsolete, respectively. 

Finally, retestable and newly generated test cases 

are chosen to test the new version of SUT. Since in 

this approach, changes in the static structure of the 

SUT may not be detected, Dahiya et al. [61] 

proposed to identify the changed operations using 

activity diagrams and searched them in the class and 

sequence diagrams of the SUT in order to extract 

their corresponding retestable test cases.      

The challenges of activity diagrams for MBT can be 

listed as follow: 1- the presence of loops and 

concurrent activities result in path explosion, which 

should be managed to generate adequate test 

scenarios in a reasonable time [62]. 2- because of 

the non-structural properties such as fork-join 

constructs and nested combination of control 

structures that may exist in activity diagrams and 

may lead to ambiguous interpretation of them [54], 

it is difficult to identify all possible test scenarios, so 

flattening the diagram [63] and transforming them 

into a well-structured form seems necessary [50, 54, 

57].  

To cope with path explosion caused by loops, 

researchers mostly employ some coverage criteria 
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such as basic path, in which loops are executed for a 

limited number of times (for example, exact once 

[56], at least once [64], or at most once [55, 65]). 

Sapna et al. [66] addressed path explosion caused by 

concurrent activities and proposed to enforce an 

ordering among them by considering their 

interleaved execution inside a fork-join construct. 

Imposing domain dependency between activities 

helped them to cope with path explosion and 

generate the optimal number of test scenarios by 

discarding illegal or irrelevant combinations of 

activities. To reduce the number of test cases for 

concurrent systems, Kim et al. [58] proposed to keep 

only the behaviors related to testing by eliminating 

the internal processing activities and focusing on the 

external interaction of the system. They converted 

the activity diagram into an input-output explicit 

activity diagram (IOAD), which explicitly shows the 

input to and the output from the system and omits 

the non-external inputs and outputs. IOAD is then 

used to construct a directed graph from which the 

test scenarios were extracted. Arora et al. [67] 

proposed to use a bio-inspired approach named 

Amoeboid Organism Algorithm (AOA) to generate 

test scenarios for the concurrent section of activity 

diagrams. AOA draws its inspiration from the 

internal mechanism of the slime mould Physarum 

Polycephalum. They showed that their approach 

outperforms ant colony optimization and genetic 

algorithm [43] in terms of reducing redundancy and 

increasing the number of test scenarios, 

respectively.  

In order to cope with complex dependencies that 

arise within nested structures, and also identifying 

more test scenarios, Nayak et al. [54] proposed to 

convert activity diagram into a well-formed 

structure. They first classified the various control 

constructs in the activity diagram into loop 

constructs, selection constructs, and fork constructs. 

Each control construct is denoted as a minimal 

region with a distinguished entry node and exit 

node, which can be analyzed independently of other 

constructs. Next, they converted the activity 

diagram into a model called intermediate testable 

model (ITM) using the classified control constructs. 

The conversion is done by mapping each minimal 

region into a composite node in successive steps in 

order to retain the nesting relation of control 

constructs. Therefore, the ITM would be a concise 

representation of the activity diagram in which each 

of its composite nodes encloses a control construct. 

In order to generate test scenarios, the base path 

from the initial node to the final node is extracted 

from ITM. The base path can be considered as a 

hyper test scenario. Then in a recursive manner, the 

composite nodes are expanded by choosing one of 

their internal paths. The number of internal paths to 

be replaced is determined by the coverage criteria. 

The internal paths are generated using depth-first 

search in the control construct graph. Authors in [50] 

proposed to convert the activity diagram into a 

standardized structure, which is a set of extended 

AND-OR binary trees (EBTs). The transformation is 

performed based on a set of transformation rules, 

and its goal is to eliminate fork and join elements 

and represent branches and concurrent flows as 

EBTs. The derived EBTs are then traversed to 

generate test scenarios. 

IV. Hybrid Models 

     Studies in the last category use the combination 

of the information provided by different models to 

generate test cases. Each model has its own 

strengths and weaknesses, and using the 

information provided by one model to compensate 

for the lack of such information in another, would 

make test case generation more efficient.  

Based on the way of utilizing the information to 

generate test cases, the test models used in these 

studies can be generally divided into two groups: 

compound models [7, 68] and complementary 

models [13, 69]. 

Studies in the first category, integrate the selected 

models to form a new compound model which can 

be used to generate better test cases. Sumalatha et 

al. [68] utilized activity and sequence diagrams, 

converted them into activity and sequence diagram 

graphs, and then inserted the activity diagram graph 

into the sequence diagram graph to form an activity-

sequence graph. Test cases are generated by 
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traversing the activity-sequence graph in breadth 

first order. The idea is that activity diagrams describe 

the flow of activities inside the objects, represent 

the implementation of an operation, and can realize 

the messages of sequence diagrams (methods). 

Sarma et al. [70] proposed to integrate use case 

diagram and sequence diagram by converting them 

to use case diagram graph (UDG) and sequence 

diagram graph (SDG). In the integrated diagram 

named system testing graph (STG), each UDG is 

connected to its SDG, and test cases are generated 

by traversing STG. Their approach covers use case 

initialization faults, use case dependency faults, and 

also scenario and interaction faults. Their 

achievements from model integration are twofold: 

first, the model integration helped them to decide 

whether a test driver needs to apply a specific test 

suite or not. Second, the information needed for 

model augmentation can be mined once and used in 

different levels such as use case and sequence 

diagram. Ali et al. [7] suggested combining the UML 

collaboration and state diagram to perform 

integration testing of classes. The idea is that the 

interactions between objects should be exercised 

for all possible states of the objects involved. 

Therefore, the generated test cases aim at detecting 

faults that may arise due to invalid object states 

during object interactions. They have integrated 

UML collaboration and state diagram to form a 

graph called SCOTEM (State Collaboration Test 

Model). Each vertex in the SCOTEM corresponds to 

an instance of the class in a distinct abstract state. 

The object states were extracted from the state 

diagram. Each edge in SCOTEM can be a message or 

transition edge. A message edge represents a call 

action between two objects extracted from the 

collaboration diagram, and a transition edge 

represents a state transition of an object which is 

available in the state diagram. The test paths are 

generated by traversing the SCOTEM graph. In order 

to perform efficient integration testing while 

considering object states, Swain et al. [71] proposed 

to generate a State-Activity Diagram (SAD) by 

synthesizing the UML statechart diagrams of 

different objects involved in a particular use case 

with an activity diagram. SAD is generated by 

considering the activities in the activity diagram and 

the corresponding actions in the UML statechart 

diagram to form state-activity nodes. They also 

considered the synchronization of activities over 

multiple interacting objects by defining AND-OR 

nodes and waiting activities in SAD. The test 

scenarios are generating by the depth-first traversal 

of SAD. Their evaluation using mutation analysis 

showed the effectiveness of the generated test 

cases in finding seeded integration faults in the 

source code. Authors in [72] proposed to generate 

and prioritize test scenarios by merging activities in 

the activity diagram with the sequence of messages 

in the communication diagram. The idea is that 

communication diagrams represent the high-level 

design while activity diagram is closely related to the 

internal structure of the code. In fact, activity 

diagrams can represent the procedural flow of 

method execution corresponding to the messages 

between objects in the communication diagram. By 

this combination, message and activity paths can be 

both covered, which can lead to revealing more 

faults and performing more efficient prioritization. 

Pilskalns et al. [73] utilized class diagrams, sequence 

diagrams, and OCL expressions to find 

inconsistencies among them. The OCL pre- and post-

condition constraints and invariants are used as 

oracle in the oracle procedure. They first construct a 

Directed Graph (DG) from each sequence diagram by 

considering opt, alt, and loop fragments. Each vertex 

of the DG represents either a message or a sub-DG 

(a combined fragment) and edges represent the 

ordering between either messages in sequence 

diagram or sub-DGs. The class diagram and OCL 

constraints are also used to generate Class and 

Constraint Tuple (CCT). CCT encapsulates all the 

information provided by class diagrams such as 

hierarchy, associations, attributes, etc. The DG and 

CCT are then combined to form Testable Aggregate 

Model (TAM). This is done by replacing each class 

name in each vertex with the corresponding CCT. 

This combination allows them to apply the test 

adequacy criteria for both class diagram and 

sequence diagram.  
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The physical integration of test models is helpful in 

covering a broader range of errors and wider regions 

of SUT. On the other hand, choosing appropriate test 

models to be integrated as well as the way of 

integration is a challenging task. 

Studies in the second category use the information 

of different models as a complementary piece of 

knowledge and generate test data based on the 

collected information. In other words, these works 

integrate the information provided by test models 

instead of physically integrating the models. Kumar 

et al. [69] extracted the information from class, 

activity, and state diagrams and store them in 

separate tables, and finally utilized them to generate 

test cases. Authors in [40] utilized class, object, and 

state diagrams to generate test cases in a way that 

the class diagrams identify the entities in the system 

and explain the structure of signal events, the state 

diagrams, one for each class, explain how these 

entities may evolve and specify test purposes, and 

the object diagrams specify an initial configuration. 

Andrews et al. [31] utilized class and communication 

diagrams to generate test cases. The class diagram is 

used to define a set of object configurations for 

starting the test and checking the output, and the 

communication diagram is used to generate test 

scenarios. Pilskalns et al. [74] used the information 

from class and sequence diagrams to detect and 

correct errors in the design phase. Overall, this 

approach allows obtaining test information for 

model augmentation from different sources and 

also helps to generate test cases for testing different 

aspects of the system by utilizing different models. 

The main challenge of this approach is the 

complexity of creating a valid and effective 

relationship between information from different 

test models with different natures. 

 

 Conclusion 

Model-based testing is an effective approach to 

automate test case generation process by utilizing 

different models of the system under test, which can 

be used to test the final product as well as to validate 

and improve the models themselves. In the 

meantime, the selection of input models according 

to the testing goals and purposes has a very 

important role in the success of this approach. 

In this paper, we focus on different input models of 

MBT and represent a classification framework for 

them. The classification is performed based on the 

information provided by test models, and also their 

potential to generate test cases. We compared and 

showed the strengths and weaknesses of test 

models according to their effectiveness for 

generating test cases, and showed which models are 

more appropriate for covering the desired testing 

target. 
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