
 F. G. Communication & IOT 1(2): 1-11, 2222

Doi:

Future Generation of Communication and Internet of Things (FGCIOT)

Journal homepage: http://fgciot.semnaniau.ac.ir/

Research paper

 A Classification Framework of Test Models in Model-based Testing

 Arash Sabbaghi 1

 1 Department of Computer Engineering,Semnan Branch, Islamic Azad University, Semnan, Iran

 a.sabbaghi@semnaniau.ac.ir

Article Info Extended Abstract

Article History:
Received
Revised
Accepted

 In model-based testing (MBT), the quality of input models and their relevance
with the testing target has a direct impact on the quality of the test suite and
the effectiveness of the whole testing process. Choosing inappropriate models
may increase the number of MBT steps and may not fulfill the testers'
expectations. In this paper, we focus on different input models of MBT and
represent a classification framework for them. The classification is performed
by considering their nature and testing abilities. We discuss the strengths and
weaknesses of test models regarding their potential for generating test cases,
and summarize the existing works in the literature based on the proposed
classification framework. The aim of this paper is to improve the understanding
of model-based test case generation approaches and help the testers to choose
appropriate models to exploit test cases with regard to their testing goals and
purposes.

Keywords:
 Software testing, Model-
based testing, Automatic test
case generation, Test models.

*Corresponding Author’s Email
Address:

a.sabbaghi@semnaniau.ac.ir

Introduction

 Due to the increasing complexity of today's

software systems, automation of the testing process

has become a must [1-4]. In this regard, model-

based techniques have received much attention and

showed promising results. In MBT, different models

can be used as input for test case generation, and

each one is suitable for specific testing needs and

has its own advantages and drawbacks. In fact, with

regard to the testing target, it is very important to

choose appropriate models [5]. Testing target may

include different levels of testing, different types of

system under test (SUT), or different parts of SUT.

Not every model can be used for every testing

target. For example, for testing real-time systems,

input models should incorporate timing constraints

[6], or for integration testing, input models must

precisely indicate communications between

different parts of SUT [7].

Therefore, choosing inappropriate input models

may increase the number of MBT steps and may not

fulfill the testers' expectations. To the best of our

knowledge, there is no research in which draws a

complete classification and comparison of input

models to show their abilities and potentials in MBT

with regard to the testing target.

In this paper, we focus on test models, represent our

classification framework, and show their application

for MBT. The classification is performed based on

the information provided by test models to generate

test cases, which categorize test models into five

groups: state-based models, interaction-based

models, structure-based models, operation-based

models, and hybrid models. The models in each

category can be used to generate test cases to test

F. Author et al.

SUT from different points of view. In our previous

work [8], we described state-based models in detail.

In the following, we describe the other categories

and discuss their abilities and shortcomings to

generate test cases. The aim of this survey is to

improve the understanding of model-based test

case generation approaches and helps the testers to

choose appropriate models to exploit test cases with

regard to their testing goals and purposes.

Interaction-based models [9, 10] describe the

dynamics of the system behavior and focus on

representing interactions between different parts of

the system. Structure-based models [11] describe

the static aspects of the system. Operation-based

models [5, 12] focus on the actions within the

behavior and depict the operational workflows.

Studies in the last category (e.g. [13]) use the

combination of the information provided by

different models to generate test cases. Each model

has its own strengths and weaknesses, and using the

information provided by one model to compensate

for the lack of such information in another, would

make test case generation more efficient.

The rest of the paper is organized as follows: in

section 2, we present the interaction-based models.

Section 3 introduces structure-based models, and

operation- and hybrid models are described in

Section 4 and 5, respectively. Finally, section 6 is

dedicated to the conclusion.

I. Interaction-based Models

 Interaction-based models describe the

dynamics of the system behavior and focus on

representing interactions between different parts of

the system. The most widely used interaction-based

models in MBT, include UML sequence diagram [9,

14-17], UML communication diagram [18-20] and

UML use case diagram [10, 13, 21-24].

 UML Sequence diagram is a graphical scenario

language that consists of objects and messages that

exchange among the objects in the order they occur

in the system over time. A sequence diagram

represents various interactions among different

objects through the invocation of methods and

describes how a set of objects interact to achieve a

behavioral goal.

The sequence diagram has two dimensions: the

vertical dimension that represents time, and the

horizontal dimension that represents object

instances. The communication between object

instances is denoted by arrows between lifelines.

The lifelines are the vertical dashed lines that

represent the existence of corresponding object

instances at a particular time. Since UML 2.0, a set of

interactions can be framed together to form

interaction fragments, and multiple interaction

fragments can be combined using combined

fragments. A combined fragment consists of

interaction operands whose type is determined by

the interaction operator. An interaction operand is a

group of message sequences that run if the guard

condition is met. An interaction operand without

guard condition always runs. There are different

interaction operators such as loop for repetition,

alt/opt/break for selection, par for concurrencies,

seq for weak sequencing, etc. Weak sequencing

allows partial parallel execution between lifelines

and means that events on different lifelines from

different operands may occur in any order. A

combined fragment can also contain nested

combined fragments.

Based on [25], A sequence diagram can be defined

formally as a 9-tuple 𝐷 = (𝑑, 𝐼, 𝐸, <

, Σ𝑚𝑠𝑔 , 𝑀, 𝐹, 𝑋, 𝐸𝑥𝑝), where:

𝑑 ∈ Σ𝑛𝑎𝑚𝑒 is the name of the diagram and Σ𝑛𝑎𝑚𝑒

the set of all diagram names;

𝐼 is a finite set of object instances (lifelines);

𝐸 = ⋃ 𝐸𝑖𝑖∈𝐼 is a set of events for lifeline 𝑖, s.t. ∀𝑖, 𝑗 ∈

𝐼 ∶ 𝐸𝑖 ∩ 𝐸𝑗 = ∅;

< is a set of partial orders which defines for instance

line 𝑖 ∈ 𝐼 a set: <𝑖⊆ 𝐸𝑖 × 𝐸𝑖;

Σ𝑚𝑠𝑔 is a finite set of message labels 𝑙;

𝑀 is a set of messages 𝑀 ⊆ 𝐸 × Σ𝑚𝑠𝑔 × 𝐸, s.t. for

every m1 , m2 ∈ 𝑀 with 𝑚1 = (𝑒11, 𝑙1, 𝑒12) and

𝑚2 = (𝑒21, 𝑙2, 𝑒22): 𝑚1 ≠ 𝑚2 ⟹ 𝑒11 ≠ 𝑒12 ≠

𝑒21 ≠ 𝑒22;

𝐹 is a set of interaction fragments for which the

functions 𝑜𝑝, 𝑒𝑣, 𝑠𝑢𝑏 are defined as:

Paper Title

𝑜𝑝: 𝐹 → Ω × ℕ associates an operator Ω ∈

{𝑠𝑡𝑟𝑖𝑐𝑡, 𝑝𝑎𝑟, 𝑜𝑝𝑡, 𝑎𝑙𝑡, 𝑙𝑜𝑜𝑝, 𝑏𝑟𝑒𝑎𝑘, 𝑠𝑒𝑞, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑖𝑔𝑛𝑜𝑟𝑒, 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟, 𝑎𝑠𝑠𝑒𝑟𝑡, 𝑛𝑒𝑔}

 and the number of operands to a fragment;

𝑒𝑣: 𝐹 × ℕ → 2𝐸 associates a set of events to a

pair (𝑖𝑑, 𝑛) of a fragment 𝑖𝑑 ∈ 𝐹and an operand

index number n;

𝑠𝑢𝑏: 𝐹 × ℕ → 2𝐹associates a set of nested

fragments to a parent fragment and an operand

index number;

𝑋 = {𝑋𝑖}𝑖∈𝐼 a set of local variables indexed by object

instances 𝑖 ∈ 𝐼.

𝐸𝑥𝑝 is a set of expressions, where each expression is

associated as a guard to a message or a fragment

using the function guard: 𝑀 ∪ 𝐹 → 𝐸𝑥𝑝

Since sequence diagrams describe the interactions

among software components, they are a good

source for integration testing and detecting

interaction faults. Also, sequence diagrams are

suitable for the realization of use case specification,

thus they are useful for functional system testing

too.

 The par and seq interaction operators allow

sequence diagrams to specify concurrent systems,

and because in such systems complexity arises when

objects interact with each other [14, 17], they are a

good choice for testing concurrent systems and

concurrency. Like all models which allow specifying

concurrency, the test explosion is a matter of

concern when using sequence diagrams to generate

test cases. Khandai et al. [17] considered par

fragments and proposed to generate test cases for

concurrent systems by converting sequence diagram

to a Concurrent Composite Graph (CCG). Each node

in the CCG represents a sequence of messages

within one operation fragment. To avoid the issues

like communication deadlock and synchronization,

they proposed to use breadth-first traversal on CCG

when encountering fork nodes (for concurrent

activities) and to use DFS for the rest of the graph

(for sequential activities).

 The main challenge for test case generation

from sequence diagrams with regards to their

complex and non-hierarchical structure is extracting

the flow of control among the fragments and their

nested occurrences. Sequence diagrams do not have

a convenient structure for repetition, recursions,

and conditions. Combined fragments increase the

ability of sequence diagrams for behavior modeling

but make scenario representation and their flow

analysis a challenging task. The studies in this area

generally generate an intermediate form for

formalizing and structuring the sequence diagram

[20, 26, 27]. It should be noted that the formalization

should be carried out in a way that be

comprehensive in terms of covering fragments and

also retain the default behavior and semantic of the

sequence diagram. For example, some

formalizations ignore the standard interpretation of

weak sequencing and force the synchronization of

lifelines on entering and exiting fragments [28].

Cartaxo et al. [26] proposed an approach for feature

testing of mobile applications by converting

sequence diagrams into a labeled transition system

(LTS). They just considered repetitive and

conditional sequences in their model and eliminate

the message exchange between internal objects

since they tend to perform functional testing. The

test sequences are generated by the depth-first

traversal of LTS. Nayak et al. [20] proposed to

convert sequence diagram into a directed graph

named structural composite graph (SCG) in order to

systematically investigate the comprehensive flow

of control by considering loop, alt, opt, break, and

par combined fragments. In this transformation,

they show all the interaction fragments and flow of

control of these operands unambiguously and in a

structured way. They mapped the messages within a

fragment into a block node, the entrance to a par

fragment into a fork node, the exit from a par

fragment into a join node, the conditional

expression among operands of a fragment into a

decision node, and the exit form selection fragments

into a merge node. Then test scenarios are

generated by the depth-first traversal of SCG.

Authors in [27] proposed a toolset for conformance

testing using sequence diagram, which supports all

interaction operators including weak sequencing by

retaining their default semantics. They translated

sequence diagram into an extended Petri net that

F. Author et al.

combine the characteristics of colored and event-

driven Petri nets.

Communication diagram [18-20, 29], formerly called

collaboration diagram, like sequence diagram,

represent the inter-object communications and

capture the exchange of messages between objects.

Communication and sequence diagrams can

represent the same object interactions. The

sequence diagram emphasizes on time ordering of

messages, while the communication diagram

focuses on the structural organization of objects and

represents a clear visualization of how objects

communicate to perform a behavioral goal. In a

communication diagram, the objects are connected

by links that represent messages. The links are

labeled with unique sequence numbers, which

determine the ordering of messages.

Sequence diagrams are more commonly used in

practice than communication diagrams [30], and

naturally, in the literature, there are much more

approaches for generating test cases from sequence

diagrams than communication diagrams. The ability

of communication diagrams in representing the

structure of objects in communications and also

their ability to depict the overall design of the

system have been considered in the literature for

generating test cases. The communication diagram

is suitable for integration and cluster-level testing.

Authors in [19, 31] developed some coverage

criteria for collaboration diagrams and used them to

generate test cases for testing implementation and

design, respectively.

Use case model [10, 23, 24] defines the frontier of

the SUT, its development begins early and shows the

main functionality of the system at a high level of

abstraction. A use case represents different possible

sequences of interactions between the external user

and the SUT, and comprises a diagram part and a

textual description known as use case scenario. The

diagram part visualizes the interactions among use

cases and actors. The use case scenario informally

describes one of the system or subsystem

functionalities. Each functionality can be realized

inside a software component, like a module, or can

be obtained from interactions of several

components.

Since use cases show the main functionalities of the

SUT, they are a good starting point for MBT, tell the

tester what to test, and are good sources for

integration, system, and acceptance testing [22].

The pre- and post-conditions of use cases are good

sources for generating the initial state and the oracle

for test cases, respectively. Also, since the scenarios

are modeling the system from the user’s perspective

in a black-box manner, they may not be well-suited

for unit testing.

The existence of a large gap between high-level use

cases and concrete test cases makes the full

automation of the test case generation process

difficult. There are two main challenges for

generating test cases from use case diagrams: first,

determining sequential constraints and

dependencies among use cases, and second, dealing

with the informal nature of use case scenarios.

Sequential constraints between use cases can be

determined by checking if the post-condition of one

meets the pre-condition of the other. Nebut et al.

[21] extend use cases with the contracts in the form

of OCL. Contracts are specified using pre- and post-

conditions. By using the contracts for each use case,

they built a Use Case Transition System (UCTS) from

which all valid sequences of use cases are extracted.

Authors in [32] represent the sequential

dependencies between use cases for each actor by

an activity diagram in a way that the vertices are use

cases and the edges are sequential dependencies

between them. Independent use cases modeled in

the fork-join constructs. Swain et al. [13] first

construct an activity diagram for use case diagram

and then convert it to Use Case Dependency Graph

(UDG). Use case dependency sequences are

generated using UDG.

After deriving use case sequences, it is turn to derive

test sequences from use case scenarios. Test

scenarios can be generated directly from natural

language requirements using Natural Language

Processing (NLP) [33], or can be generated indirectly

by making use case scenarios more formal in

Paper Title

different ways such as transforming them into state

chart diagram [34], sequence diagram [13, 21, 32],

activity diagram [32, 35], collaboration diagram [31],

or Petri nets [36, 37]. It is desirable that this

transformation carry out automatically as the

proposed approaches in [22, 33, 35-37]. To this end,

some studies proposed to write requirement

specifications in strict forms such as Requirements

Specification Language (RSL) [22] or Restricted-form

of Natural Language (RNL) [36]. Finally, by replacing

test sequences generated from use case scenarios in

the use case sequences, test scenarios can be

generated.

II. Structure-based Models

 Structure-based models describe the static

aspects of the system. The most widely used

structure-based models in MBT include the UML

class diagram [11] and UML object diagram [38].

Class diagram captures the static structure of the

SUT classes and provides information about class

names, class attributes, type of attributes, class

cardinality, method signatures, class relationships,

multiplicities, inheritance, etc. A class diagram can

be defined formally as a 2-tuple 𝐶𝐷 = (𝐶𝑁, 𝐴𝑁)

where:

𝐶𝑁 is a finite set of classes. Each 𝐶𝑖 ∈ 𝐶𝑁is a 2-tuple

𝐶𝑖 = (𝐴𝑡𝑡𝑟, 𝑀) where:

𝐴𝑡𝑡𝑟 is a set of class attributes {<

𝑎𝑡𝑡𝑟𝑖: 𝑡𝑦𝑝𝑒𝑖, 𝑐𝑖 >}. Each 𝑎𝑡𝑡𝑟𝑖is the name of the

attribute with the type 𝑡𝑦𝑝𝑒𝑖and 𝑐𝑖 is the constraint

over 𝑎𝑡𝑡𝑟𝑖.

𝑀 is a set of method signatures {<

𝑚𝑖(𝑝1: 𝑡𝑦𝑝𝑒1, … , 𝑝𝑛: 𝑡𝑦𝑝𝑒𝑛), 𝑅𝑡𝑦𝑝𝑒𝑖 >} where 𝑚𝑖 is

the name of the method, 𝑝1, … , 𝑝𝑛are the

parameter names, 𝑡𝑦𝑝𝑒1, … , 𝑡𝑦𝑝𝑒𝑛are parameter

types and 𝑅𝑡𝑦𝑝𝑒𝑖 is the return type.

𝐴𝑁 = < 𝐶1 , 𝑇𝑦𝑝𝑒, 𝐶2 > is a set of associations

between classes where 𝐶1, 𝐶2 ∈ 𝐶𝑁and 𝑇𝑦𝑝𝑒 is the

name of association.

By providing valuable information such as method

signatures, which include parameter names,

parameter types and return type, class attributes

that include their names and types, and constraints

in the form of OCL on the class attributes (for

representing the range of attributes), and on the

operations (pre- and post-conditions), class

diagrams are a rich source for representing domain

model and complementing other test models. For

this reason, they are mostly used to supply

complementary information for the testing process

such as providing the required information for

model augmentation [39], identifying the entities in

the system [40], or determining a set of object

configurations from which the test is started [31].

Different types of faults that are related to the

evaluation of inheritance, object states, and

associations between objects can be detected by

class testing. For this, Andrews et al. [31] proposed

some coverage criteria to generate test objectives as

follows: Generalization (GN) criterion, class attribute

(CA) criterion, and association-end multiplicity

(AEM) criterion.

 Another approach to generate test cases directly

from class diagrams is to generate a sequence of

methods with different ordering by considering the

relationship between classes [41, 42]. At the end of

the test execution, it is checked whether the

resulting states of the involved objects are correct or

not. Shanti et al. [41] proposed random ordering of

methods by applying the genetic algorithm’s tree

crossover [43] on the tree structures obtained from

class diagrams in order to create a new generation

of trees. The generated trees are converted into

binary trees and then traversed in DFS order to

generate test scenarios. Since class diagrams do not

provide behavioral view of the system, such blindly

generated test scenarios may not be effective in

revealing faults.

Class diagrams can be used to determine an order to

integrate and test the classes during integration

testing. Integration of classes is often incremental

and needs to generate stubs in order to simulate the

behavior of classes that have not been already

tested. The main challenges in this area are

minimizing the number of required stubs and

breaking dependency cycles in the class diagram.

Traon et al. [44] proposed to generate Test

F. Author et al.

Dependency Graph (TDG) from class diagrams to

determine the ordering of classes and methods for

integration testing. Vertexes of the TDG represent a

class or a specific method of the class, and directed

edges represent dependencies. Different

dependencies in the class diagram, such as class-to-

class and method-to-class are captured to generate

TDG. Class-to-class dependencies can be easily

identified through class relationships in the class

diagram. A method-to-class dependency exists if a

method has an object of a class declared in its

signature. The presence of dependency cycles in the

class diagrams is the main obstacle to the

topological ordering of classes. So, they refined TDG

in order to apply graph-based algorithms for

breaking cycles and determining the ordering of

classes. Zhang et al. [45] proposed an approach for

determining optimal class integration test order

with the minimum number of stubs, considering

abstract classes and polymorphism. They mapped

class diagram relationships into Object Relation

Diagram (ORD), found out the strongly connected

components using Tarjan’s algorithm, and then used

graph-based heuristic algorithm to break cycles. In

addition to the graph-based algorithm to break

cycles, search-based algorithms can be employed

too.

Object diagram shows a snapshot of the detailed

state of the system at a certain point in time as a

collection of objects, each in a particular state, and a

link between objects indicating a possible

communication. Each object state may be

constrained by an assertion or values of its

attributes. Object diagrams are more concrete than

class diagrams since unlike class diagrams, their

elements are in concrete form to represent real-

world objects. Object diagrams are mostly used to

provide complementary information for the test

case generation process, such as specifying an initial

configuration [40].

III. Operation-based Models

Operation-based models focus on the actions within

the behavior and depict the operational workflows.

The most widely used operation-based model in the

literature of MBT is the UML activity diagram [5, 12,

46-52].

UML activity diagram is a powerful tool and one of

the most important design artifacts used for

behavior modeling, which can represent the

business workflow of the SUT in different levels of

granularity. Activity diagrams capture the key

system behaviors and perfectly describe the

realization of the system operations in the design

phase.

 An activity diagram comprises a set of nodes,

edges, and swim lanes. Different types of activity

nodes occurring in an activity diagram include action

nodes, control nodes, and object nodes. Each action

node represents a sequence of statements or an

operation of the system. An action begins execution

when receiving data from its incoming edge, waits

for the completion of its computation, and then the

execution is directed to the successor nodes. This is

due to the adoption of activity diagrams with the

token mechanism of Petri net [53]. Control nodes

coordinate the control and data flow between other

nodes and include branch and merge nodes, fork

and join nodes, and initial and final nodes. Activity

diagrams support both conditional and concurrent

behaviors. Conditional behaviors are specified by

branch and merge nodes, and concurrent behaviors

are defined by fork and join nodes. A fork node

generates multiple tokens for its descendent nodes,

and the join node acts as a synchronization point and

passes the token to the subsequent nodes only

when all the synchronized threads become ready.

Object nodes are used for providing inputs and

outputs for an action and can be used as oracle too

[54]. Edges are defined as the transitions, which

represent control flows and data flows between

nodes, and swim lanes represent the supplier of the

activities. Notice that any construct can be nested

Paper Title

with any other constructs. An activity diagram can

be formally defined as a 5-tuple 𝐷 = (𝐴, 𝑇, 𝐹, 𝑎𝐼 , 𝑎𝐹)

where:

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} is a finite set of action nodes;

𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑛} is a finite set of completion

transitions;

𝐹 ⊆ {𝐴 × 𝑇} ∪ {𝑇 × 𝐴} is the flow relation between

action nodes and transitions;

𝑎𝐼 ∈ 𝐴 is the initial activity state, and 𝑎𝐹 ∈ 𝐴 is the

final activity state; there is only one transition 𝜏 ∈ 𝑇

such that (𝑎𝐼 , 𝜏) ∈ 𝐹; and (𝜏′, 𝑎𝐼) ∉ 𝐹 and (𝑎𝐹 , 𝜏′) ∉

𝐹 for any 𝜏′ ∈ 𝑇.

Most of the code-oriented structures are available in

the activity diagram, and generally, a path in an

activity diagram is a possible run-time execution

path of the implemented operation [55]. The

behavior modeled by activity diagrams is easy to

understand. Also, activity diagrams are flexible in

the behavior modeling in such a way that they can

be used to give a quick overview of the entire system

or can be used to depict the internal logic of a

complex operation and details of a procedural

implementation [50, 52]. Since the activity diagram

expresses how the system functionalities can be

exercised and implemented, tells the tester how to

test, and is a good basis for functional testing.

UML activity diagrams can be used to model the

dynamic concurrent scenarios of a group of objects;

thereby they are a good choice for testing

concurrency and are widely used in this area [50, 56-

58]. Also, their proximity to code has made them, in

addition to being widely used in the generation of

test data, to be a good source for reducing and

optimizing test cases too. For example, Chen et al.

[59] proposed an approach to reduce randomly

generated test cases using activity diagrams. They

interpret each activity state in the activity diagram

as the execution of one method in the java program

and instrument the java program under test

according to its activity diagram specification for

gathering the program execution traces. The java

program execution traces are a sequence of events

corresponding to method completions. By running

the instrumented java program with randomly

generated test cases, a set of program execution

traces is obtained. Then by matching the obtained

execution traces with the activity diagram according

to a specific adequacy criterion, a reduced test set is

generated. They considered three coverage criteria:

activity coverage, transition coverage, and simple

path coverage. For example, with regard to the

activity/transition coverage, a test case is selected if

its corresponding execution trace contains some

activity/transitions which are not covered

previously.

The ability of activity diagrams to precisely represent

operations has led them to be used in regression

testing for detecting changes in the semantics of

operations [60, 61]. Ye et al. [60] proposed an

approach to identify the changes between two

versions of SUT by comparing the old and new

activity diagrams. By the comparison, they identified

the affected, unaffected, removed, and new paths.

For the new paths, they generate new test cases,

and for the affected, unaffected, and removed

paths, they classified previously generated test cases

into retestable, reusable, and obsolete, respectively.

Finally, retestable and newly generated test cases

are chosen to test the new version of SUT. Since in

this approach, changes in the static structure of the

SUT may not be detected, Dahiya et al. [61]

proposed to identify the changed operations using

activity diagrams and searched them in the class and

sequence diagrams of the SUT in order to extract

their corresponding retestable test cases.

The challenges of activity diagrams for MBT can be

listed as follow: 1- the presence of loops and

concurrent activities result in path explosion, which

should be managed to generate adequate test

scenarios in a reasonable time [62]. 2- because of

the non-structural properties such as fork-join

constructs and nested combination of control

structures that may exist in activity diagrams and

may lead to ambiguous interpretation of them [54],

it is difficult to identify all possible test scenarios, so

flattening the diagram [63] and transforming them

into a well-structured form seems necessary [50, 54,

57].

To cope with path explosion caused by loops,

researchers mostly employ some coverage criteria

F. Author et al.

such as basic path, in which loops are executed for a

limited number of times (for example, exact once

[56], at least once [64], or at most once [55, 65]).

Sapna et al. [66] addressed path explosion caused by

concurrent activities and proposed to enforce an

ordering among them by considering their

interleaved execution inside a fork-join construct.

Imposing domain dependency between activities

helped them to cope with path explosion and

generate the optimal number of test scenarios by

discarding illegal or irrelevant combinations of

activities. To reduce the number of test cases for

concurrent systems, Kim et al. [58] proposed to keep

only the behaviors related to testing by eliminating

the internal processing activities and focusing on the

external interaction of the system. They converted

the activity diagram into an input-output explicit

activity diagram (IOAD), which explicitly shows the

input to and the output from the system and omits

the non-external inputs and outputs. IOAD is then

used to construct a directed graph from which the

test scenarios were extracted. Arora et al. [67]

proposed to use a bio-inspired approach named

Amoeboid Organism Algorithm (AOA) to generate

test scenarios for the concurrent section of activity

diagrams. AOA draws its inspiration from the

internal mechanism of the slime mould Physarum

Polycephalum. They showed that their approach

outperforms ant colony optimization and genetic

algorithm [43] in terms of reducing redundancy and

increasing the number of test scenarios,

respectively.

In order to cope with complex dependencies that

arise within nested structures, and also identifying

more test scenarios, Nayak et al. [54] proposed to

convert activity diagram into a well-formed

structure. They first classified the various control

constructs in the activity diagram into loop

constructs, selection constructs, and fork constructs.

Each control construct is denoted as a minimal

region with a distinguished entry node and exit

node, which can be analyzed independently of other

constructs. Next, they converted the activity

diagram into a model called intermediate testable

model (ITM) using the classified control constructs.

The conversion is done by mapping each minimal

region into a composite node in successive steps in

order to retain the nesting relation of control

constructs. Therefore, the ITM would be a concise

representation of the activity diagram in which each

of its composite nodes encloses a control construct.

In order to generate test scenarios, the base path

from the initial node to the final node is extracted

from ITM. The base path can be considered as a

hyper test scenario. Then in a recursive manner, the

composite nodes are expanded by choosing one of

their internal paths. The number of internal paths to

be replaced is determined by the coverage criteria.

The internal paths are generated using depth-first

search in the control construct graph. Authors in [50]

proposed to convert the activity diagram into a

standardized structure, which is a set of extended

AND-OR binary trees (EBTs). The transformation is

performed based on a set of transformation rules,

and its goal is to eliminate fork and join elements

and represent branches and concurrent flows as

EBTs. The derived EBTs are then traversed to

generate test scenarios.

IV. Hybrid Models

 Studies in the last category use the combination

of the information provided by different models to

generate test cases. Each model has its own

strengths and weaknesses, and using the

information provided by one model to compensate

for the lack of such information in another, would

make test case generation more efficient.

Based on the way of utilizing the information to

generate test cases, the test models used in these

studies can be generally divided into two groups:

compound models [7, 68] and complementary

models [13, 69].

Studies in the first category, integrate the selected

models to form a new compound model which can

be used to generate better test cases. Sumalatha et

al. [68] utilized activity and sequence diagrams,

converted them into activity and sequence diagram

graphs, and then inserted the activity diagram graph

into the sequence diagram graph to form an activity-

sequence graph. Test cases are generated by

Paper Title

traversing the activity-sequence graph in breadth

first order. The idea is that activity diagrams describe

the flow of activities inside the objects, represent

the implementation of an operation, and can realize

the messages of sequence diagrams (methods).

Sarma et al. [70] proposed to integrate use case

diagram and sequence diagram by converting them

to use case diagram graph (UDG) and sequence

diagram graph (SDG). In the integrated diagram

named system testing graph (STG), each UDG is

connected to its SDG, and test cases are generated

by traversing STG. Their approach covers use case

initialization faults, use case dependency faults, and

also scenario and interaction faults. Their

achievements from model integration are twofold:

first, the model integration helped them to decide

whether a test driver needs to apply a specific test

suite or not. Second, the information needed for

model augmentation can be mined once and used in

different levels such as use case and sequence

diagram. Ali et al. [7] suggested combining the UML

collaboration and state diagram to perform

integration testing of classes. The idea is that the

interactions between objects should be exercised

for all possible states of the objects involved.

Therefore, the generated test cases aim at detecting

faults that may arise due to invalid object states

during object interactions. They have integrated

UML collaboration and state diagram to form a

graph called SCOTEM (State Collaboration Test

Model). Each vertex in the SCOTEM corresponds to

an instance of the class in a distinct abstract state.

The object states were extracted from the state

diagram. Each edge in SCOTEM can be a message or

transition edge. A message edge represents a call

action between two objects extracted from the

collaboration diagram, and a transition edge

represents a state transition of an object which is

available in the state diagram. The test paths are

generated by traversing the SCOTEM graph. In order

to perform efficient integration testing while

considering object states, Swain et al. [71] proposed

to generate a State-Activity Diagram (SAD) by

synthesizing the UML statechart diagrams of

different objects involved in a particular use case

with an activity diagram. SAD is generated by

considering the activities in the activity diagram and

the corresponding actions in the UML statechart

diagram to form state-activity nodes. They also

considered the synchronization of activities over

multiple interacting objects by defining AND-OR

nodes and waiting activities in SAD. The test

scenarios are generating by the depth-first traversal

of SAD. Their evaluation using mutation analysis

showed the effectiveness of the generated test

cases in finding seeded integration faults in the

source code. Authors in [72] proposed to generate

and prioritize test scenarios by merging activities in

the activity diagram with the sequence of messages

in the communication diagram. The idea is that

communication diagrams represent the high-level

design while activity diagram is closely related to the

internal structure of the code. In fact, activity

diagrams can represent the procedural flow of

method execution corresponding to the messages

between objects in the communication diagram. By

this combination, message and activity paths can be

both covered, which can lead to revealing more

faults and performing more efficient prioritization.

Pilskalns et al. [73] utilized class diagrams, sequence

diagrams, and OCL expressions to find

inconsistencies among them. The OCL pre- and post-

condition constraints and invariants are used as

oracle in the oracle procedure. They first construct a

Directed Graph (DG) from each sequence diagram by

considering opt, alt, and loop fragments. Each vertex

of the DG represents either a message or a sub-DG

(a combined fragment) and edges represent the

ordering between either messages in sequence

diagram or sub-DGs. The class diagram and OCL

constraints are also used to generate Class and

Constraint Tuple (CCT). CCT encapsulates all the

information provided by class diagrams such as

hierarchy, associations, attributes, etc. The DG and

CCT are then combined to form Testable Aggregate

Model (TAM). This is done by replacing each class

name in each vertex with the corresponding CCT.

This combination allows them to apply the test

adequacy criteria for both class diagram and

sequence diagram.

F. Author et al.

The physical integration of test models is helpful in

covering a broader range of errors and wider regions

of SUT. On the other hand, choosing appropriate test

models to be integrated as well as the way of

integration is a challenging task.

Studies in the second category use the information

of different models as a complementary piece of

knowledge and generate test data based on the

collected information. In other words, these works

integrate the information provided by test models

instead of physically integrating the models. Kumar

et al. [69] extracted the information from class,

activity, and state diagrams and store them in

separate tables, and finally utilized them to generate

test cases. Authors in [40] utilized class, object, and

state diagrams to generate test cases in a way that

the class diagrams identify the entities in the system

and explain the structure of signal events, the state

diagrams, one for each class, explain how these

entities may evolve and specify test purposes, and

the object diagrams specify an initial configuration.

Andrews et al. [31] utilized class and communication

diagrams to generate test cases. The class diagram is

used to define a set of object configurations for

starting the test and checking the output, and the

communication diagram is used to generate test

scenarios. Pilskalns et al. [74] used the information

from class and sequence diagrams to detect and

correct errors in the design phase. Overall, this

approach allows obtaining test information for

model augmentation from different sources and

also helps to generate test cases for testing different

aspects of the system by utilizing different models.

The main challenge of this approach is the

complexity of creating a valid and effective

relationship between information from different

test models with different natures.

 Conclusion

Model-based testing is an effective approach to

automate test case generation process by utilizing

different models of the system under test, which can

be used to test the final product as well as to validate

and improve the models themselves. In the

meantime, the selection of input models according

to the testing goals and purposes has a very

important role in the success of this approach.

In this paper, we focus on different input models of

MBT and represent a classification framework for

them. The classification is performed based on the

information provided by test models, and also their

potential to generate test cases. We compared and

showed the strengths and weaknesses of test

models according to their effectiveness for

generating test cases, and showed which models are

more appropriate for covering the desired testing

target.

References

1. Sabbaghi, A., H.R. Kanan, and M.R.

Keyvanpour, FSCT: A new fuzzy search strategy in

concolic testing. Information and Software

Technology, 2019. 107: p. 137-158.

2. Sabbaghi, A. and M. Keyvanpour, A novel

approach for combinatorial test case generation

using multi objective optimization, in Computer and

Knowledge Engineering (ICCKE), 2017 7th

International Conference on. 2017, IEEE.

3. Sabbaghi, A. and M.R. Keyvanpour, A

Systematic Review of Search Strategies in Dynamic

Symbolic Execution. Computer Standards &

Interfaces, 2020: p. 103444.

4. Sabbaghi, A., M.R. Keyvanpour, and S. Parsa,

FCCI: A fuzzy expert system for identifying

coincidental correct test cases. Journal of Systems

and Software, 2020: p. 110635.

5. Ahmad, T., et al., Model-based testing using

UML activity diagrams: A systematic mapping study.

Computer Science Review, 2019. 33: p. 98-112.

6. Hessel, A., et al., Testing real-time systems

using UPPAAL, in Formal methods and testing. 2008,

Springer. p. 77-117.

7. Ali, S., et al., A state-based approach to

integration testing based on UML models.

Information and Software Technology, 2007. 49(11):

p. 1087-1106.

Paper Title

8. Sabbaghi, A. and M.R. Keyvanpour. State-

based models in model-based testing: A systematic

review. in Knowledge-Based Engineering and

Innovation (KBEI), 2017 IEEE 4th International

Conference on. 2017. IEEE.

9. Panda, N., A.A. Acharya, and D.P.

Mohapatra, Regression testing of object-oriented

systems using UML state machine diagram and

sequence diagram. International Journal of

Computing Science and Mathematics, 2020. 12(2): p.

132-146.

10. Khalifa, E.M., D. Jawawi, and H.A. Jamil, An

Efficient Method to Generate Test Cases From UML-

USE CASE DIAGRAM. 2019.

11. Assunção, W.K.G., et al., A multi-objective

optimization approach for the integration and test

order problem. Information Sciences, 2014. 267: p.

119-139.

12. Shirole, M. and R. Kumar, Constrained

permutation-based test scenario generation from

concurrent activity diagrams. Innovations in Systems

and Software Engineering, 2021: p. 1-11.

13. Swain, S.K., D.P. Mohapatra, and R. Mall,

Test case generation based on use case and

sequence diagram. International Journal of Software

Engineering, 2010. 3(2): p. 21-52.

14. Mallick, A., N. Panda, and A.A. Acharya,

Generation of test cases from uml sequence diagram

and detecting deadlocks using loop detection

algorithm. International Journal of Computer

Science and Engineering, 2014. 2: p. 199-203.

15. Ansari, G.A., Use of Firefly Algorithm in

Optimization and Prioritization of Test Paths

Generated from UML Sequence Diagram.

International Journal of Computer Applications,

2017. 975: p. 8887.

16. Dehimi, N.E.H. and F. Mokhati. A Novel Test

Case Generation Approach based on AUML

sequence diagram. in 2019 International Conference

on Networking and Advanced Systems (ICNAS).

2019. IEEE.

17. Khandai, M., A.A. Acharya, and D.P.

Mohapatra. A novel approach of test case

generation for concurrent systems using UML

Sequence Diagram. in 2011 3rd International

Conference on Electronics Computer Technology.

2011. IEEE.

18. Samuel, P., R. Mall, and P. Kanth, Automatic

test case generation from UML communication

diagrams. Information and software technology,

2007. 49(2): p. 158-171.

19. Abdurazik, A. and J. Offutt. Using UML

collaboration diagrams for static checking and test

generation. in International conference on the

unified modeling language. 2000. Springer.

20. Nayak, A. and D. Samanta, Automatic test

data synthesis using uml sequence diagrams. Journal

of Object Technology, 2010. 9(2): p. 75-104.

21. Nebut, C., et al., Automatic test generation:

A use case driven approach. IEEE Transactions on

Software Engineering, 2006. 32(3): p. 140-155.

22. Straszak, T. and M. Śmiałek, Model-driven

acceptance test automation based on use cases.

Computer Science and Information Systems, 2015.

12(2): p. 707-728.

23. Bhuyan, P., A. Ray, and M. Das, Test Scenario

Prioritization Using UML Use Case and Activity

Diagram, in Computational Intelligence in Data

Mining. 2017, Springer. p. 499-512.

24. Hamza, Z.A. and M. Hammad. Generating

Test Sequences from UML Use Case Diagram: A Case

Study. in 2020 Second International Sustainability

and Resilience Conference: Technology and

Innovation in Building Designs (51154). 2020. IEEE.

25. Sieverding, S., C. Ellen, and P. Battram,

Sequence diagram test case specification and virtual

integration analysis using timed-arc Petri nets. arXiv

preprint arXiv:1302.5170, 2013.

26. Cartaxo, E.G., F.G. Neto, and P.D. Machado.

Test case generation by means of UML sequence

diagrams and labeled transition systems. in 2007

IEEE International Conference on Systems, Man and

Cybernetics. 2007. IEEE.

27. Faria, J.P. and A.C. Paiva, A toolset for

conformance testing against UML sequence

diagrams based on event-driven colored Petri nets.

International Journal on Software Tools for

Technology Transfer, 2016. 18(3): p. 285-304.

28. Bouabana-Tebibel, T. and S.H. Rubin, An

interleaving semantics for UML 2 interactions using

F. Author et al.

Petri nets. Information Sciences, 2013. 232: p. 276-

293.

29. Kaur, A. and V. Vig, Automatic test case

generation through collaboration diagram: a case

study. International Journal of System Assurance

Engineering and Management, 2018. 9(2): p. 362-

376.

30. Dobing, B. and J. Parsons, How UML is used.

Communications of the ACM, 2006. 49(5): p. 109-

113.

31. Andrews, A., et al., Test adequacy criteria for

UML design models. Software Testing, Verification

and Reliability, 2003. 13(2): p. 95-127.

32. Briand, L. and Y. Labiche, A UML-based

approach to system testing. Software and systems

modeling, 2002. 1(1): p. 10-42.

33. Wang, C., et al. Automatic generation of

system test cases from use case specifications. in

Proceedings of the 2015 International Symposium

on Software Testing and Analysis. 2015.

34. Ryser, J. and M. Glinz. A scenario-based

approach to validating and testing software systems

using statecharts. in Proc. 12th International

Conference on Software and Systems Engineering

and their Applications. 1999.

35. Gutiérrez, J.J., et al. Visualization of use

cases through automatically generated activity

diagrams. in International Conference on Model

Driven Engineering Languages and Systems. 2008.

Springer.

36. Sarmiento, E., et al., Test Scenario

Generation from Natural Language Requirements

Descriptions based on Petri-Nets. Electronic Notes in

Theoretical Computer Science, 2016. 329: p. 123-

148.

37. Ding, Z., M. Jiang, and M. Zhou, Generating

petri net-based behavioral models from textual use

cases and application in railway networks. IEEE

Transactions on Intelligent Transportation Systems,

2016. 17(12): p. 3330-3343.

38. Prasanna, M. and K. Chandran, Automatic

test case generation for UML object diagrams using

genetic algorithm. Int. J. Advance. Soft Comput.

Appl, 2009. 1(1): p. 19-32.

39. Sarma, M., D. Kundu, and R. Mall. Automatic

test case generation from UML sequence diagram. in

15th International Conference on Advanced

Computing and Communications (ADCOM 2007).

2007. IEEE.

40. Cavarra, A., et al. Using UML for automatic

test generation. in Proceedings of ISSTA. 2002.

Citeseer.

41. Shanthi, A. and D.G.M. Kumar, Automated

test cases generation for object oriented software.

Indian Journal of Computer Science and Engineering,

2011. 2(4): p. 543-546.

42. Mondal, S.K. and H. Tahbildar, Automated

test data generation using fuzzy logic-genetic

algorithm hybridization system for class testing of

object oriented programming. International Journal

of Soft Computing and Engineering, 2013. 3(5): p.

40-49.

43. Khiabani, A. and A. Sabbaghi. PHGA:

Proposed hybrid genetic algorithm for feature

selection in binary classification. in 2017 9th

International Conference on Information and

Knowledge Technology (IKT). 2017. IEEE.

44. Le Traon, Y., et al., Efficient object-oriented

integration and regression testing. IEEE Transactions

on Reliability, 2000. 49(1): p. 12-25.

45. Zhang, Y., et al., An approach of class

integration test order determination based on test

levels. Software: Practice and Experience, 2015.

45(5): p. 657-687.

46. Arora, P.K. and R. Bhatia, Agent-based

regression test case generation using class diagram,

use cases and activity diagram. Procedia Computer

Science, 2018. 125: p. 747-753.

47. Kamonsantiroj, S., L. Pipanmaekaporn, and

S. Lorpunmanee. A memorization approach for test

case generation in concurrent uml activity diagram.

in Proceedings of the 2019 2nd International

Conference on Geoinformatics and Data Analysis.

2019.

48. Hashmani, M.A., M. Zaffar, and R. Ejaz,

Scenario based test case generation using activity

diagram and action semantics, in Human Factors in

Global Software Engineering. 2019, IGI Global. p.

297-321.

Paper Title

49. Jaffari, A. and C.-J. Yoo, An Experimental

Investigation into Data Flow Annotated-Activity

Diagram-Based Testing. Journal of Computing

Science and Engineering, 2019. 13(3): p. 107-123.

50. Sun, C.a., et al., A transformation‐based

approach to testing concurrent programs using UML

activity diagrams. Software: Practice and

Experience, 2016. 46(4): p. 551-576.

51. Fernandez-Sanz, L. and S. Misra, Practical

application of UML activity diagrams for the

generation of test cases. Proceedings of the

Romanian academy, Series A, 2012. 13(3): p. 251-

260.

52. Kurth, F., S. Schupp, and S. Weißleder.

Generating test data from a UML activity using the

AMPL interface for constraint solvers. in

International Conference on Tests and Proofs. 2014.

Springer.

53. Murata, T., Petri nets: Properties, analysis

and applications. Proceedings of the IEEE, 1989.

77(4): p. 541-580.

54. Nayak, A. and D. Samanta, Synthesis of test

scenarios using UML activity diagrams. Software &

Systems Modeling, 2011. 10(1): p. 63-89.

55. Linzhang, W., et al. Generating test cases

from UML activity diagram based on gray-box

method. in 11th Asia-Pacific software engineering

conference. 2004. IEEE.

56. Lei, B., L. Wang, and X. Li. UML activity

diagram based testing of java concurrent programs

for data race and inconsistency. in 2008 1st

International Conference on Software Testing,

Verification, and Validation. 2008. IEEE.

57. Sun, C.-a. A transformation-based approach

to generating scenario-oriented test cases from UML

activity diagrams for concurrent applications. in

2008 32nd Annual IEEE International Computer

Software and Applications Conference. 2008. IEEE.

58. Kim, H., et al. Test cases generation from

UML activity diagrams. in Eighth ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed

Computing (SNPD 2007). 2007. IEEE.

59. Chen, M., et al., UML activity diagram-based

automatic test case generation for Java programs.

The Computer Journal, 2009. 52(5): p. 545-556.

60. Ye, N., et al. Automatic regression test

selection based on activity diagrams. in 2011 Fifth

International Conference on Secure Software

Integration and Reliability Improvement-

Companion. 2011. IEEE.

61. Dahiya, S., R.K. Bhatia, and D. Rattan,

Regression test selection using class, sequence and

activity diagrams. IET Software, 2016. 10(3): p. 72-

80.

62. Chen, M., P. Mishra, and D. Kalita. Coverage-

driven automatic test generation for UML activity

diagrams. in Proceedings of the 18th ACM Great

Lakes symposium on VLSI. 2008.

63. Vieira, M., et al. Automation of GUI testing

using a model-driven approach. in Proceedings of

the 2006 international workshop on Automation of

software test. 2006.

64. Teixeira, F.A.D. and G.B. e Silva, EasyTest: An

approach for automatic test cases generation from

UML Activity Diagrams, in Information Technology-

New Generations. 2018, Springer. p. 411-417.

65. Sharma, C., S. Sabharwal, and R. Sibal,

Applying genetic algorithm for prioritization of test

case scenarios derived from UML diagrams. arXiv

preprint arXiv:1410.4838, 2014.

66. Sapna, P. and H. Mohanty. Automated

scenario generation based on uml activity diagrams.

in 2008 International Conference on Information

Technology. 2008. IEEE.

67. Arora, V., R. Bhatia, and M. Singh,

Synthesizing test scenarios in uml activity diagram

using a bio-inspired approach. Computer Languages,

Systems & Structures, 2017. 50: p. 1-19.

68. Sumalatha, V.M. and G. Raju, Uml based

automated test case generation technique using

activity-sequence diagram. International Journal of

Computer Science Applications, 2012. 1(9).

69. Kumar, R. and R.K. Bhatia. Interaction

diagram based test case generation. in International

Conference on Computing and Communication

Systems. 2011. Springer.

F. Author et al.

70. Sarma, M. and R. Mall. Automatic test case

generation from UML models. in 10th International

Conference on Information Technology (ICIT 2007).

2007. IEEE.

71. Swain, S.K., D.P. Mohapatra, and R. Mall,

Test Case Generation Based on State and Activity

Models. J. Object Technol., 2010. 9(5): p. 1-27.

72. Swain, R.K., et al., Prioritizing test scenarios

from UML communication and activity diagrams.

Innovations in Systems and Software Engineering,

2014. 10(3): p. 165-180.

73. Pilskalns, O., et al., Testing UML designs.

Information and Software Technology, 2007. 49(8):

p. 892-912.

74. Pilskalns, O., et al. Rigorous testing by

merging structural and behavioral UML

representations. in UML. 2003. Springer.

1202610200

