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Abstract 

Conventional cameras based on an array of pixels (CCD or CMOS) are commonly used to 

capture a target image at a certain distance. In this type of camera, all pixels are used to create the 

image. For CCD-based cameras at other wavelengths, including infrared and terahertz, having all 

the pixels increases the cost of the camera. The aim of this study is to design and build an 

imaging setup using a single pixel method to reduce the cost of the camera and to reconstruct the 

target image using less data. We verify this method for visible band due to availability of visible 

light equipment that can be generalized this method to other wavelengths. We use a spatial light 

modulator (SLM) produces two-level optical masks with random distribution with 20 x 20 pixels 

and a size of 10 x 10 cm and illuminates the target at a repetition rate 1 Hz. The reflection of each 

mask from the target captured by a CCD camera and then we average all pixels of the CCD to 

equate it with a single-pixel detector. The target image is reconstructed using a compressive 

sensing algorithm. The process of reconstructing the target image is performed using a minimum 

number of masks. We use the two norms L1 and TV to retrieve the target image. The simulation 

results show TV norm is more successful in target image retrieval. Also, with increasing the 

number of masks, the success rate in retrieving the target image increases.  

 

Keywords: Single Pixel Method, Mask, Spatial Light Modulator, Compressive Sensing, 

Measurement, Pattern  

 

1. Introduction 

The Single-pixel imaging system is a new method that enables low-cost imaging, hardware and 
software compression of data (Rousset, 2017). The applications of single-pixel imaging include 
biomedical imaging (Jacques, 2013), microscopic fluorescence imaging (Studer et al, 2012), 
tomography (Huynh et al, 2019), non-destructive testing and classification of explosive materials 
(Majumder et al, 2020), visible telescope-NIR (Yu at al, 2014), and compressive radar imaging 
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(Baraniuk and Steeghs, 2007). At first glance, having a single-pixel imaging system may not make much sense 
compared to today's multi-million-pixel cameras. However, this type of imaging systems has 
advantages compared to cameras based on CCD or CMOS architecture. The Single-pixel detectors are 
generally so efficient that they are a suitable option for detection when the intensity of incoming light 
is very low (Hadfield, 2009). 

Considering single pixel detectors from a hardware point of view, since only one pixel is used to 
collect data, it will definitely requires less storage memory compared to array detectors (Ma, 2009). 
Another importance of this type of camera is the spectral imaging area, so that the cost of CCD or 
CMOS is very high in near, middle and far infrared and terahertz areas (Hornett et al., 2016), while the 
single-pixel detectors are less expensive. 

For the first time, the concept of light field modulation and light output collection on a single-pixel 
detector was reported in 1982. Using the piezoelectric-elasto-optical effect of an optical crystal, the 
incoming light has been modulated so that the light output was proportional to the Fourier transform of 
the object (Ben-Yosef and Sirat, 1982). In 2005 by Sen et al, a photography (imaging) method is 
proposed that showed the basic idea of photographing objects using only a single-pixel optical detector 
compared to array-based and SLR cameras. After proving the optical modulation process and one year 
after the idea of Sen et al, the first image was taken by a single-pixel detector at Rice University 
(Candès et al, 2006; Donoho, 2006; Wakin et al, 2006; Candès and Tao, 2006). Then, in 2006, Donoho 
implemented the compressive sensing (CS) processing algorithm for the first time (Donoho, 2006), so 
that Takhar et al used this idea to reconstruct the image of different targets using random patterns. In 
this method, the target image is reconstructed by a single-pixel detector when the number of 
measurements is less than the total number of pixels in the image (Takhar et al, 2006). Since the 
imaging platform consists of a single-pixel detector, the CS algorithm is a practical and cost-effective 
idea, it was also used in other areas of the electromagnetic spectrum. In 2008, Chan designed and built 
the first single-pixel imaging system in the terahertz spectral region (Chan et al, 2008). Howland in 
2011, designed a laser radar camera capable of making 3D images using a laser light source and a 
single-pixel detector (Howland et al, 2011). In 2015, Wen-Kai retrieved images of targets at a distance 
of 2 km using a CS algorithm, a single-pixel detector and a telescope system (Wen et al, 2015). Gibson 
in 2017, photographed a methane gas leak using a single-pixel camera in real time (Gibson et al, 2017) 
and Radwell in 2019, designed a Lidar using a single-pixel detector and spatial light modulator (SLM) 
(Radwell et al, 2019). Depending on the structure and modulation type of the incoming light signal, the 
spatial light modulators are divided into several general categories, including digital micro-mirror 
device (DMD), liquid crystal device (LCD), liquid crystal on silicon (LCoS), metamaterials and 
mechanical masks. Each of the mentioned SLMs has certain considerations which will be mentioned in 
the following. 

DMDs are an array of digital micro-mirrors based on the software patterns with light and dark pixels 
sent to the DMD and modulate the input light in the range of about 400-800 nm (Lee, 2008). In the 
structure of LCD-based modulators, which consist of an array of liquid microcrystals, each pixel 
contains a liquid crystal sandwiched between two electrodes, two glasses and two polarizers with 
parallel polarization (holoeye, 2012). The spatial light modulation by LCoS modulators is similar to 
LCD because it has a liquid crystal-based structure, except that it modulates light in reflection mode. In 
the structure of metamaterial modulators, each pixel consists of artificial electromagnetic materials 
with electrical permittivity 𝜀(𝜔) and magnetic permeability 𝜇(𝜔) determined by the geometry of the 
components of the material. The implementation of a software pattern on the incoming light is such 
that applying the pattern with light and dark pixels electronically to the metamaterial changes the 
absorption coefficient of the metamaterial (Watts et al, 2016). The mechanical masks are another type 
of optical spatial modulator, except that the software pattern is implemented on a physical substrate 
such as plastic (Hayasaki and Sato, 2020), metal such as copper, steel, or even gold (He et al, 2020).  

In this paper,  we propose a single pixel imaging method for reflective mode in visible band. We use 
a white light source, in reflection mode, using a LCD as SLM performed for a distance of 3 meters.  
The aim of this study is to design and build an imaging setup using a single pixel method to reduce the 
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cost of the camera and to reconstruct the target image using less data. 

2. Material and Method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Steps of proposed imaging method 

2.1. Establish the Setup 

The single-pixel imaging arrangement in the visible area is shown in Figure 2. The two-level 
patterns with random distributions sent by the computer to a CP-X2510 LCD-model projector (SLM) 
with a resolution of 786 × 1024 pixels and are displayed by the projector at a repetition rate of 1 Hz 
along the target. Of course, according to the technical specifications of the projector, the repetition rate 
can be increased up to 60 Hz. In front of the projector there is a “Samyang 500  mm f/6.3” model 
imaging lens with a focal length of 500 mm and a field of view of 5 degrees to prevent the masks from 
diverging too much during propagations.  

 
 

Figure 2. The single-pixel imaging arrangement in the visible area 

The beam modulated by each mask, radiates on a target at a distance of 3 meters, and after the beam 
is reflected, the target image is recorded by the "SDZ-370" camera with a focal length of 129.5 mm 

Establish 

 the setup 
Mask  

the Pattern 

Target  

Illumination 

 with Masks 

Target Imaging 

with  

CCD Camera 

Averaging 

 of the target 

image pixels 

Compressive 

sensing 
Reconstructing 

 of Target Image 



10                                             Mohammad Roueinfar et al. / Journal of Radar and Optical Remote Sensing 3(2021) 07–16 

and a horizontal field of view of 55.5 degrees. 

2.2. Mask the Pattern  

In the next step, we produce the masks in the form of 20 by 20 matrices using MATLAB software. 
According to Figure 3, white squares mean light rays and black squares mean no light rays. These 
masks are produced randomly and with a statistical distribution of Bernoulli type. Figure 3 shows all 
60 two-level masks. 
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Figure 3. The two-level mask patterns with random distribution. 

2.3. Target Illumination with Masks  

The masks are modulated by the light beam of projector and modulated light illuminates through the 
lens on the target and the target is a "F" letter. 

2.4. Target Imaging with CCD Camera  

In the following, using a CCD camera we capture the image of target illuminated by a modulated 
light. Figure 4 shows the target image illuminated by modulated light for a mask. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. The target image illuminated by modulated light for a mask. 
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2.5. Averaging of the Target Image Pixels  

Then, by averaging all the pixels generated in the target image recorded by the camera, for each 
mask, a unique data is obtained that is equal to the average of pixels of each image per mask. The 
purpose of averaging at this stage is to equate a single-pixel detector in the visible band. Although it is 
not difficult to provide CCD in the visible band, our goal is to prove the compressive sensing method 
for single-pixel imaging in other bands, which for simplicity, we started with the visible band. 

2.6. Compressive Sensing   

In following, the image generated by camera and read in MATLAB and averaged and convert to a 
single data just like when received with a single pixel detector. Therefore, to recover the image with N 
pixels, N different measurements are required. To perform these measurements, masks are needed to 
pass waves in some pixels and not pass waves in other pixels. If the number of measurements is equal 
to the number of pixels, then CS algorithms are not used. If the number of measurements is less than 
the number of pixels, it is required to use CS algorithms. In CS, the problem model is as the following 
relationship : 

(1) 
             

𝐲
𝐦×𝟏

= 𝐀𝐦×𝐧𝐱𝐧×𝟏 

 
In this relationship y is the measurement vector and m are the number of measurements, A is the 

sampling matrix and x is the image vector. The aim is to find the sparsest answer to this equation. To 
solve this equation, we could minimize L1 norm or TV norm (Donoho, 2006). 

 
 
                                                                        (2) 
 
                                                                       (3) 

 
Total variation is the sum of vertical and horizontal variation of each row of an image. We have 

developed an active illumination single-pixel imaging system.  Using the video projector, we illuminate 
the random binary measurement matrix on the object. The total number of measurements is M = 60.  
The image size is N=400. So, the sampling rate is M/N = 15%. In the next step, for generating the y 
vector, we need to use received images. To average the image pixels, the following equation is used 

                                                                                                                                                                                                                
                     
                                                                                                       
                                                                                                  (4) 

In this equation 𝒃𝒔 is the pixels of received image. To generate the measurement vector, we used the 
equation above. 

2.7. Reconstructing of Target Image   

In this step, by solving the (2) and (3), we extract the image vector x using compressive sensing 
algorithm and two norms L1 and TV. We use two solvers to solve (2) and (3) using SPGL1 (E. van den 
Berg et al, 2008) and NESTA (Becker et al, 2011) solvers. 

3. Results and Discussion 

Here we use the setup shown Figure2. Using the masks produced in section 2-2 and Figure 3, the 
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light is modulated by the projector and projected onto the target, which is the letter "F". The target 
image, illuminated by modulated light, captured by a CCD camera. The images taken from the target, 
equal to the number of masks, are averaged. So, we have a measurement vector y. In the first test, we 
use 60 masks. So, the measurement vector of y is 60 * 1. We retrieve the target image using a 
compressive sensing algorithm and two norms, L1 and TV. The simulation results obtained from the 
compressive sensing algorithm using the two norms L1 and TV are shown in the Figure 5. 

 
  

a b 
  

c d 

Figure 5. The results of image reconstruction using CS algorithm and 60 Masks. a) Original Image. b) 

Reconstructed Image by L1 norm (SPGL1 solver) c) Reconstructed Image by L1 norm (NESTA solver) d) 

Reconstructed Image by TV norm (NESTA solver) 

 
As shown in the figure above, due to the small number of masks compared to the total number of 

pixels, the reconstructed image in NESTA mode and TV norm (Fig.5-d) is more acceptable. In the 
second test, we recover the target for different numbers of masks. Considering the number of masks as 
40, 50 and 60 masks, the results of second test are shown in Figure 6. 
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a b 
  

c d  

Figure 6. The results of image reconstruction using CS algorithm using a) Original Image. b) 40 Masks. c) 50 

Masks. d) 60 Masks 

As shown in the figure above, due to the small number of masks compared to the total number of 
pixels, the reconstructed image in NESTA mode is an acceptable image. According to Figure 6, the 
more masks, the recovered image is closer to the target image. To quantify the difference between the 
recovered image and the original image, we use a quantitative criterion named RMSE. As shown in 
Figure 7, the greater the number of masks, the RMSE is smaller, in other words, the greater the number 
of masks leads to the smaller the difference between the recovered image and the original image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The RMSE of proposed imaging method 

At the end, we compare our imaging method with other methods (Sun et al., 2013) use four single-
pixel detectors to reconstruct a three-dimensional image, while in our imaging method only one single 
pixel (averaging on CCD pixels) is used for reconstruction. (Leihong et al., 2021) has recovered the 
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image from a laser light source, in transmission mode, using a DMD as SLM, at a distance of less than 
1 meter, while in our imaging method, the process of target imaging using a white light source, in 
reflection mode, using a LCD as SLM performed for a distance of 3 meters.  (Phillips et al., 2017) use 
Hadamard masks and 50 mm lenses for reconstructing the target image using a super sampling method, 
while in our imaging method, we use two-level masks with Bernoulli distribution, a 500 mm lens, a 
narrow field of view and compressive sensing method. 

4. Conclusion 

 In this paper, a single-pixel imaging method presented in reflective mode using the spatial light 
modulation and compressive sensing algorithm. We used the software masks, a video projector, a lens 
in the visible band and 60 two-level masks with random distribution and 20×20-pixel resolution and 1 
Hz frame rate. Then the modulated light radiated on a target at a distance of 3 meters. To equate the 
single-pixel detector in the visible band, the pixel averaging method of the target image used and 
finally, the modulated image retrieved using the compressive sensing algorithm. The results showed 
that the use of TV norm in retrieving the target image is more successful than L1 norm. 
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