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A B S T R A C T 

Objective: Estimate the large part of the soil surface to calculate its moisture is 
very important for agriculture since it would improve food security. In current 
study, four radar images of Sentinel-1 are employed to observe soil moisture in 
Miyankale Peninsula where is located in Behshahr, Mazandaran province. 
Methods:  These data are collected since 1394 until 1395 in both VV and VH 
polarization while imagery mode is Global mode. Soil texture, vegetation 
disturbs microwaves responses therefore the images are processed to eradicate 
vegetation effect, then backscatter coefficient calculated. 
Results: These backscatters connect to statistical information gathered by field 
sampling (hygrometer device) to determine volumetric soil moisture in 
Miyankale Peninsula. The results show 0.79 for R2 (coefficient of 
determination) between volumetric moisture and backscatter; 0.62 for R2, 
between vegetation and backscatter, which confirm the vegetation effect on 
detecting moisture of soil.  
Conclusion: This effect is removed from backscatter. In this study, Global 
mode in SAR data is appropriate for spares vegetation areas. 

 

1. Introduction 

One of the soil parameters that would affect other parameters is moisture thus the focus of this 
research is calculating the amount of moisture of the soil. Although soil moisture has been measured 
through other researches, this research proposed then examined a novel method to do so. Applying 
satellite data to measure the amount of moisture in the soil is a new method as least in Iran. There were 
a few radars practical examinations which dedicated to soil parameters such as moisture. Among 
various satellite data, radar data is an appropriate data to extract the moisture percent in the soil. In 
other words, radar spectrum is more capable than other electromagnetic spectrum to detect moisture in 
the soil. Therefore, radar satellite has been chosen to detect the soil moisture. The Sentinel-1 has a 
sensor, SAR named, which produces and sends radar waves to the earth then receives the backscatter 
returned from the earth features (Thain, et al, 2011). This current research chose the new method of 
radar imagery by downloading several images of the Sentinel-1, to calculate the soil moisture. 
Determination of soil moisture is important for agriculture products (Potin, et al, 2011). 
From now on, it will be explained the method employed to extract soil moisture. The images were 
processed to map soil moisture parameters of the case study to determine the amount of moisture in 
each image. 
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An algorithm is needed to be investigated and implemented in order to retrieve soil surface parameters. 
Soil parameters such as moisture and roughness are used in various fields. SAR1 capability to measure 
soil parameters is known for more than 30 years now however, scientists are still searching for 
appropriate sensors and applicable algorithms to restore soil parameters (Mirmazlumi, 1393, p. 43). 
For instance, European Space Agency (ESA) scientists used radar wavelength with the SMOS2, in 
order to measure two variables: soil moisture and salinity of the oceans (Mecklenburg, 2015, p. 4). 
Radar images have two sections included power and phase (backscatter), which are used to determine 
the moisture content of the soil. Humidity is expected to be directly related to power. This research 
modeled the changes in radar images. Radar wavelengths are able to detect the difference content of 
the moisture in soil. Finally, the results obtained with these wavelengths will be analyzed and mapped 
in the case study of Miyankale. 
 

1.1. Soil surface parameters 

Generally, soil surface parameters can be subdivided into three categories: 
1. Surface roughness parameters: These parameters include: the distribution of ground targets, 

surface profile height and autocorrelation function and surface roughness criteria. 
2. Soil Properties: surface roughness, water capacity, depth of penetration and macro-level 

structure are included in this category. 
3. Vegetation characteristics: The vegetation structure and geometry of the plant, along with the 

water capacity of the plant, are the most important parameters of this category (Mirmaslomi, 
1393, p. 56). 

1.2. Research literature 

Ebrahim Babayan et al. (1392) used ASAR images to estimate soil moisture content and also TDR 
humidifier to validate the data. It is concluded that the GM mode of ASAR images is more appropriate 
to be used in semi-arid and undercoats conditions to estimate soil moisture content. Dr. Entekhabi’s 
methodology was developed in 1994. Dual soil moisture model and heat loss model are employed to 
measure moisture and surface temperature. These measurements processed and used to estimate the 
moisture and then generalized it to the depths of surface. Foson Balik et al. (2008) used the backscatter 
waves of ASAR, PALSAR and RADARSAT-1 radar sensors, to measure soil moisture 86%, 76% and 
81%, respectively. Balik compared different polarizations of three sensors and concluded that in spite 
of better spatial resolution 30*30 meter of ASAR image, the results are almost the same in the study 
area Izmir of Turkey. Also, Saloni et al. (2008) compared the accuracy of ASAR images (band C, HH 
and VV polarization), RADARSAT-1 and PALSAR (L band, HH polarization) to estimate soil 
moisture content in agricultural land in western Turkey. According to their results, the relationship 
between soil moisture content and backscatter coefficient of soil was R2 = 0.77, 0.81 and 0.86, 
respectively. In another study, Brocka et al. (2011) used the passive microwave data of the AMSR-E 
sensor of Aqua satellite and ASCAT sensor of MetOP Satellite to measure moisture content of the soil 
surface, with correlation coefficients (R) 0.71 and 62.2, respectively. Baghdadi et al. (2012) estimated 
the soil moisture content in vegetation-free conditions with a precision of 3% using the TERRASAR-X 
test data. Lyons and Verhoest (2012) detected the correlation between RADARSAT-2 data in HH and 
VV polarizations. The IEM3 model estimated the soil moisture content, with the RMSE equal to 0.04 
(cubic centimetre per cubic centimetre). Kulas et al. (2016), found improvements in detecting soil 
moisture in the ranges of 5 to 19 percent. In an investigation which they worked on microwave satellite 
data for the assessment of soil moisture, it was found that if active satellite (ASCAT) and passive 
(AMSR) data were used complementarily, a significant improvement would be obtained. Lyons et al. 

                                                 
1- Synthetic aperture radar 

2- The Soil Moisture and Ocean Salinity 

3- Integrated ecosystem model 
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(2017) did the same study by two observations. Both active radar (ASCAT) and passive (SMOS) 
considered to observe backscatter coefficient and lighting temperature. Lyons found out that 
combining these parameters would estimate the soil moisture in depth of 0-10 cm with a great 
accuracy of 0.548. 
 

2. Materials and Methods 

The research based on two types of data; field data and satellite data. The field data were going to 
examined soil in the case study in order to measure the amount of soil moisture. These field 
measurements were necessary to be done to compare with the moisture obtained by radar images. In 
further section it would be cleared the relationship between field data and satellite data. First of all, the 
case study has been introduced. 
 

2.1. Study area 

The Behshahr city is located in the mountainous foothills of Alborz Mountains with two mountainous 
and plain areas. It extends from 36 degrees, 45 minutes to 36 degrees and 88 minutes longitude, and 53 
degrees and 21 minutes to 54 degrees 13 minutes latitudes. Miyankale Peninsula is located in this city 
as a plain district next to the Caspian Sea. The Miyankale is a narrow Peninsula were reached to the 
Caspian Sea from the north, and reached to the narrow, shallow Gorgan Gulf from the south. It 
restricted by Raghmarz wetland from the west and narrow strait of less than one kilometre in the 
neighbouring port of Turkmen from the east. 
The area of Miyankale is a unique area about 68 thousand hectares. The average height of this area is 
30 meters below the sea level, and its annual rainfall is 717 mm. Miyankale is located in a warm, 
humid climate. The terrestrial ecosystem consists of sandy hills of the Pomegranate trees, berry 
bushes, Sail bushes and grassland region. These various vegetation areas are not uniform and are dense 
in some hectares but thin in others. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The case study of Behshahr 
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2.2. Field data 

Besides processing satellite data, the field data were collected in 1m2 kilometer area is considered to 
be checked in soil moisture. The observed moisture content was calculated in depth (1-10) centimeters. 
The forty samples were obtained in different location. The samples were kept in specific metal dish in 
order to transfer to the soil laboratory. The soil laboratory measured the percentage of moisture 
content. The location of each sample point was recorded by the GPS device Fig. 2. Another point that 
has to be noticed is the different types of sampling. The soil differed from sand to gravel and 
vegetation types in sampling positions varied from thin to dense grass to a height of 10 centimeters. It 
should be considered that, during software processing, the effect of vegetation would be removed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. DEM of Behshahr; (writers) 

2.3. Satellite data 

Two satellite were considered to employ their images; LANDSAT-8 and SENTINEL-1. As long as 
SENTINEL-1received all the radar backscatter from the ground, it needed to delete the vegetation 
backscatter. The impact of vegetation had to be eradicated then the radar image processed to measure 
the soil moisture. The NDVI is a vegetation index which obtained by LANDSAT-8. Three images of 
Landsat 8 were downloaded in approximately the same date of the radar images were obtained. 
LANDSAT-8 images were pre-processed then processed to calculate the vegetation density in the case 
study of Miyankale Peninsula. Then NDVI index needed to be calculated in order to measure, the LAI 
equation (1): 

)1(                                   
 
 

3. Methodology 

The European Space Agency is an open source to get the Sentinel-1 images. These are high resolution 
images with a large frame size of 40,000 pixels * 40,000 pixels. First of all orbital correction is exerted 
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to the image. There are two types of correction files, POEORB, RESORB. The RESORB file is easier 
to access rather than another file. It could be downloaded in less than a day; however, the POEORB 
orbit took longer period to be available but it was more accurate. Thus, the POEORB file was used in 
this research. The next step was to remove the thermal noise and then the image calibrated by Sigma0 
band. As long as the pixel size is half of the SAR image resolution, the image’s speckle was removed 
by making multilook of the image. 
Each pixel is the result of a total of backscatter to the satellite, and each backscatter has a different 
phase. Therefore, the interference of these waves causes the formation of dark or bright spots in the 
final image. This created noise, such as salt and pepper, is sprayed on images; it is unavoidable error in 
coherent systems Fig. 3. 
For each pixel, γ (x, r) is equal to the sum of the backscatter (2): 
 

 

 

 

 

 

 

 

 

Fig. 3. Backscatter of each pixel.  Source: Mincla, 2016 

 
The effects of speckles on the image degraded image quality so the interpretation became more 
difficult. According to the Fig. 4 As the backscatter increased, the speckle would increase too. 
 

 

 

 

 

 

 

 

 
 

 

Fig. 4. The relationship between word and image and post back. Source: Mincla, 2016 



Abolfazl Rahimabadi Journal of Radar and Optical Remote Sensing and GIS (2024) 7(2), 33–43 

 

38 

 

In this paper, the Moody's filter was used (Babayan, 1392: 613) to remove speckles. As the multi look 
increased, the probability distribution function became narrowed. The narrow function is corresponded 
the speckle reduction in the image (Mincla, 2016). The speckle of the images would remove using 
different date of imagery of the same place. In other word, various images of the case study in different 
time are the solution for detecting speckles. In the next procedure geometric correction, georeferenced 
and normalization of the slope of the area was exerted. The slope is corrected by the Band Math 
operator shown in quotation (3). Now the sigma zero4 (σ °) of the region is calculated by multiplying 
backscatter of the reference ellipse to the sinusoidal fraction Fig. 6. The θDEM is the angle of the radar 
wave with the digital elevation model and θELL is the angle of the wave with the reference ellipse. 

 
 (3) 

 

 

 

 

 

 
 

Fig. 5. The reflection relation with the gradient of its reflection surface. Source: Mincla, 2016 

The radar image is composed of phase or power that should be converted to a user-friendly image. 
How to display the Sentinel image depended on the received geometry. After processing the image 
data in Fig. 6, it was time to estimate the moisture content and the backscatter relationship with the 
moisture content of the studied area and vegetation density.  

 
 

 

 

 

 

 

 

 

 

Fig. 6. The right image is the final processing. Source: Writers 

The backscatter of the earth surface was obtained using equation (4). Where σs° soil backscatter and 

                                                 
4- Sigma Nought 



Abolfazl Rahimabadi Journal of Radar and Optical Remote Sensing and GIS (2024) 7(2), 33–43 

 

39 

 

σdv° plants backscatter, and also σ int ° is the backscatter of the plant and soil. The plant backscatter is 
derived of these equations (5) and (6) where τ2 is the portion of light which transferred of the 
vegetation surface and LAI is the leaf area index. The angle θ is declination of the sensor (Moren, 
2005: 8). 

  

 

 
 

 

4. Results and discussion 

The coefficient of determination, denoted R2 "R squared", is used to compare independent variable(s). 
The research had two types of data were also independent; first group were field measurements and the 
second one was images calculation. It should be considered these two types of data were prepared 
independently in order to compare. The calculation of R2 coefficient is an appropriate method to 
compare these data. The research chose this method to examine the correctness of moisture percent 
extracted form SAR imagery. Since the field moisture were measured correctly, the R2 coefficient 
determined the correctness of moisture measurements on SAR images. In other words, R2 is capable of 
determination of SAR imagery whether it detected the soil moisture in a correct way or not. The 
coefficient of determination ranges from 0 to 1. As the R2 value became closer to 1, the moisture 
obtained from SAR images was confirmed.  

4.1. Comparison of surface reflection coefficients and observation of humidity  

The coefficient (R2) is 0.82, 0.82, 0.78, 0.72, and 0.81 for different time periods were obtained as 
shown in Table (1). The difference between these two variables can be due to the backscatter received 
by the sensor, which included the polarization and the soil's types (Altis, 1996, p. 655). 
The coefficient (R2) obtained from the diagrams indicated that the coefficient of determination differed 
from 0.72 to 0.82 due to the moisture content and backscatter in different time series. The least amount 
of R2 is for VH polarization. Also, for the coefficient of determination, different results were obtained, 
which will be described below. 

Table 1: Results of RMSE and R2 coefficient and moisture variables observed in different time series  

R2 RMSE Polarization Date 

0.82 0.35 VV 11/21/2015 

0.82 1.06 VV 5/1/2016 

0.78 1.49 VV 6/5/2016 

0.72 1.75 VH 6/5/2016 

0.81 0.68 VV 9/22/2016 

4.2. Comparison of backscatter coefficient with Vegetation (NDVI) 

The relationship between vegetation and wavelength is important because, in detecting soil moisture, 
the wavelength must be passed through vegetation as the main obstacle and reached to the soil. 
According to Babaeiyan et al, if the plant biomass is less than 0.5 kg / m2, the vegetation effect can be 
ignored on the total backscatter coefficient (Das, 2008). In hot season, when the dehydration was high, 
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vegetation is noticeably reduced and less correlated with backscatter. Thus, it was proved that C band 
was affected by vegetation. In the studied area, the effect of vegetation was eliminated due to a variety 
of vegetation and its effects on backscatter. 

4.3. Distribution of backscatter in time-spatial dimension 

The normalized total backscatter was shown in 15 meters pixels during the study period. As seen, the 
total backscatter was affected by vegetation area. It should be noticed that the backscatter is obtained 
from the northern, northeastern and western parts of the region Figure 8, where there were more 
vegetation and thus more soil moisture (Mesri, 1392: 3). 
 

 

Fig. 7. Time-spatial distribution of the total backscatter (1 * 1 km). 

4.4. Precision testing 

Based on the results, the R2 value was between 0.72 and 0.82, as well as RMSE between 1.75 and 
0.35. The RMSE value was approximately dependent on the month or season of the year. In other 
words, in the low rainfall season, RMSE is somewhat diminished, as the effect of vegetation on 
backscatter. While Babaian et al. calculated 0.68 for R2 based on surface soil moisture with ASAR 
images and HH polarization, the current research results in the VH and VV polarization, were above 
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0.70%. In addition, Salon et al. calculated moisture content using C-band with HH and VV 
polarization then reached to R2 coefficients equal to 0.77, 0.81, and 0.88, which was approximately the 
same as this research.  
In general, region vegetation diversity was very crucial and determined the accuracy of R2 coefficient. 
In the study of Nazari Aghdam, with satellite optic data, there was a high correlation between soil 
moisture content and NDVI. Therefore, in this study, there were no need for images in visible 
wavelengths. In Khan mohammadi research, vegetation indices such as NDVI, NDMI and LST 
employed using MODIS satellite data to extract soil moisture content. Although measuring soil 
moisture in Khan mohammadi research definitely affected by vegetation areas; its precision was not 
good enough compared to this research. According to Figure (8), the moisture content of the whole 
Miyankale Peninsula was mapped based on each image on SAR sensor. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Time-Spatial distribution of soil moisture content 1 * 1 km.  

5. Conclusion 

In this research, a simple experimental model proposed which was based on the backscatter data in 
GM mode of the Sentinel Satellite. The time-spatial model was proposed to retrieve, monitor, and 
mapping soil moisture of the earth surface.  This regression model estimated soil moisture content in 
the study area through the R2 coefficient and RMSE calculations. The results of the evaluation and 
validation of the model showed that there is little difference between the soil moisture content and the 
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measured values. Due to the lack of coherent data of soil moisture in the country Iran, especially in 
crucial agricultural sites, employing the SAR data from the GM model would be an effective novel 
method. In this regard, it is recommended to use long-wavelength bands for vegetation areas. 
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