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Abstract. This paper deals with the estimation of returns to scale 

(RTS) in free disposal hull (FDH) models for undesirable data and 

provides some stability intervals for preserving the RTS 

classification. It has been shown that the proposed stability 

intervals can be obtained via a polynomial-time algorithm based on 

the calculation of certain ratios of inputs and outputs, without 

solving any mathematical programming problem. The results of the 

study have been proved via some lemmas and theorems for 

undesirable data and have been illustrated by numerical example.  
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1. Introduction 

Data envelopment analysis (DEA) is a non-parametric technique for 

evaluating decision making units (DMUs) based on the production 

possibility set. Free disposal hull (FDH) models, which were first 

formulated by Deprins et al. [5], rely on the sole assumption that 

production possibilities satisfy free disposability, and ensure that 
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efficiency evaluations are effected from only actually observed 

performances. Estimation of returns to scale (RTS) is one of the vital 

topics in DEA and FDH models. Although there are many papers for 

estimating RTS in DEA models (see, e.g., [2–4, 7, 10, 12, 13, 28–30]), 

there are only few papers which concern the estimation of RTS in FDH 

models: Kerstens and Vanden Eeckaut [14], Podinovski [19], and 

Soleimani-damaneh et al[25, 26].The sensitivity and stability analysis of 

RTS classification in DEA was first studied by Seiford and Zhu [21] and 

improved by Jahanshahloo et al. [11]. These authors develop several 

linear programming formulations for investigating the stability of RTS 

classification. Soleimani-damaneh et al. [25, 26] provide two different 

enumeration algorithms for estimating the RTS in FDH models. In [25] 

an envelopment model has been considered which is an input oriented 

and contracts only inputs. In [26] an envelopment model has been 

considered which contracts the inputs and expands the outputs, 

simultaneously. The latter can provide the idea to generalize the concept 

of the right-RTS and the left-RTS [10, 29] to FDH models. Also, the 

latter shows that an extension of Banker and Thrall’s method (see [4]) 

can be utilized to determine the RTS in FDH models. In this paper we 

seek some stability regions for the RTS classification in FDH models. To 

this end, the envelopment form of the FDH-CRS model1 and the 

enumeration technique to determine the RTS classification in FDH 

models are considered, and some stability intervals for radial variations 

in outputs while preserving the RTS classification are obtained. Also it 

can be shown that the proposed stability intervals can be obtained via a 

polynomial-time algorithm. In addition to obtaining the stability 

intervals, it is shown that the RTS classification of FDH-inefficient units 

can be determined by techniques provided in [25, 26] without obtaining 

the projection point all DEA models are formulated for desirable inputs 

and outputs. However, it was mentioned already by Koopmans[15] that 

the production process may also generate undesirable outputs like smoke 

pollution or waste. However, both desirable (good) and undesirable (bad) 

output and input factors may be present. Consider a paper mill 

production where paper is produced with undesirable outputs of 

pollutants such as biochemical oxygen demand, suspended solids, 

particulate and sulfur oxides. If inefficiency exists in the production, the 

undesirable pollutants should be reduced to improve the inefficiency, i.e, 
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the undesirable and desirable outputs should be treated differently when 

we evaluate the production performance of paper mills. However, in the 

standard DEA model, decreases in outputs are not allowed and only 

inputs are allowed to decrease(Similarly, increases in inputs are not 

allowed and only outputs are allowed to increase). Faare et al[6] 

developed a non-linear DEA program to model the paper production 

system where the desirable outputs are increased and the undesirable 

outputs are decreased. In DEA literature, there already existed much 

research concerning applications with undesirable inputs and/or outputs. 

Some of the existing approaches are brie summarized as follows: 

First acceptable approach suggested by Koopmans. Main idea of his 

approach is to apply some transformations on data. Then the 

undesirable inputs or outputs will become desirable after this 

transformation. For other approaches based on data transformation one 

can see Scheel (1998, 2001), Ali and Seiford[1], Pastor[20], Seiford and 

Zhu[22], Golany and Roll [9], Lovell et al. [18]. There also exist many 

approaches that can avoid data transformation. For example, one may 

regard undesirable inputs as desirable outputs, or undesirable outputs as 

desirable inputs, see Liu and Sharp[17] for an initial attempt to 

formulate this method. For more information one can see  Grosskopf [8], 

Silva Portela et al[23], Yu[31]. Recently Liu et al[16] present a 

systematic investigation on model building of DEA without transferring 

undesirable data. The remainder of this paper is organized as follows: In 

section 2, using[24] the determination of RTS in FDH models for 

undesirable data is reviewed and a new theorem for inefficient DMUs is 

proved. In Section 3, the required stability regions are provided and a 

polynomial-time algorithm to obtain these intervals is provided. Section 

4, contains one examples with undesirable data. 

2. RTS Classification in FDH Models for Undesirable Data  

Now, we present a FDH model for undesirable data (see Liu et al[16]). 

Assume that { },{ },{ }DO UI DI and { }UO  indicate fixed index sets 

independent of j, such that ( { })
ij
x i DI∈ and ( { })

rj
y r DO∈ are desirable 

inputs and outputs and ( { })
ij
x i UI∈ , ( { })

rj
y r UO∈  are undesirable inputs and 

outputs. 
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Then FDH model can be readily extended into the following modified 

form: 
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o
DMU is considered as an FDH-efficient point if  1
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o
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Where Γ depending on the RTS assumption of the reference technology, 

is 

(3) 

(4) 

(5) 

( ) ( ) { | 0 } fori s s CRSδ δΓ = < =  

( ) ( ) { | 0 1} forii s s NIRSδ δΓ = < ≤ =  

( ) ( ) { | 1} foriii s s NDRSδ δΓ = ≥ =  
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The above model and the related technologies were proposed by 

Kerstens and Vanden Eeckaut[14].This model results in the

, ,CRS NIRS NDRS

o o o
θ θ θ  input-oriented efficiency scores using the above 

mentioned Γ  sets, respectively. 

we express the convenience of Banker and Thrall’s method to determine 

the RTS in FDH models: 

Theorem 1. Considering 
o

DMU as an FDH-efficient DMU, we have 

(i) If * 1
j

j J

λ
∈

=∑ in any optimal solution of the FDH-CRS model, 

then CRS prevail. 

(ii) If * 1
j

j J

λ
∈

<∑ in all optimal solutions of the FDH-CRS model, 

then IRS prevail. 

(iii) If * 1
j

j J

λ
∈

>∑ in all optimal solutions of the FDH-CRS model, 

then DRS prevail. 

(iv) If there exist two optimal solutions, * *( , )λ θ and ** *( , )λ θ , for 

the FDH-CRS model such that * 1
j

j J

λ
∈

>∑  and ** 1
j

j J

λ
∈

<∑ , then 

CRS prevail. 

Proof. Omitted 

Algorithm 1. 

Step1.compute FDH

o
θ . 

Step2. compute CRS

o
θ the FDH-CRS efficiency score corresponding  to

( , , , )
o o o

FDH FDH

o DI UIo DO o Uo
x x y yθ θ  

Step 3. Compute 
o
λ  and 

o
λ . 



88  L. Jalaei, and D. Akbarian 

 

� �

� �

{ }

0

1

1

1

. , { }

, { }

, { }

, { }

max

, 0,1 ;

, 1

o j
j J

CRS FDH

j j io io
j J

n

j ij io
j

n CRS FDH

j rj ro ro ro
j

n

j rj ro
j

j j j

j
j J

S t xi i DI

x x i UI

y y r UO

y y r DO

x

w w j J

w

θ θ

λ

λ θ θ

λ

λ λ

λ

λ δ

δ

∈

∈

=

=

=

∈

∈

≥ ∈

≤ ∈

≥ ∈

= ∑

≤∑

= ∈ ∈

∈ Γ =∑

∑

∑

∑

 

 

(6) 

� �

� �

{ }

0

1

1

1

. { }

, { }

, { }

, { }

min

,

, 0,1 ;

, 1

o j
j J

CRS FDH

j j io io
j J

n

j ij io
j

n CRS FDH

j rj ro ro ro
j

n

j rj ro
j

j j j

j
j J

St xi i DI

x x i UI

y y r UO

y y r DO

x

w w j J

w

θ θ

λ

λ θ θ

λ

λ λ

λ

λ δ

δ

∈

∈

=

=

=

∈

∈

≥ ∈

≤ ∈

≥ ∈

= ∑

≤∑

= ∈ ∈

∈Γ =∑

∑

∑

∑

 

Step4. if 1
o
λ <  then IRS prevail at ( , , , )

o o o o
Di Ui Do Uo
x x y y , else 

             If 1
o
λ >  then DRS prevail at ( , , , )

o o o o
Di Ui Do Uo
x x y y , else  

            CRS prevail at ( , , , )
o o o o
Di Ui Do Uo
x x y y

 

The following theorem helps to determine the RTS classification of 

( , , , )
o o o o
Di Ui Do Uo
x x y y  in both efficient and inefficient cases, without needing 

to perform Step1 of Algorithm1.This reduces the computational 

requirements. 

Theorem 2. Let CRS

o
θ  be the FDH-CRS efficiency score corresponding to 

( , , , )
o o o o
Di Ui Do Uo
x x y y  and consider the following models: 
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Then we have 
o o
λ λ+= and 

o o
λ λ−= . 

Proof. Comparing Models (5) and (6) shows that to establish the 

theorem it is sufficient to show that  

�
CRS

CRS FDH

o o o
θ θ θ=  

Where �
CRS

o
θ is the FDH-CRS efficiency score corresponding to 

( , , , )
o o o

FDH FDH

o DI UIo DO o Uo
x x y yθ θ  and is obtained by using the following 

model: 
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Let * * *( , , , )CRS

o
λ θ δ ω  be an optimal solution to Model (CRS). 

From the constraints of Model CRS we have  
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These imply that * * *( , / , , )CRS FDH

o o
wλ λ θ θ θ δ= =  is a feasible solution to 

Model (7) Thus /
CRS

CRS FDH
o

o
θ θ θ≤ɵ , which leads to  

(9) .
CRS

CRS FDH
o

o o
θ θ θ≥ ɵ  

Now let �( , , , )
CRS

o wλ θ δ
ɵ ɵ ɵ  be an optimal solution to Model(7). From the 

constraints of Model (7) we have 

These imply that � �, , )( , CRS FDH

o o
wδλ λ θ θ θ= =ɵ ɵ  is a feasible solution to 

Model CRS. Thus 

CRS
CRS FDH

o
o o
θ θ θ≤ ɵ  

By(8)and(9),  

CRS
CRS FDH

o
o o
θ θ θ= ɵ  
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And the proof is complete. 

Regarding Theorem2, the RTS classification of ( , , , )
o o o o
Di Ui Do Uo
x x y y in both 

efficient and inefficient cases, can be obtained using the following 

Algorithm. 

Algorithm 2. 

Step1.compute CRS

o
θ . 

Step 2.compute ,
o o
λ λ+ −  by Models(6). 

Step3.if 1
o
λ+ <  then IRS prevail at ( , , , )

o o o o
Di Ui Do Uo
x x y y , else 

         if 1
o
λ− >  then DRS prevail at ( , , , )

o o o o
Di Ui Do Uo
x x y y , else 

        CRS prevail at ( , , , )
o o o o
Di Ui Do Uo
x x y y . 

It is evident that Algorithm2 is computationally economical compared to 

Algorithm1.Algorithm1 is performed through solving four models, while 

Algorithm2 is performed through solving three models. Using all three 

above-mentioned method requires solving at least three mixed integer 

linear(non-linear) programming problems for each DMU (see[4, 26]), and 

this can be expensive. So, two polynomial-time algorithms to do this 

have be improvised by Soleimani-damaneh et al.[25, 26]. The following 

theorem utilizes such polynomial-time tests to obtain the values of 

,
o o
λ λ+ −and hence to determine the RTS classification. The proof of this 

theorem comes from the discussion provided in [25, 26, 27] and is hence 

omitted. 

Theorem 3. Considering ( , , , )
o o o o

o Di Ui Do Uo
x x y yDMU . 

(10) 
1
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jo ro
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y
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o
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(13) { : }ko CRS

o o
A k J θ θ= ∈ =  

We have  

( ) max{ : },

( ) min{ : }.
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Now regarding Theorem3, the RTS classification of( , , , )
o o o o
Di Ui Do Uo
x x y y , in 

both efficient and in efficient cases, can be obtained using the following 

algorithm  

Note that this algorithm is a polynomial-time algorithm regarding 

Theorem3 in [26] and has many computational advantages compared to 

Algorithms. 1and 2. This algorithm is an enhanced version of the 

technique provided in [25]. 

Algorithm 3. 

Step1.compute joλ for all j J∈  by (10). 

Step 1.compute joθ for all j J∈  by (11). 

Step 3. Compute ,CRS

o o
Aθ by (12) and (13), respectively. 

Step 4. Compute ,
o o
λ λ+ −  by parts (i) and (ii) of Theorem 3, respectively. 

Step 5. If 1
o
λ+ < , then IRS prevail at ( , , , )

o o o o
Di Ui Do Uo
x x y y , else 

           If  1
o
λ− > , then DRS prevail at ( , , , )

o o o o
Di Ui Do Uo
x x y y , else 

           CRS prevail at( , , , )
o o o o
Di Ui Do Uo
x x y y . 

3. Stability 

This section contains three theorems which provide stability intervals for 

preserving the RTS classification of DMUs in FDH models for 

undesirable data. The stability interval for preserving the RTS 

classification of a considered unit, 
o

DMU , is undesirable data with 

defined as follows. 

Definition 1.The interval I R⊆  is a stability interval for preserving the 

RTS classification of a considered unit ( , , , )
o o o

o DI UI DOo Uo
DMU x x y y if 
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Before providing the main theorems, we establish the following useful 

lemma 
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Then we have CRS CRS
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θ αθ=  
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Proof. Let * * *( , , , )CRS

o
wλ θ δ be an optimal solution to model CRS. Then, it 

is clear that * * *( , , , )CRS
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wαλ αθ αδ is a feasible solution to Model (15). 

Hence CRS CRS
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θ αθ≤
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By Lemma4, * * * *( , , , )wλ θ δ  is an optimal solution to Models(16), if and 

only if 
* * * *

( , , , )
wλ θ δ

α α α α
is an optimal solution to Models(6).Hence 

oα
λ αλ+ +=  and 

oα
λ αλ− −= . By the assumption of the theorem we have 

1/ 1/
o o
λ α λ+ −≤ ≤  

Which implies that 1
o

αλ+ ≥  and 1
o

αλ− ≤ .Thus 1
α
λ+ ≥  and 1

α
λ− ≤ and 

hence CRS prevail at ( , , , )
o o o o
Di Ui Do Uo
x x y yα α  by part(iii) of Theorem1. 

Theorem6. Suppose that IRS prevail at ( , , , )
o o o

DI UI DOo Uo
x x y y .Then IRS 

prevail at ( , , , )
o o o o
Di Ui Do Uo
x x y yα α  fo 

(0,min{1/ , })FDH

o o
α λ ϕ+∈  

Proof. See theorem (6) in M. Soleimani-damaneh, A. Mostafaee(2008) 

Theorem7. Suppose that DRS prevail at ( , , , )
o o o

DI UI DOo Uo
x x y y .Then DRS 

prevail at ( , , , )
o o o o
Di Ui Do Uo
x x y yα α  for 

(1/ , ]FDH

o o
α λ ϕ−∈  

Proof. The proof of this theorem is similar to that of Theorem6 and 

hence  omitted. 

Now all main discussions of the paper are summarized in the following. 

This algorithm determines the RTS classification of units in FDH models 
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and provides the respective stability intervals. Note that this algorithm 

is polynomial-time (see Theorem3 in[26]).  

Algorithm 4. 

Step1. compute joλ  for all j J∈ by(10). 

Step2. compute joθ  for all j J∈ by(11). 

Step3. compute CRS

o
θ  and 

o
A  for all j J∈  by(12) and(13), respectively.  

Step4. compute ,
o o
λ λ+ −  by parts(i) and (ii) of Theorem3, respectively. 

Step5. compute FDH

o
ϕ  the output-oriented FDH efficiency score of 

( , , , )
o o o

DI UI DOo Uo
x x y y

 
as follows(see Model(14)). 

{ }
: 1

max min{ / }
j o

FDH

o rj roj J x x r s
y yϕ

∈ ≤ ≤ ≤
=  

Step6. If 1
o
λ− >  then DRS prevail at ( , , , )

o o o
DI UI DOo Uo
x x y y . Furthermore 

DRS prevail at  ( , , , )
o o o o
Di Ui Do Uo
x x y yα α  for each (1/ , ]FDH

o o
α λ ϕ−∈ ; else  

If 1
o
λ+ < , then IRS prevail at ( , , , )

o o o
DI UI DOo Uo
x x y y ). Furthermore IRS 

prevail at ( , , , )
o o o o
Di Ui Do Uo
x x y yα α  for each (0,min{1/ , })FDH

o o
α λ ϕ+∈ ; 

else CRS prevail at ( , , , )
o o o

DI UI DOo Uo
x x y y ).Further more CRS prevail at

( , , , )
o o o o
Di Ui Do Uo
x x y yα α   for each [1 / ,min{1/ , }]FDH

o o o
α λ λ ϕ+ −∈ . 

4. Application 

In this section, we show the ability of the provided approach using a 

numerical example. We apply the proposed method for evaluating 12 

units, which each unit uses four inputs to produce three outputs with 3 

input, and 2 output are desirable, one input and one output are 

undesirable. The data set for this example are shown in Table 1. 

The RTS classification of all units as well as the related stability 

intervals have been obtained using Algorithm 4, and have been listed in 

Table 2.So, Algorithm 4 gives the RTS classification of inefficient DMUs 

directly without obtaining their projection. Also it should be noted that 

the RTS status of an inefficient DMU  for undesirable data depends on 

the manner in which we move the DMU to the FDH frontier. Indeed, 
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RTS is a property of the frontier at a specific point, not a property of 

the DMU that sites a that point. 

Table 1 

3
y  

2
y  

1
y  

4
x  

3
x  

2
x  

1
x  DMU  

712 110 60 874 1560 151 20 
1

DMU  

294 150 150 652 1800 131 19 
2

DMU  

213 55 160 680 2120 160 25 
3

DMU  

215 87 180 1043 1450 168 16 
4

DMU  

349 266 94 782 1790 158 22 
5

DMU  

361 90 230 550 2100 255 55 
6

DMU  

338 210 220 966 1320 235 33 
7

DMU  

297 80 152 782 1900 206 31 
8

DMU  

401 100 190 834 2050 244 30 
9

DMU  

308 50 250 716 1630 268 50 
10

DMU  

282 147 260 1112 1670 306 53 
11

DMU  

286 120 150 679 2170 284 38 
12

DMU  

Table 2 

Stability Interval RTS FDH

o
ϕ  

o
λ+  

o
λ−  DMU 

[0, 1.03] IRS 1.03 0.88 0.88 1 

[1, 1] CRS 1 1 1 2 

[0, 1.08] IRS 1.08 0.9 0.9 3 

[1, 1] CRS 1 1 1 4 

[1, 1] CRS 1 1 1 5 

[0.81, 1.17] DRS 1.17 1.26 1.23 6 

[1, 1] CRS 1 1 1 7 

[0, 1.16] IRS 1.46 0.86 0.86 8 

[0.97, 1.36] DRS 1.36 1.03 1.03 9 

[1, 1] CRS 1 1 1 10 

[1, 1] CRS 1 1 1 11 

[0, 1.4] IRS 1.4 0.67 0.67 12 
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5. Conclusion  

Economic notion of returns to scale and calculation method which has 

been widely studied in the context of DEA, This, in turn, extends the 

application of the DEA. This paper seeks to complete a polynomial time 

algorithm to determine the returns to scale for both the efficient and 

inefficient units is undesirable for the data based on the ratio of input 

and outputs,  without solving any mathematical programming problem. 

Also, the a major part of article, to preserve some stability classification 

of returns to scale is proposed. Talk presented can be useful in the 

development of performance analysis of a practical project that can be 

done theoretically and computationally. 
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