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Abstract 
 

The aim of this study is separation of Fe2O3, TiO2 and V2O5 anomalies in Esfordi 1:100,000 sheet which is located in Bafq 
district, Central Iran. The analyzed elements of stream sediment samples taken in the area can be classified into 5 groups (factors) by 
factor analysis. The Concentration–Number (C-N) fractal model was used for delineation of the Fe2O3, TiO2 and V2O5 thresholds. 
According to the thresholds, the distribution of elemental concentration for Fe2O3 and TiO2 were divided to four classifications and 
V2O5 has five geochemical populations in the area. Based on correlation between obtained results with geological and remote 
sensing data, the results show that the major anomalies of Fe2O3, TiO2 and V2O5 and related factor are mostly situated around 
granitic/rhyolitic rocks, iron alterations and along faults. 
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1. Introduction 

 

 
The definition of geochemical anomalies from 

backgrounds is important for interpretation of 
geological evolution and the ore-forming processes [1, 
2, 3, 4]. Mineral exploration based on stream sediment 
data has been widely utilized for various types of ore 
deposits" and separation of geochemical anomalies 
based on stream sediment data is an essential stage to 
outline discoveries and prospects for mineral 
exploration [5, 6, 7]. There have been some classical 
statistics methods for definition of geochemical 
anomalies from background such as histogram 
analysis, box plot, summation of mean and standard 
deviation coefficients and median [8, 9, 10, 11, 12, 13, 
14]. The statistical methods consider only the 
frequency distribution of the elemental concentration 
paying no attention to spatial variability; the 
information about the spatial correlation is not always 
available. Additionally, these methods are only 
appropriate to cases where geochemical data follows a 
normal distribution [3, 15, 16, 17, 18]. 

Fractal/multifractal modeling, established by 
Mandelbrot (1983), have been widely applied in 
different branches of geosciences since 1980s [19, 20, 
21, 22]. Bolviken et al. (1992) and Cheng et al. (1994) 
proved geochemical patterns of various elements have 
fractal dimensions [22, 23].  
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Several fractal models have been proposed in 
geochemical data analysis including Concentration-
Area (C-A) by Cheng et al. (1994), Number-Size (N-S) 
by Mandelbrot (1983), Concentration-Distance (C-D) 
by Li et al. (2003), Concentration-Volume (C-V) by 
Afzal et al. (2011) and Concentration-Number (C-N) 
by Hassanpour and Afzal (2013) [4, 22, 24, 25, 26]. 
Moreover, Studies on many cases revealed that 
geochemical data could have a multifractal nature [5, 
27, 28, 29, 30, 31, 32, 33]. Geochemical data including 
lithogeochemical, stream sediments and in-situ soil 
have a multifractal nature which represents differences 
in geological factors such as alterations, rock units, 
geochemical and mineralization processes [22, 31, 34, 
35, 36, 37, 38, 39].  

Multivariate statistical analysis specifically factor 
analysis is proper techniques to classify and reduce the 
number of geochemical variables. Factor analysis, as 
one of the methods of multivariate analysis, has been 
widely used for interpretation of stream sediment 
geochemical data. The principal aim of factor analysis 
is to explain the variations in a multivariate data set by 
a few factors as possible and to detect hidden 
multivariate data structures. Factor analysis is suitable 
for analysis of the variability inherent in a geochemical 
data set with many analyzed elements. Consequently, 
factor analysis is often applied as a tool for exploratory 
data analysis [14, 37, 40, 41]. 

The purpose of this study was to use the application 
of C-N fractal modeling and factor analysis to 
distinguish factors based on Fe2O3, TiO2 and V2O5 
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geochemical anomalies for further mineral exploration 
in Esfordi 1:100000 sheet, Central Iran.  

 
2. Methodology 

 

2.1. C-N fractal model 
 
The N–S model, which was introduced by 

Mandelbrot (1983), can be employed to demonstrate 
the distribution of geochemical populations without 
pre-processing of data [22]. The model shows that 
there is a relationship between desirable attributes (e.g., 
ore element) and their cumulative numbers of samples 
of the elemental concentrations in this studied area. 
Agterberg (1995) proposed a multifractal model titled 
Size-Grade for determination of the spatial 
distributions of giant and super-giant mineral deposits 
[21]. Monecke et al. (2005) utilized the N-S fractal 
model to describe element enrichments accumulated 
with metasomatic processes during the formation of 
hydrothermal ores in the Waterloo Australia massive 
sulfide deposit [42]. A power-law frequency model has 
been intended to describe the N-S relationship 
according to the frequency distribution of elemental 
concentrations and cumulative number of samples with 
those attributes [5, 43, 44, 45, 46, 47, 48, 49]. 
Hassanpour and Afzal (2013) developed the N-S model 
and proposed concentration-number (C-N) model. The 
model is expressed by the following equation [4, 5, 
22]: 

N(≥ρ) = Fρ–D             (1) 
where ρ indicates element concentration, N(≥ρ) 

denotes cumulative number of samples with elemental 
concentration values greater than or equal to ρ, F is a 
constant and D is the scaling exponent or fractal 
dimension of the distribution of elemental 
concentrations. Log-log plots of N(≥ρ) versus ρ show 
straight line segments with different slopes −D 
corresponding to different concentration intervals [4, 
5]. 
 
2.2. Factor analysis 

 
Factor analysis is one of the most popular 

multivariate analysis which is determined as a 
powerful implement to visualize high dimensional data 
in lower dimensional spaces based on variance and 
covariance matrix. It is a useful tool for combining 
several correlated variables into a single variable, and 
hence for reducing the dimensionality of datasets into 
uncorrelated principal components based on covariance 
or correlations of variables which represents the inter-
relationships among the multi-dimensional variables 
[14, 50, 51]. A large dataset of geochemical variables 
could be combined in a few factors by this method. 
Factors could be illustrative of the geological and 
mineralization processes that generate the correlations 

among these variables (elemental concentrations) [52, 
53].  
 
3. Geological Setting  

 
The Central Iran structural zone includes the 

Anarak-Bafq-Kerman metallogenic belt, parts of the 
Uremia-Dokhtar volcanic belt and Sanandaj-Sirjan 
structural-metamorphic zone. There are mineralization 
of different types of iron ores (> 2 Gt) which are 
located in the Bafq district region. The largest reserve 
of iron ore ever discovered in Bafq district is the 
Chadormalu mine which contains 400 Mt of iron ore 
[54, 55, 56]. 

The Esfordi 1:100000 sheet is one of the most 
important of geological maps in the Bafq district. The 
Bafq region is one of the most essential mineralized 
zones of central Iran with the upper Precambrian 
metamorphic-sedimentary rocks and Rift series of 
Precambrian - Paleozoic [54, 55]. Central Iran is a 
portion of Gondwana land with a Precambrian 
basement. Within a Pan-African rift zone a huge 
Infracambrian volcanic field was formed on top of a 
silicic diapir, with ignimbritic cauldrons, ring fracture 
intrusions, and resurgent granites (Figs 1) [56, 57].  

Intrusive rocks host of magnetite; apatite-magnetite 
and sometimes they are also rich with Rare Earth 
Elements (REEs) mineralization. The mineralized 
zones are commonly associated with calc–alkaline 
volcanic rocks and metasomatic alteration. Iron oxide–
apatite deposits and occurrences occur within felsic 
volcanic tuffs and volcano-sedimentary sequences of 
the Early Cambrian age [58, 59]. The magnetite–
apatite deposits comprise several orebodies with large-
scale replacement and brecciation textures, and a 
sodic–calcic alteration envelope [58]. The previous 
studies show that the genesis of the iron ores are 
similar to Kiruna-type deposits [56, 57]. There are 
many large and rich iron and iron-apatite deposits and 
occurrences around the Bafq region, e.g., Chadormalu, 
Choghart, Seh-Chahoon and Chah-Gaz iron ores and 
the Esfordi iron-apatite ore deposits (Fig 1). 

 
4. Discussion 

 
In this study, 843 collected stream sediment samples 
were analyzed by ICP-MS for 34 elements and oxides 
which correspond to iron mineralization (Fig. 2). 
Statistical results indicate that Fe2O3, TiO2 and V2O5 
mean values are 5.66%, 0.796% and 86.2 ppm, 
respectively (Table 1). Their histograms have not 
normal distribution, as depicted in Fig. 3. Based on the 
elemental distribution, median is assumed to be equal 
to threshold values [9, 15]. The obtained thresholds are 
5%, 0.78% and 77 ppm for Fe2O3, TiO2 and V2O5 
respectively. The elemental distributions were built up 
by IDW estimation method in the area using 
RockWorks software package. 
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Fig. 1. The metallogenic province of Bafq showing a N–S striking section of the Kashmar–Kerman Tectonic Zone and the location 
map of the Bafq magnetic occurrences and deposits and the Esfordi deposit [60, 61] and geological map of Esfordi 1:100000 sheet 
[59]. 
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Fig. 2. Samples’ location map in the Esfordi 1:100000 sheet 

Table 1. Statistical parameters for Fe2O3, TiO2 and V2O5 in 
the Esfordi 1:100000 sheet 

 

 Mean Median Maximum Minimum 
Standard 
Deviation 

Fe2O3 
(%) 

5.66 5.00 30.05 3.00 1.74 

TiO2 

(%) 
0.796 0.78 0.01 1.89 0.17 

V2O5 
(ppm) 

86.2 77 705.10 7.00 74.26 

 
This procedure is suggested because it eliminates 

the undesired smoothing effects caused by usage of 
Kriging method. Since the IDW method clarifies the 
ore grade boundaries and ore concentration values, it is 
more desirable to use IDW method instead of Kriging 
which inherently has rather high amounts of truncation 
errors for the upper and lower boundaries of ore 
grades. The studied area was gridded by 100×100 m2 
cells. The cell sizes dimensions were calculated based 
on geometry of sample collection gridding. 

 

4.1. Factor analysis application 

For reduction of variables, factor analysis was 
performed in the stream sediments geochemical data. 
The factor analysis was applied and 17 elements and 
oxides were classified in six factors by using SPSS 
software to the following groups (Table 2):  
(1) Fe2O3, TiO2 and V2O5, (2) SiO2, CaO and B, (3) Ni 
and Cu, (4) MgO and (5) Li. The first group including 
Fe2O3, TiO2 and V2O5 are important in the area for iron 
mineralization in the area. For better indication of 
extracted factors, the factor plot in rotated space is 
illustrated in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Fe2O3, TiO2 and V2O5 histograms in the Esfordi sheet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Component plot in rotated space in the factor analysis 
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Table 2. Elemental factor analysis in the stream sediment 
samples from the Esfordi 1:100000 sheet 

Rotated Component Matrixa 

 
Component 

1 2 3 4 5 

SiO2 .044 .813 .026 -.130 .133 
Fe2O3 .822 .034 .134 -.048 .148 
MgO -.075 -.123 .009 .834 -.163 
CaO -.248 -.828 .096 .127 .055 
Ni .028 -.022 .779 .187 -.100 
Cu -.011 .168 .775 -.049 .113 
V2O5 .643 .066 -.169 -.327 -.147 
B .229 .617 .288 .149 -.036 
Li -.119 .156 .079 .099 .754 
Al2O3 -.019 .333 .107 .008 .282 
Zn .190 -.001 .297 .541 .286 
Cr .539 -.506 .433 -.116 .239 
Co .160 .019 -.114 -.020 .383 
Ba .520 .273 -.055 .287 -.079 
Sr .025 -.422 .106 -.140 .556 
TiO2 .714 .106 .114 .122 .057 
MnO .588 .217 -.361 .449 .137 

 

4.2. C-N fractal modeling 
 

Based on C-N log-log plots of the elements, there 
are four geochemical populations for Fe2O3 and TiO2 
and six geochemical populations for V2O5 respectively 
(Fig. 5). High intensive anomalies of Fe2O3, TiO2 and 
V2O5 commence from 9.12%, 1.17% and 200 ppm, 
respectively. However, Fe2O3, TiO2 and V2O5 
thresholds are 4.46% and 0.64% and 56 ppm, 
respectively (Table 3). Moreover, C-N log-log plot of 
first factor was generated which shows five 
populations (Fig. 5). Main anomalous parts of the 
Fe2O3, TiO2 and V2O5 and related factor were located 
in the northern, central and western parts of the sheet, 
as depicted in Fig. 6 which could be prospects for iron 
ore mineralization. However, high intensive anomalies 
of V2O5 was indicated in the NW part of the area which 
associated with moderate intensive Fe2O3 and TiO2 
anomalies (Fig. 6). 

 
Table 3. Thresholds of Fe2O3, TiO2 and V2O5 in Esfordi 
1:100000 sheet based on C-N fractal model. 
 

 

Low 
intensity 
threshold 

Moderate 
intensity 
threshold 

High 
intensity 
threshold 

Fe2O3 (%) 4.46 5.75 9.12 

TiO2 (%) 0.64 0.89 1.17 

V2O5 (ppm) 56 113 200 

F1 (Fe2O3, 
TiO2, V2O5) 

0.16 0.80 3.99 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. C-N log-log plots of Fe2O3, TiO2, V2O5 and related 
factor (F1) in the studied area 
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Fig. 6. Geochemical maps obtained by the C-N fractal model of Fe2O3, TiO2, V2O5 and first factor (F1) in the studied area 
 
6. Correlation between C-N fractal 
modeling results and Geological 
particulars 

 
For validation of the results obtained by C-N fractal 

modeling, the Fe2O3, TiO2 and V2O5 anomalies were 
correlated with faults and structures, iron alterations 
and lithological maps. The most parts of these 
anomalous areas have a good overlap with the 
structures and faults which determined by remote 
sensing and geological map (Fig. 7). Faults intersect 
the anomalies situated near those structures, as 
depicted in Fig. 7. Main anomalies specifically in the 
western and central parts of the area associated with 
iron oxides and alterations which is show in Fig. 8. The 
high intensive anomalies are near to Esfordi and 
Choghart iron ores (Fig. 8). Main anomalies in central, 
western and NW parts of the area accumulated with 
intrusive and volcanic rocks especially granitic/ryolitic 
rocks which host main iron ores in the Bafq district 
(Fig. 9).  
 

Conclusions 
 
The results obtained by this study show that the C-

N fractal model is a proper method for separation of 
different anomalies from background. The classical 
statistics methods are able to separate only two 
geochemical populations by median because elemental 
distribution in most cases are not normal. This process 
will reduce the accuracy of such studies so utilizing the 
fractal models could be useful. Moreover, factor 
analysis could be helped for reduction of variables and 
separation of multi-elemental anomalies. The results 
derived via C-N fractal model exhibit Fe2O3, TiO2 and 
V2O5 anomalies in the western, central, NW and 
northern of the Esfordi area. 
Additionally, Main anomalies of Fe2O3, TiO2 V2O5 and 
related factor (F1) obtained by C-N fractal modeling 
were validated with geological particulars consisting of 
faults, rock types and iron alterations. The anomalies 
are correlated with faults and structures especially their 
intersections. Furthermore, there are granitic/ryolitic 
intrusive and volcanic rocks which are major host 
rocks of iron ores in the Bafq region. Moreover, iron 
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alterations and iron minerals were determined in the 
anomalous parts based on remote sensing operation. 
Results of this study indicate that major iron ore 
prospects illustrate in the central and western parts of 
the Esfordi area. 
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Fig. 7. Correlation between the geochemical anomalies obtained by the C-N fractal model (Yellow ellipsoids) and faults derived via 
remote sensing and geological map [57] in the Esfordi area. 
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Fig. 8. Correlation between iron alterations resulted from remote sensing methods with main iron ores of the sheet [57] and the 
geochemical anomalies obtained by the C-N fractal model (Blue ellipsoids). 
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Fig. 9. Correlation between rock types of the sheet [57] and the geochemical anomalies obtained by the C-N fractal model (Blue 
ellipsoids) 
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