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Abstract 
The magmatic evidence of the Neotethys opening in Iran, such as the Late Paleozoic A-type granitoids, was mainly discovered along 
the Sanandaj-Sirjan Zone and parallel to the Neotethys suture. Therefore, they may provide important clues about the geodynamic 
evolution of the Sanandaj-Sirjan Zone. The South of Lake Urmia (SLU) granite is situated near the Khalifan A-type pluton (315±2 
Ma) with a cover of the Permian sediments. The rock-forming minerals of the SLU granite consist of quartz, alkali-feldspars (K-rich 
and microperthitic), sodic plagioclases, biotite (Fe-rich), zircon, apatite, and Fe-Ti oxides. The chemical composition of the SLU granite 
is characterized by high FeOt/MgO and (Na2O+K2O)/CaO ratios, which are typical features of A-type granites. Furthermore, the studied 
rocks exhibit the chemical characters of the A1 subgroup of A-type granites with peraluminous and K2O-rich affinities. On the multi-
element spider plot, the SLU granite shows distinct negative Ba, Sr, P, and Ti anomalies and positive Pb anomalies. Moreover, the 
Chondrite-normalized rare earth elements (REE) patterns display slope downwards from LREE to HREE, with flattening at the HREE 

end and distinct negative Eu anomalies. The ratios of trace elements provide evidence for the contribution of the OIB-like mafic melts 
with crustal interactions to generate the granitic magmas of the SLU pluton. The compositional and stratigraphic features of the SLU 
granite are also consistent with an extensional setting during the Late Paleozoic in Iran. Therefore, the genesis of the SLU granite can 
be attributed to the syn-rift magmatism of the Cimmerian terranes. A comprehensive review of the Late Paleozoic rocks occurrence 
shows that they mainly are emerged in the northeast margin of the Sanandaj-Sirjan Zone and around the structural depressions such as 
Lake Urmia (so-called Tertiary fore-arc or Mesozoic back-arc).  
Keywords: A-type granite, Sanandaj-Sirjan Zone, NW Iran, Neotethys opening, Late Paleozoic 

 

1. Introduction 
A-type granites are closely linked with tectonics and 

geodynamics; they occur in geodynamic contexts ranging 

from within-plate settings associated with anorogenic 

rifting to plate boundaries related to post-collisional 

extension (e.g., Eby 1992; Bonin 2004, 2007; Collins et 

al. 2018). However, the formation of A-type granite in 

mobile zones is not restricted to extensional regimes and 

it may be related to final consolidation in a compressional 

regime such as the Late Paleozoic A-type granites from 

Central Asia (Coleman et al. 1992). There is no 
agreement on the source of A-type granites up to now. 

They have been mainly attributed to mantle-derived 

magmas (Bonin and Giret 1990; Turner et al. 1992), 

crustal-derived magmas (Collins et al. 1982; 

Landenberger and Collins, 1996), or mixed sources (Eby 

1990; Yang et al. 2006). A-type granites are characterized 

by iron-rich mafic silicates, perthitic feldspars, and 

alkali-rich mafic silicates in peralkaline suites. They are 

metaluminous to peralkaline, sometimes peraluminous 

with alkali-calcic to alkaline affinities, and generally 

produced under reducing conditions. They are also 

marked by high alkali, LILE, and HFSE contents, high 
Fe/Mg ratios, low CaO, and OIB-like compositions (e.g., 

Whalen et al. 1987; Eby 1990; Bonin 2007; Frost and 

Frost 2011; Collins et al. 2018). 
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The paleogeographic reconstruction of Iran during the 
Late Paleozoic has always been debatable. Late Paleozoic 

A-type granites occur in the Turkish-Iranian plateau and 

provide some key evidence on the geodynamic evolution 

of the Tethyan oceans during Hercynian orogeny (e.g., 

Topuz et al. 2010; Rolland et al. 2011; Dokuz et al. 2011; 

Bea et al. 2011; Advay and Ghalamghash 2011; Alirezaei 

and Hassanzadeh 2012; Saccani et al. 2013; Shafaii 

Moghadam et al. 2015; Azizi et al. 2017; Honarmand et 

al. 2017; Mohammadi et al. 2019; Jamei et al. 2021).The 

Late Paleozoic A-type units of Iran are overlain by 

Permian to Early Mesozoic marine sediments, which is 
consistent with an extensional regime in the Late 

Palaeozoic (e.g., Shafaii Moghadam et al. 2015; Jamei et 

al. 2021). The extensional regime or rifting of Iran from 

the northern margin of Gondwana occurred during the 

Late Carboniferous to the late Early Permian and caused 

the opening of Neotethys, which was followed by the 

northward movement of Cimmerian terranes such as Iran, 

Helmand, and Tibet blocks (Stampfli and Borel 2002). 

The Neotethys opening in Iran has been attributed to the 

Late Devonian (Azizi et al. 2017; Mohammadi et al. 

2019), Early Carboniferous (Saccani et al. 2013; 

Mohammadi et al. 2019; Jamei et al. 2021), Late 
Carboniferous (Bea et al. 2011; Ghaffari et al. 2013; 

Advay and Ghalamghash 2011; Shafaii Moghadam et al. 

2015) and Early Permian (Alirezaei and Hassanzadeh 

2012; Honarmand et al. 2017), based on the reported 
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magmatic activities especially along the Sanandaj-Sirjan 

Magmatic-Metamorphic Zone (SSMMZ) and parallel to 

the Neotethys suture (Fig 1). 

This paper presents the first detailed petrographic and 

whole-rock geochemistry studies on the Late Paleozoic 

granite from the South of Lake Urmia, the northern edge 

of SSMMZ. In this study, we also compare the present 

data with the previous studies carried out on some Late 

Paleozoic magmatic rocks of Iran and discuss 

geodynamic evolution in the region with a focus on the 

Neotethys opening evidence. 

 

 

 
 
Fig 1 Structural sketch map of the Tauride-Anatolides, Caucasus and Iranian belts (modified after Sosson et al. 2010); the location of 
two Late Paleozoic A-type granite, also the outlines of the geological map in Figure 3, including the studied area, are shown. 

 

2. Geological background 
Iran can be divided into three major structural units based 

on the ophiolite-bearing sutures: the Zagros orogenic belt 

(southern unit), the Central Iran unit, and Kopeh-Dagh 

and Alborz belts (northern unit) (Berberian and King 

1981). The Zagros orogenic belt consists of several NW-
SE trending parallel subdivisions such as the Urmia-

Dokhtar magmatic arc (UDMA), the Sanandaj-Sirjan 

zone (SSMMZ) and the Zagros fold-thrust belt (Fig 2).  

The SSMMZ, a zone of ~1500 km long and 150-250 km 

wide, lies on the south of the UDMA and places between 

the towns of Sanandaj/Urmia in the northwest and 

Sirjan/Esfandaghen in the southeast (Stöcklin 1968; 

Takin 1972; Alavi 1994; Mohajjel and Fergusson 2000; 

Mohajjel et al. 2003). The SSMMZ is composed mainly 

of metamorphosed and intricately deformed rocks, 

associated with deformed/undeformed plutons and 

Mesozoic volcanic rocks (Mohajjel et al. 2003; Azizi and 
Moinevaziri 2009; Ahadnejad 2013; Chiu et al. 2013). 

Late Neoproterozoic to Early Cambrian (ca. 600-500 Ma) 

zircon U-Pb ages have been reported for the basement of 

the SSMMZ (e.g., Hassanzadeh et al. 2008; Azizi et al.  

 

2011). The study area, as a part of the SSMMZ, consists 

of Cadomian basement, Paleozoic platform sediments, 

and Paleozoic to Triassic igneous rocks, which is similar 

to the geologic succession of Central Iran (Berberian and 

King 1981; Alavi 1991). The Late Neoproterozoic Kahar 

Formation with meta-sediments and meta-igneous rocks 

is common in the SSMMZ, the Central Iran unit, and the 

Alborz belt. It is overlain by Cambrian-Ordovician 
sedimentary rocks including Bayandor sandstones and 

shales, Soltanieh dolomites, Barut sandstones, Zaigun-

Lalun sandstones and quartzites, and Mila limestones 

(Eftekharnejad 1973, 1980; Berberian and King 1981). 

The peak of magmatism in the SSMMZ was during the 

Mesozoic as described by Berberian and Berberian 

(1981) and Mohajjel et al. (2003). Several granitoid 

plutons have been reported from the Mesozoic magmatic 

arc (e.g., Ahmadi-Khalaji et al. 2007; Arvin et al. 2007; 

Fazlnia et al. 2007, 2009; Ghalamgash et al. 2009; 

Mazhari et al. 2009a, b; Shahbazi et al. 2010; Ahadnejad 
et al. 2011; Aliani et al. 2012; Esna-Ashari et al. 2012), 

which located mainly in the southwest margin of the 
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SSMMZ (around the outer sub-zone depicted by 

Mohajjel et al. (2003)). In contrast, the Paleozoic 

magmatism in the SSMMZ was rare and emerged mainly 

in the northeast margin (around the inner sub-zone 

depicted by Mohajjel et al. (2003)). Mafic and felsic 

magmatism of the Paleozoic is limited to Devonian 

pillow basalt associated with Sargaz metamorphic 

complex (Ghasemi et al. 2002), basaltic lavas in the 

Permian strata of Golpaygan (Thiele et al. 1968; 

Alirezaei and Hassanzadeh 2012), rhyolitic rocks in the 

Devonian-Carboniferous units of Jolfa and Ajabshir 

(Moayyed 2013; Delavari et al. 2019; Jamei et al. 2021), 

Misho gabbro (Saccani et al. 2013), Hasansalaran granite 

(Azizi et al. 2017), Moro granite (Mohammadi et al. 

2019), Heris granite (Advay and Ghalamghash 2011), 

Ghazan gabbro (Asadpour et al. 2013), Hasanrobat 

granite (Alirezaei and Hassanzadeh 2012; Honarmand et 

al. 2017), Ghushchi gabbronorite and granite (Advay et 

al. 2010; Shafaii Moghadam et al. 2015), and Khalifan 

leucogranite with Late Carboniferous age (Bea et al. 

2011) (Fig 2). 

 

 

 
 
Fig 2 Major geological subdivisions of Iran (modified after Berberian and Berberian (1981); Alavi (1994); Mohajjel et al. (2003)) with 
the location of the reported Late Paleozoic rocks in the SSMMZ including: (1) Ghushchi (Shafaii Moghadam et al. 2015), (2) Khalifan 

(Bea et al. 2011), (3) Heris (Advay and Ghalamghash 2011), (4) Hasanrobat (Alirezaei and Hassanzadeh 2012), (5) Misho (Saccani et 
al. 2013), (6) Ghazan (Asadpour et al. 2013), (7) Ajabshir (Moayyed 2013), (8) Durod-Azna (Shakerardakani et al. 2015), (9) Sargaz 
(Ghasemi et al. 2002), (10) Hasansalaran (Azizi et al. 2017), (11) Moro (Mohammadi et al. 2019), (12) Pir-Eshagh (Jamei et al. 2021), 
and (13) this study (SLUG). 

 

The study area, located between Naqadeh and Miandoad 

towns in the West Azerbaijan province of NW Iran, 

consists mainly of sedimentary and igneous rocks (Fig 3).  

The igneous rocks are composed of volcanic rocks 

(Mahabad rhyolite with Precambrian age and Almalu 

basic lavas with Quaternary age), plutonic rocks 
(Khalifan granite with Late Carboniferous age and 

Pasveh granite with Upper Cretaceous-Eocene age). The 

Paleozoic sedimentation in the region has largely 

occurred during the Cambrian and the Permian. 

Stratigraphically, there is a distinct sedimentation gap 

during Ordovician-Carboniferous time in the study area. 

The Permian rocks comprise quartz sandstone and 

dolomitic limestone with a thin interlayer of lateritic 

bauxite. There are several small and single granite 

plutons (<1 km2) with reddish pink in color and close to 

Qarah-Dagh and Tang-Balgeh villages (henceforward 
referred to as the South of Lake Urmia (SLU) granite). 

The SLU granite is non-conformably overlain by the 

Permian sequences (Fig 4a, b), which implies the 

occurrence of Late Paleozoic magmatism in the region.  
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Fig 3 Geological map of the South Lake Urmia region (the above figure; modified after Eftekharnejad 1973), on which the A-type 
granite of Khalifan (Bea et al. 2011) and the Naqadeh and Pasveh granitoids (Mazhari et al. 2009a,b) are also shown. The below figure 
shows the geological map of the studied area in details modified after (Eftekharnejad 1980). 

 

 
 
Fig 4 Field photographs of the SLU granite: (a) stratigraphic contacts of the granite with Permian, Miocene, and Quaternary sediments; 
(b) close-up view of the granite; (c) the granite hand specimen with distinct feldspar and Quartz crystals. 

 

Eftekharnejad (1973) reported Pre-Permian age for the 

SLU granite and Post-Cretaceous age for the Khalifan 

granite, which occurred in the vicinity of the SLU granite. 
However, Bea et al. (2011) reported Late Carboniferous 

age (315±2 Ma) for the Khalifan A-type granite. Against 

the SLU granite, the Khalifan granite has a well-

developed metamorphic aureole (Bea et al. 2011) with 

the Cretaceous country rocks (Eftekharnejad 1973, 

1980). The Naqadeh and Pasveh granitoids (ca. 40-100 

Ma) have also a metamorphic aureole similar to the 
Khalifan granite (Mazhari et al. 2009a, b). According to 

Bea et al. (2011), the recent plutons intruded 

unfossiliferous limestones, sandstones and claystones 

with an unknown age. However, the host rocks of the 
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plutons have been attributed to the Cretaceous by 

similarities to other Cretaceous sediments having 

paleontological evidence in the adjacent region 

(Eftekharnejad 1973, 1980; Khodabandeh and Soltani 

2004). The Ghushchi granite (ca. 320 Ma), as the Late 

Paleozoic pluton occurred in the neighborhood of the 

SLU granite, is also non-conformably overlain by 

Permian sediments (Shafaii Moghadam et al. 2015). 

Therefore, the SLU granite can be more investigated for 

revealing the magmatic features of Late Paleozoic and 

determining the northeast precise boundary of the 

SSMMZ with the Central Iran. 
 

3. Materials and methods 
Thirteen rock samples with the slight alteration from the 

SLU granite were collected. The locations of studied 

samples are shown on the geological map (Fig 3). The 

samples were prepared for thin section studies by the 

optical microscopy. After petrographic studies, proper 

samples were selected for mineral and whole-rock 

chemical analyses. 

Some mineral phases, such as biotite, plagioclase, and 

alkali-feldspar on the uncoated thin sections, were 

analyzed at the Kansaran Binaloud Company lab (Iran), 

with an X-Ray Probe Micro Analyzer (XPMA, Horiba 

XGT-7200) operating at a voltage of 50 kV and a beam 

current of 1 mA, and 100 μm probe diameter. The 

representative analyses are listed in Table 1. For major 

element analysis, whole-rock powders of five 

representative samples were fused with Li2B4O7 and 

analyzed on fused discs by an X-ray fluorescence 
spectrometer (XRF) at the Kansaran Binaloud Company 

lab. Trace elements, including rare-earth elements (REE), 

were determined by an inductively coupled plasma-mass 

spectrometer (ICP-MS) using the Four-acid digestion 

method with uncertainties at 95% confidence level at the 

same lab. The detection limit for trace elements is 0.01-1 

ppm. The analytical results for the samples are presented 

in Table 2. 

 
Table 1. Representative XPMA analysis of some minerals from the SLU granite 

Mineral plagioclase alkali-feldspar biotite 

Point no. 1 2 3 4 5 1 2 3 4 5 1 2 3 

Wt. %              

SiO2 72.58 72.26 72.65 73.08 71.43 65.28 67.98 64.55 65.18 64.34 39.44 54.86 59.47 

Al2O3 15.16 17.09 17.6 17.7 17.16 15.72 16.16 14.73 14.82 14.78 11.63 9.17 8.76 

Fe2O3 0.87 0.69 0.27 0.22 1.23 0.46 0.36 0.32 0.32 0.48 35.06 26.25 25.68 

MnO n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.51 0.36 0.33 

MgO n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 4.32 3.06 3.06 

CaO 1.23 1.57 1.5 1.47 2.56 2.15 2.28 2.19 2.06 1.81 7.79 5.34 1.68 

Na2O 9.77 7.75 7.4 7.02 7.13 2.3 1.04 1.83 0.62 3.25 n.d. n.d. n.d. 

K2O 0.39 0.64 0.58 0.51 0.49 14.08 12.17 16.38 17.01 15.34 1.05 0.86 0.9 

Total 100 100 100 100 100 99.99 99.99 100 100.01 100 99.8 99.9 99.88 

4. Petrography and mineral chemistry 
The SLU pluton is characterized by almost homogenous 

rocks with medium to coarse crystals (Fig 4c). The 

appearance of rocks is pinkish to brownish and roughly 

without mafic minerals (leucocratic rocks). They show 

slightly dynamic metamorphism features, associated 
somewhat with shear structure and mylonitic fabric. 

Under the microscope, the rock forming minerals are 

alkali-feldspar (mostly microperthite up to 80%), quartz 

(up to 50%), plagioclase (minor up to 10%), biotite (up to 

2%), apatite, zircon, Fe-Ti oxides, sericite, calcite, and 

clay minerals (Fig 5a, b, e). According to the 

recommendations of the International Union of 

Geological Sciences (IUGS) (Le Maitre et al. 2002), rock 

compositions for the SLU pluton range from quartz-

alkali-syenite to alkali-granite. Alkali-feldspar is 

characterized by large subhedral to anhedral crystals 
having undoluse extinction and occasionally surrounded 

 

by fine-grained quartz crystals, which is depicted as a 

mylonitic fabric for the SLU pluton (Fig 5d). Quartz 

mostly occurs as coarse anhedral grains with undulose 

extinction. Micrographic texture, intergrowth of quartz 

and alkali-feldspar, is common in the studied rocks (Fig 

5c). Plagioclase appears as small, subhedral, and 

individual crystals (Fig 5f).  
Biotite, as the only mafic mineral, is rare and occurs as 

tiny tabular and subhedral crystals (Fig 5g). Chemically, 

alkali-feldspars are K-rich with Ab5-23An7-12Or70-86, 
whereas plagioclases are Na-rich with Ab80-91An6-16Or2-5 

(Fig 6). The composition of observed biotite is Fe-rich 

and Al-poor (Table 1).  

The SLU pluton can also be classified as 

alaskite/leucogranite, considering the modal abundance 

of K-feldspar and quartz (>90%), minor albite and scarce 

biotite.  

 



Ashrafi et al. / Iranian Journal of Earth Sciences, Vol. 15, No. 2, 2023, 121-139. 

 

 

126 

Table 2. Representative whole rock analysis of the SLU granite 

 
Sample no. Q-2 Q-3 Q-6 Q-10 Q-13 

Oxide (wt.%)      

SiO2 77.98 78.46 78.83 75.8 77.75 

TiO2 0.105 0.123 0.112 0.139 0.178 

Al2O3 11.59 11.88 11.35 13.08 11.44 

Fe2O3
t 1.84 1.34 1.17 1.37 2.09 

MnO 0.005 0.001 0.001 0.002 0.001 

MgO 0.01 0.01 0.01 0.01 0.01 

CaO 0.07 0.14 0.6 0.24 0.19 

Na2O 1.63 1.88 1.63 1.8 1.69 

K2O 5.6 4.84 5.02 6.57 4.88 

P2O5 0.018 0.008 0.007 0.007 0.023 

LOI 0.89 0.97 1.1 0.83 1.5 

Total 99.74 99.65 99.83 99.85 99.75 

      

Element (ppm)      

S (25) 56 149 100 92 63 

Ba (0.1) 206.1 171.7 159.4 273.8 227.2 

Rb (0.01) 132.16 110.91 114.91 164.18 89.33 

Sr (0.5) 25.3 21.1 18.8 19.2 30.7 

Y (0.1) 29.2 33.8 34.7 28.5 45.1 

Zr (1) 47 90 59 44 62 

Nb (0.01) 33.69 34.45 27.76 37.33 38.45 

Th (0.01) 17.58 22.58 19.05 22.83 19.77 

Pb (0.01) 19.09 13.83 12.78 30.27 18.62 

Zn (0.1) 33 27 16 26 41 

Cu (0.1) 41 150 141 98 29 

Ni (1) 4 2 2 2 4 

V (1) 6 4 2 4 5 

Cr (1) 8 1 2 1 11 

Hf (0.01) 2.51 4.42 2.71 2.45 2.43 

Cs (0.01) 1 0.92 0.85 1.02 2.07 

Ta (0.01) 2.64 2.81 2.01 2.42 2.23 

Co (0.01) 0.1 0.2 0.2 0.1 0.4 

U (0.01) 2.73 3.8 2.87 2.47 2.86 

W (0.01) 0.76 0.76 0.67 0.83 1.12 

Sn (0.01) 1.95 1.92 2.58 1.66 2.76 

Mo (0.01) 1.3 1.2 0.8 1.9 1.7 

La (0.01) 37.39 55.07 44.51 60.24 72.8 

Ce (0.01) 76.21 107.09 91.08 113.83 135.43 

Pr (0.01) 9.96 13.9 11.84 14.57 17.25 

Nd (0.01) 44.67 64.15 54.4 67.23 81.22 

Sm (0.01) 7.28 9.85 8.74 9.98 11.82 

Eu (0.01) 1.62 1.72 1.55 1.6 1.89 

Gd (0.01) 7.83 10.13 9.28 10.32 12.87 

Tb (0.01) 1.23 1.54 1.13 1.29 1.47 

Dy (0.01) 5.43 5.92 5.58 5.35 7.08 

Ho (0.01) 1.02 1.12 1 0.99 1.28 

Er (0.01) 2.95 3.39 2.93 2.7 3.63 

Tm (0.01) 0.47 0.57 0.47 0.41 0.51 

Yb (0.01) 3.32 4.31 3.39 3.01 3.47 

Lu (0.01) 0.51 0.69 0.5 0.45 0.54 

Ag (0.01) 0.38 0.54 0.36 0.39 0.33 

As (1) 4 3 5 5 5 

Be (0.01) 4.1 6.5 6.1 18.1 3.6 

Bi (0.01) 0.08 0.05 0.04 0.04 0.04 

Cd (0.01) 0.16 0.16 0.1 0.17 0.1 

In (0.01) 0.32 0.32 0.34 0.32 0.36 

Li (1) 4 4 3 5 4 

Sb (0.01) 7.3 3.78 2.13 11.59 7.44 

Sc (0.5) 1.4 1.8 1.2 1.6 2.5 

Te (0.01) 0.23 0.15 0.11 0.45 0.25 

Tl (0.01) 0.77 0.65 0.63 0.94 0.56 

      

Eu/Eu* 0.66 0.53 0.53 0.48 0.47 

(La/Sm)N 3.23 3.52 3.20 3.80 3.87 

(La/Yb)N 7.59 8.61 8.85 13.49 14.14 

(Tb/Yb)N 1.63 1.58 1.47 1.89 1.87 

ASI 1.31 1.39 1.23 1.25 1.37 

Abbreviation: LOI, loss on ignition; Fe2O3
t, total iron as Fe2O3; Eu/Eu*=EuN/√(Sm)N*(Gd)N); ASI=Al/(Ca-1.67P+Na+K) as molecular. The detection 

limit of elements is presented in parenthesis and normalizing values are from Boynton (1984). 
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Fig 5 Microphotographs of the SLU granite: (a) alkali-feldspar (Kfs), quartz (Qtz), and plagioclase (Pl) as the main minerals of the 

granite with general granular texture; (b) Zircon (Zrn) and apatite (Ap) within alkali-feldspar; (c) micrographic texture; (d) mylonitic 
fabric with fine quartz grains around coarse alkali-feldspar crystals; (e) Carlsbad twining of alkali-feldspar with the points of analyzed 
by XPMA; (f) lamellar twining of plagioclase with the analyzed points (g) scarce biotite (Bt) with the location of analyzed points. 

 

 
 

Fig 6 Feldspars composition plotted in the Or-Ab-An ternary (Deer et al. 1992).
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5. Whole-rock geochemistry 
5.1. Classification and tectonic setting 

The SLU pluton has a relatively consistent composition 

with ∼75 to ∼78 wt.% SiO2 and ∼11 to ∼13 wt.% Al2O3, 

corresponding to almost the same petrographic features 

of the rocks. Also, it has 4.84-6.57 wt.% K2O, 0.07-0.6 

wt.% CaO, and 0.83-1.5 wt.% LOI (Table 2). Based on 

the total alkalis (Na2O+K2O) wt.% vs. SiO2 wt.% (TAS) 

nomenclature diagram (Middlemost 1994), the SLU 
pluton mostly consists of granite (Fig 7a). On the SiO2 vs. 

FeOt/(FeOt+MgO) discrimination diagram (Frost et al. 

2001), the SLU pluton plots in the ferroan field, which is 

a chemical characteristic of A-type granites (Fig 7b).  

 

 

The aluminum-saturation index (ASI) is defined as 

molecular Al/(Ca-1.67P+Na+K) and separates rocks into 

metaluminous (ASI < 1) and peraluminous (ASI > 1) 

varieties (Frost et al. 2001; Frost and Frost 2008). Plot of 

the samples in the ASI vs. Al/Na+K (A/NK) diagram (Fig 

7c) show that all of the samples are peraluminous (ASI > 

1, Na+K<Al). The potassium-rich nature of the studied 

rocks is characterized by the Ta/Yb vs. Ce/Yb diagram 

(Pearce 1983), as they plot in the shoshonitic field (Fig 

7d).  

Several chemical classifications for granitic series have 
been proposed (e.g., Whalen et al. 1987; Barbarin 1999; 

Frost et al. 2001). 

 

 

 
 
Fig 7 Chemical classification of the studied rocks: (a) Na2O+K2O vs. SiO2 (TAS) nomenclature diagram (Middlemost 1994); (b) SiO2 
vs. FeOt/(FeOt+MgO) discrimination diagram (Frost et al. 2001) showing the ferroan affinity for the studied granite; (c) ASI vs. 

Al/Na+K (A/NK) diagram (Frost et al. 2001) indicating the peraluminous nature for the studied rocks; (d) the shoshonitic feature of 
the SLU granite in the Ta/Yb vs. Ce/Yb diagram (Pearce 1983). 

 

A-type affinity for the SLU granite is obtained from the 

FeOt/MgO vs. Zr+Nb+Ce+Y (ppm) discrimination 
diagram (Fig 8a). Also, in the (K2O+Na2O)/CaO vs. 

Zr+Nb+Ce+Y (ppm) diagram (Whalen et al. 1987), the 

samples mostly fall in the A-type field (Fig 8c). 

Dall'Agnol and Oliveira (2007) proposed the 

FeOt/(FeOt+MgO) vs. Al2O3 diagram to distinguish 

oxidized and reduced A-type and calc-alkaline granites. 

In this diagram, the samples fall in the reduced A-type 

field (Fig 8b). On the Rb vs. Y+Nb tectonic 

discrimination diagram (Pearce et al. 1984; Pearce 1996), 

the samples plot inside the WPG (within-plate granite) 

and Post-COLG (post-collision granite) fields, but close 
to the WPG-VAG boundary (Fig 8d). Based on the trace 

element abundances, Eby (1990, 1992) divided A-type 

granites into two subgroups (A1 and A2). A1 granites are 

linked with intraplate settings or continental rifts, while 

A2 granites are commonly connected with post-

collisional extension. The SLU granite displays chemical 

characters of the A1 subgroup (Fig 9a-d) with relatively 

low Y/Nb ratios.  
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Fig 8 Granitoid type and tectonic setting of the studied granite: (a) FeOt/MgO vs. Zr+Nb+Ce+Y diagram (Whalen et al. 1987); (b) 

FeOt/(FeOt+MgO) vs. Al2O3 diagram (Dall'Agnol and Oliveira 2007) showing the character of reduced A-type granites for the studied 
samples; (c) (K2O+Na2O)/CaO vs. Zr+Nb+Ce+Y diagram (Whalen et al. 1987) in which the SLU granite samples mostly fall in the A-
type granite field; (d) Rb vs. Y+Nb diagram (Pearce et al. 1984; Pearce 1996), the samples plot inside the WPG and Post-COLG fields. 
Abbreviations: A, A-type granite; FG, fractionated felsic granites; OTG, unfractionated I-, M- and S-type granite; ORG, oceanic ridge 
granite; VAG, volcanic arc granite; Syn-COLG, syn-collision granite; Post-COLG, post-collision granite; WPG, within plate granite. 

 

 
 
Fig 9 Discrimination of A1 and A2 subtype granites (Eby 1992): (a) Y/Nb vs. Rb/Nb diagram; (b) Ta-Yb-Hf/2 triangular diagram; (c) 
Y/Nb vs. Sc/Nb diagram; (d) Nb-Y-Ce triangular diagram. All of the samples fall within the field of A1 subgroup. 
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5.2. Multi-element and REE patterns 

Incompatible trace element concentrations normalized 

against N-MORB (Sun and McDonough 1989) are 

plotted in Fig 10a, indicating similar patterns for the 

samples. These patterns are characterized by significant 

enrichments in some incompatible elements such as 

Rb,Th, U, K, and Pb relative to Cs, Ba, Nb, Sr, P, Zr, and 

Ti. The samples exhibit strong negative anomalies in Sr, 

P, and Ti and positive anomalies for Pb. The Chondrite-

normalized rare earth element (REE) patterns are 

illustrated in Fig 10b. They are LREE-enriched relative 

to the HREE with substantial negative Eu anomalies. The 
Eu/Eu*, [Eu/Eu*=EuN/√(Sm)N*(Gd)N)] ratio varies from 

0.47 to 0.66 and the (La/Yb)N, (La/Sm)N, and (Tb/Yb)N 

ratios are 7.59-14.14, 3.20-3.87, and 1.47-1.89, 

respectively. The HREE from Ho to Lu displays nearly a 

flat pattern. Comparison of the multi-element and REE 

patterns of the SLU granite with those of some typical 

Late Paleozoic A-type granites, such as the Ghushchi, 

Hasanrobat, and Khalifan granites, show high 

resemblance (Fig 10a, b). 

 

6. Discussion 
6.1. Petrogenesis 

The mineralogical and chemical features of the SLU 

granite, such as the existence of iron-rich mafic silicate 

(Fe-rich biotite) associated with microperthitic feldspar 
and Na-plagioclase (An<15), higher total alkalis and 

lower CaO, high FeOt/MgO, negative Sr, P, Ti and Eu 

anomalies, and Y+Nb>50 ppm, are comparable with 

those of A-type granitoids formed in within-plate settings 

(Pearce et al. 1984; Whalen et al. 1987, 1996; Bonin 

2007). 

 

 
 
Fig 10 Geochemical comparison of the SLU granite (red lines) with some of the Late Paleozoic A-type granites in the multi-element 
normalized diagrams (comparison data are from Bea et al. (2011) (the Khalifan granite), Alirezaei and Hassanzadeh (2012) (the 
Hasanrobat granite), Shafaii Moghadam et al. (2015) (the Ghushchi granite)): (a) N-MORB-normalized multi-element patterns 
(normalizing data from Sun and McDonough 1989); (b) Chondrite-normalized rare earth element (REE) patterns (normalizing values 
from Boynton 1984).  
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Existing petrogenetic models for A-type granites 

comprise (1) partial melting of lower crustal granulite 

(Collins et al. 1982); (2) derivation from mantle-derived 

mafic and intermediate magmas (Bonin and Giret 1990; 

Turner et al. 1992); (3) involvement of mixed OIB-crust 

sources (Eby 1990, 1992); (4) melting of meta-igneous 

composition (Creaser et al. 1991); and (5) melting of 

alkali-metasomatized composition (Martin 2006). In the 

Nb-Y-Ce and Ta-Yb-Hf/2 triangular diagrams, as well 

the Y/Nb vs. Sc/Nb, and Y/Nb vs. Rb/Nb diagrams (Fig 

9), all of the samples fall within the field of A1-type 

granites, which are interpreted as fractional 
crystallization products of OIB-like mafic melts 

associated with intraplate settings or continental rifts. In 

contrast, A2-type granites are partial melting products of 

juvenile continental crust and are commonly associated 

with collisional or post-collisional settings (Eby 1990, 

1992). 

 Also, in the Y/Nb vs. Ce/Nb and Y/Nb vs. Yb/Ta plots 

(Fig 11a, c), the samples fall near or within the OIB field, 

suggesting the involvement of both mantle and crustal 

material in the petrogenesis of the SLU granite. In the 

Ta/Yb vs. Th/Yb diagram (Pearce 1983), the SLU granite 
along with the neighboring A-type granites (the Ghushchi 

and Khalifan granites) do not follow the mantle array, 

pointing to either derivation from an enriched mantle 

source to which an earlier subduction component had 

been added, or coupled crustal contamination with 

fractional crystallization, or both (Fig 11b). However, the 

SLU granite, along with some of the Late Paleozoic A-

type rocks (Jamei et al. 2021), shows enrichment in the 

source, as they are plotted in the Zr/Y vs. Nb/Y diagram 

(Fitton et al. 1997) within the field of magmas derived 

from enriched sources (OIB or E-MORB) (Fig 11d). 

Based on the La/Yb vs. La and La/Sm vs. La diagrams 

(Fig 12a, b), the SLU A-type granite similar to the 
Khalifan and Hasanrobat granites follows the trend of 

fractional crystallization instead of partial melting 

processes. A similar trend (not shown) was achieved for 

the Ghushchi igneous complex (Shafaii Moghadam et al. 

2015), where mafic and felsic rocks of the pluton were 

plotted. The distinct negative Ba, Sr, and Eu anomalies in 

the SLU granite suggest an important role for feldspar 

during partial melting and/or fractionation. The flat 

HREE patterns (TbN/YbN≈1.4-1.8) point to the absence 

of garnet in the magma source (Henderson 1989; 

Rollinson 1993). 

 

 
Fig 11 (a) Y/Nb vs. Ce/Nb diagram with the Oceanic Island Basalt (OIB) and Island Arc Basalt (IAB) fields (Eby 1990, 1992); (b) 

Ta/Yb vs. Th/Yb diagram (Pearce 1983) in which the SLU samples plotted close to the neighboring A-type granites field (Bea et al. 
2011; Shafaii Moghadam et al. 2015), all pointing to the existence of crustal components; (c) Y/Nb vs. Yb/Ta plots (Eby 1992) 
(Continental Crust (CC) composition from Taylor and McLennan 1995) showing the compositional similarity of the samples with OIB 
associated with the involvement of crustal material in the genesis; (d) Zr/Y vs. Nb/Y diagram (Fitton et al. 1997)  show that the SLU 
granite similar to the Late Paleozoic A-type rocks (Jamei et al. 2021) produced from an enriched source (plume type). 
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The positive Pb, U, and Th anomalies of the SLU granite 

may reflect the involvement of possible crustal 

contamination and more evolved residual melts in the 

genesis (Rollinson 1993). Nb depletion of the granite can 

be explained by fractionation of Nb-rich phases such as 

amphibole, titanite and rutile. The negative P, Ti, and Zr 

anomalies can be attributed to the fractionation of apatite, 

Fe-Ti oxides, and titanite, respectively, in the source. 

Zircon saturation geothermometry (Watson and Harrison 

1983) shows temperatures of 702-769 °C for the SLU 

granite. These temperatures (TZr) were compared with 

those of the Khalifan and Hasanrobat granites, which are 
characterized by 820-900 °C and 834-880 °C, 

respectively (Fig 12c). All of the TZr plot in the 

temperature range of A-type granites. The mineralogical 

and geochemical characters of the SLU rocks show that 

they are relatively high fractionated than the Khalifan and 

Hasanrobat granites. Therefore, TZr for the SLU granite 

could be a minimum estimate of temperature of the 

initially emplaced magma, whereas that for the Khalifan 

and Hasanrobat granites may suggest a minimum 

estimate for magma temperature at a time before 

extensive crystallization (Miller et al. 2003). Comparing 
the maximum TZr for the A-type granitoids with various 

geoenvironment geotherms shows that the required 

melting temperatures are not normally achieved in the 

crust. Hence, mantle-derived mafic magmas providing 

heat and/or materials seem essential in the generation of 

the A-type granitoid melts (Eby 2011). Sr/Y ratios have 

been used to estimate the mean pressure in which the 

magmas were generated (Kay and Mpodozis 2002; 

Chapman et al. 2015). At low pressures, plagioclase has 

a high affinity for Sr, while Y is more incompatible. In 

contrast, Sr tends to enter the melting phase as an 

incompatible element, and Y wants to enter garnet and 

amphibole at high pressures (>12 kb) (Lee et al. 2007; 

Deng et al. 2018). The SLU granite has very low Sr (<31 

ppm) and relatively high Y (~28–45 ppm); thus it is 

characterized by low Sr/Y ratios (0.54–0.87), suggesting 
that the melts generated at low pressures (<10 kb). The 

negative Eu and Sr anomalies and the flat HREE patterns 

indicate the fractional crystallization of plagioclase and 

further imply that the melts generated at a pressure <10 

kb where plagioclase is stable and garnet is absent. 

On the Nb/Ta vs. Zr/Hf diagram (Fig 12d), the studied 

rocks associated with the Khalifan and Hasanrobat A-

type granites plot close to chondritic (or mantle) ratios, 

Nb/Ta = 17 and Zr/Hf = 40 (Eby 2004). However, there 

is a scatter towards lower ratios, especially Zr/Hf ratios, 

for the SLU and Khalifan granites. Titanite fractionation 
can lead to an increase Nb/Ta ratios (e.g., Green and 

Pearson 1987). 

 

 

 
 
Fig 12 (a) La/Yb vs. La (b) La/Sm vs. La plots, showing the A-type granites (Khalifan, Hasanrobat and this study) mainly follow the 
fractional crystallization trend than the partial melting trend (the trends from Thirlwall et al. 1994); (c) TZr vs. SiO2 plot for comparison 
of zircon saturation temperatures (Watson and Harrison 1983; TZr=12900/[2.95+0.85M+ln (496000/Zrmelt)] with 
M=[(Na+K+2*Ca)/(Al*Si)]) from the three plutons (gray field, TZr range of A-type granitoids from Eby 2011); (d) Nb/Ta vs. Zr/Hf 
diagram for comparison of chondritic (or mantle) ratios in the three A-type granites. 
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Given the titanite/liquid partition coefficients for Nb and 

Ta, fractionation of this mineral leads to a decrease in the 

absolute Ta abundance and an increase in the Nb/Ta ratio 

(Green 1995; Eby 2004). Hence, relatively low Nb/Ta 

ratios in the studied rocks can be explained by 

fractionation of Nb-rich minerals such as amphibole and 

biotite instead of titanite. Zr/Hf ratio is generally constant 

during fractional crystallization; however, excessive 

fractionation could lead to enrichment in Hf than Zr 

(Mason and Moore 1982; Rollinson 1993). Therefore, the 

SLU granite is inferred to be a result of a high degree of 

fractional crystallization from mantle-derived melts. As a 
result, the scenario of the combined mantle and crustal 

sources for the origin of A-type granitoids is consistent 

with the features of SLU granite. The SLU granite has 

probably formed by fractional crystallization of an 

enriched mantle-derived parental mafic magma (OIB) 

with crustal interactions. The similar petrogenetic models 

have been proposed for the neighboring A-type granites 

such as the Ghushchi and Khalifan granites. Derivation 

from a sub-continental enriched mantle source suggested 

for the Ghushchi complex magmas, where there is a 

genetic relationship between mafic and felsic magmas; 
the granites exhibit the geochemical character of A-type 

magmas, whereas the gabbronorites have OIB-type 

signature (Shafaii Moghadam et al. 2015). Also, 

derivation from an infra-crustal source was suggested for 

the Khalifan granites (Bea et al. 2011). High temperatures 

in the source regions and the involvement of mafic 

magmas in the genesis of the A-type rocks would be best 

provided in a continental rift zone, where upwelling of 

the asthenosphere or lithospheric extension could be 

produced a high mantle heat flow and sub-continental 

enriched melts. 

 

6.2. Geodynamic implications 

Our data suggest that the SLU granite has the chemical 

composition of the within-plate A-type granites. 

Moreover, the SLU granite displays the features of the A1 

subgroup of A-type granites, providing a contribution of 

OIB-like mafic melts in the genesis. The OIB-like 

chemical affinities are somewhat preserved in the studied 

rocks in spite of their high fractionation. OIB magmas are 

commonly considered as a result of mantle plume activity 

(e.g., Weaver 1991). Hence, the most plausible process 

for the generation of the SLU granite is lithospheric 
extension, thinning of the lithosphere and upwelling of 

the asthenosphere. In paleogeographic and plate tectonic 

reconstructions, the Southern and Central structural units 

of Iran (Stocklin 1968; Berberian and King 1981) are 

considered part of the Cimmerian superterrane (Stampfli 

and Borel 2002). The individual fragments of the 

Cimmerian superterrane, such as the Sanandaj-Sirjan, 

Alborz, and Central Iran were detached from the 

northern/eastern of Gondwana during the Late 

Carboniferous-Early Permian as a consequence of the 

opening of Neotethys. These crustal fragments were 

accreted to the Variscan terranes (Laurasia) in the Middle 

Jurassic during the closure of Paleotethys (Stampfli and 

Borel 2002). The opening of Neotethys (Permotethys) 

was synchronous with the closure of Paleotethys during 

Permian and Triassic times (Sengör 1987; Stampfli et al. 

1991). The time of the opening of Neotethys in Iran is 

discussed based on the combination of paleontological 

data with Carboniferous volcanism and tectonics 

(Saccani et al. 2013; Tavakoli-Shirazi et al. 2013; Shafaii 

Moghadam et al. 2015; Arefifard 2017). According to 

Arefifard (2017), in the Late Carboniferous, data from 

both smaller foraminifer and fusulinid assemblages in 

North and Central Iran reveal the similarity of these 
faunas with their northern Paleotethys counterparts. This 

can be inferred as a sign of the beginning of the separation 

of Iran from the northern margin of Gondwana and its 

movement towards the North. The Zagros suture is 

located along the discontinuous ophiolites at the 

southwestern margin of the SSMMZ (outer sub-zone in 

Fig 2). Based on the Zagros ophiolites and plutons of 

roughly the same age in the SSMMZ, subduction of 

Neotethys beneath the SSMMZ with a NE-dipping was 

initiated in the Middle to Late Triassic (e.g., Berberian 

and Berberian 1981; Dercourt et al. 1986; Agard et al. 
2005; Verdel et al. 2011). Continuous subduction and arc 

magmatism during the Mesozoic was led to scattered 

Jurassic to Cretaceous plutons, mainly within the 

SSMMZ with features of calc-alkaline I-type granite 

(Berberian and Berberian 1981). Furthermore, the 

granitic plutons of SSMMZ vary in age from 

Neoproterozoic to Eocene and have S and I-type nature 

rather than A-type (e.g., Hassanzadeh et al. 2008; 

Mahmoudi et al. 2011; Alirezaei and Hassanzadeh 2012; 

Ahadnejad 2013). However, most plutons were formed 

during Jurassic-Paleocene times with I-type affinities 

(e.g., Berberian and Berberian 1981; Masoudi et al. 2002; 
Mohajjel et al. 2003; Shahbazi et al. 2010). The opening 

and closing processes of the Neotethys Ocean in Iran 

could be mainly traced in the SSMMZ (e.g., Berberian 

and King 1981; Alavi 1994; Mohajjel et al. 2003). The 

Paleozoic magmatism of SSMMZ, especially alkaline 

and/or A-type magmas, may provide good evidence of 

the timing of the Neotethys rifting. Clues of the early 

phases of the Neotethys opening in the SSMMZ during 

the Late Paleozoic are elongated in NW-SE direction, 

from NW Iran such as the Misho and Ghushchi magmatic 

complexes (e.g., Saccani et al. 2013; Shafaii Moghadam 
et al. 2015) to SE Iran such as the Sargaz-Abshour 

complex (Ghasemi et al. 2002). The U-Pb ages obtained 

from the Late Paleozoic felsic igneous rocks of Iran along 

with some mafic rocks, orthogneiss and amphibolites 

indicate that the rifting of the SSMMZ from northern 

Gondwana and the opening of the Neotethys Ocean was 

probably initiated in the Late Devonian (Jamei et al. 

2021) to Early Carboniferous (Saccani et al. 2013). The 

present granitoid rocks generally have A-type affinities 

and occur as single or composite bodies, which are 

commonly sheared and mylonitized (Alirezaei and 

Hassanzadeh 2012). They are mainly emerged in the 
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northeast margin of the SSMMZ and around the 

structural depressions such as Lake Urmia, Meyghan, 

Gavkhouni, Sirjan, and Jaz Murian (Fig 2). The boundary 

of the SSMMZ with the UDMA to the northeast is 

characterized by a series of structural depressions formed 

by compression (Alavi 1994). According to Alavi (1994), 

the SSMMZ is characterized by large-scale composite 

duplex structures or low- and high-angle NE-dipping 

imbricate systems, which have transported numerous 

sheets of metamorphosed and non-metamorphosed 

Phanerozoic rocks for tens or possibly hundreds of 

kilometers since the Late Cretaceous. Therefore, the main 
outcrops of Late Paleozoic rocks, including the SLU 

granite, in the northeast margin of the SSMMZ could be 

related to the southwestward displacement of younger 

rocks by thrust faulting.  

It is noted that thrusting and deformation in the SSMMZ 

climaxed in the Miocene because of the continental 

collision of Arabia and Central Iran following the 

opening of the Red Sea and the Gulf of Aden Mohajjel 

(et al. 2003). According to Stocklin (1968) and Berberian 

and King (1981), Iran formed from three major structural 

units/domains comprising the Southern domain (Zagros 
orogenic belt including SSMMZ), the Central domain 

(Central Iran ± Alborz belt), and the Northern domain 

(Kopeh-Dagh + Caspian depression ± Alborz belt). The 

Southern and Central domains have Gondwanan affinity 

based on flora/fauna and excellent correlation of 

Paleozoic facies with basins in Arabia or India (e.g., 

Ghavidel-Syooki 1995; Stampfli 2000; Arefifard 2017). 

Therefore, they are considered part of the Cimmerian 

superterrane. The SLU granite has the geochemical 

features of the A1 subtype of A-type granitoids and 

provides evidence for extensional tectonics and rifting of 

the SSMMZ away from Gondwana during the Late 
Paleozoic. However, the Khalifan pluton, the 

neighboring Late Paleozoic A-type granite to the SLU 

granite, has been attributed to the Variscan terranes by 

Bea et al. (2011). Notwithstanding the absence of 

involvement of the Cimmerian terranes detached from 

Gondwanide terranes in the Variscan (Hercynian) 

orogeny (von Raumer et al. 2003) and generally the lack 

of major Variscan magmatic rocks in the Southern and 

Central domains, they suggested a derivation from the 

Variscan terranes of the Eurasian margin for this part of 

Iran. 
The SLU granite is situated in NW Iran, a complex area 

where the three main Iranian structural zones are joined 

together and associated with the major old active faults, 

the Tabriz and Urmia faults. Therefore, in this area there 

are some complexities in the geological interpretations on 

the subject of Neotethys opening.  

On the other hand, the Sanandaj-Sirjan block borders are 

controversial because the geological indications of 

Neotethys opening are rigorously affected by some 

younger processes; in a side, the border is concealed by 

the Paleogene intense magmatism (i.e., UDMA), and in 

another side, it is covered by multi-generation thrust 

faulting.  

Nevertheless, the southwest boundary of SSMMZ is 

restricted to the Zagros Main thrust and the northeast 

border of SSMMZ is conventionally limited to the 

UDMA (e.g., Berberian and King 1981; Alavi 1994; 

Mohajjel et al. 2003; Alavi 2004). Considering the recent 

studies on the Late Paleozoic rocks from NW Iran, It 

seems that the late border could be extended to the major 

old active faults such as the right-lateral Tabriz, Qom-

Zefreh, and Nain-Baft faults, as it is also suggested by 

Mehdipour Ghazi and Moazzen (2015). Overall, the 
present study as well as comparing the present data on the 

Late Paleozoic A-type rocks in the SSMMZ and NW Iran 

show that evidence for early stages of the Neotethys 

opening is mainly discovered in the northeast margin of 

SSMMZ and around the structural depressions (so-called 

‘Mesozoic back-arc’ in McCall and Kidd (1982), 

‘Tertiary fore-arc’ in Berberian (1983) and Alavi (1994), 

‘inner sub-zone’ in Mohajjel et al. (2003), and ‘intra-arc 

basin’ in Shahabpour (2007; 2010)). Consequently, the 

Late Paleozoic A-type units, including the SLU granite, 

are distributed predominantly close to the old faults and 
the modern depressions. They are characterized primarily 

by the coeval bimodal magmatism with OIB-like affinity 

(e.g., Alirezaei and Hassanzadeh 2012; Saccani et al. 

2013; Shakerardakani et al. 2015; Shafaii Moghadam et 

al. 2015; Azizi et al. 2017) and overlain by Permian to 

Early Mesozoic marine sediments, suggesting an 

extensional regime related to upwelling of mantle plume 

during the Late Paleozoic. 

 

7. Conclusions 
Based on the mineralogical and geochemical characters, 

the SLU granite is inferred to be the result of a high 

degree of fractional crystallization from an enriched 

mantle-derived parental mafic magma with crustal 

interactions. The granitic melts formed in low pressure 

(<10 kb), low temperature (e.g., TZr≈730 °C), water-poor, 

and reduced conditions. The SLU granite shows ferroan, 

peraluminous, and shoshonitic affinities and the 

geochemical features of A-type granites.  

Moreover, the SLU granite displays the features of the A1 

subgroup of A-type granites, providing a contribution of 
OIB-like mafic melts in the genesis within a probable 

extensional setting. Therefore, the SLU A-type granite 

similar to the Late Paleozoic A-type rocks, such as the 

Misho, Ghushchi, Hasanrobat, and Khalifan magmatic 

suites, could be as evidence for the early phases of 

Neotethys opening in Iran.  

During the Neotethys opening, melting of sub-

continental lithospheric mantle could be occurred by 

upwelling of the asthenosphere or extension of the 

lithosphere to produce primitive magmas (OIB-like). 

Extreme fractionation of the produced hot primitive 
mafic magmas was probably associated with crustal 

interactions to generate the dry parent granitic magmas of 

the SLU pluton. The Late Paleozoic A-type rocks that 
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occurred parallel to the Neotethys suture are mainly 

emerged in the northeast margin of the SSMMZ and 

around the structural depressions such as Lake Urmia, 

Meyghan and Sirjan, probably due to the southwestward 

displacement of younger rocks by thrust faulting since the 

Late Cretaceous to the present with a climax in the 

Miocene.  
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