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Abstract 
The 2012 Ahar-Varzegan earthquake and its aftershocks have not only caused huge damage with a severe loss of life and property 

but also induced many geo-hazards with the major type of collapse, creep, slip, debris flow, and fallings that are generally considered 

as landslide in this study which can cause continuous threats to the affected region. in this study, a semi-automated geo-hazard detection 

method has been presented to determine the Landslides due to 2012 Ahar-Varzaghan earthquake in area from Ahar to Varzaghan by 

the use of bi- temporal Landsat images from before and after the earthquake. The accuracy of the results was checked out using field 

observations, Google Earth images and the error matrix. The results of the visual validation with the Google Earth images showed that 

the used method can detect landslids with relatively high accuracy.The images of landsat5 and 8 Because of their multispectral 

advantages can be used as a suitable data source for research on Instabilities. Finally, the validating results obtained by using the error 

matrix showed the total accuracy of 92.1% and kappa coefficient was 0.99. So based on the results obtained from the above method, 

the landslides were distributed mainly in slopes between 15 and 40 degrees and the height distribution of instabilities of 1420 to 2000 

meters. Also based on vegetation indices, density of landslides have been increased after the earthquake. Generally unstabel slopes are 

located along river valleys and roads in mountain regions with deep valleys and steep slopes. According to the nature of present study, 

the obtained result can be useful for environmental planners and project developers. 

Keywords: Landsat-5 and 8, Landslide, Ahar-Varzegan, Earthquake, Google Earth. 

 

1. Introduction 
Earthquakes have long been recognized as a major cause 

of landslides. Earthquake-induced landslides have been 

documented from at least as early as 373 or 372 B.C. 

(Seed 1968). In addition to the loss of human life and the 

damage to property, the earthquake triggered numerous 

geo-hazards, majorly as the type of landslide. For 

example, the earthquake triggered a landslide on mount 

Everest that killed 21 persons, and another huge ice and 

rock landslide in the Langtang valley that caused 

hundreds of people to die or go missing and buried the 

entire village of Langtang (Lacroix 2016). Meanwhile, 

post-earthquake geo-hazards also caused substantial 

influences on mountain ecosystems, especially for the 

vegetation cover on slopes in the affected region, which 

in turn leads to high risk from secondary geo-hazards. 

According to the field and remote sensing-based 

investigations after the 2008 Wenchuan earthquake, 

which happened in Sichuan province, China, avalanches, 

landslides, and mixtures of landslides and constituted the 

main types of post-earthquake geo-hazards and persisted 

for several years after the earthquake (Huang et al. 2012, 

Wei et al. 2014, Zhao et. 2017). In spite of their 

geomorphic and economic significance, earthquake-

induced landslides are not well understood (Keefer 1984) 

northwestern Iran is historically associated with 

destructive earthquakes mainly related to the north Tabriz 

fault (NTF).   
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The NTF stands at more than 50 km to the southeast of 

Ahar and Varzeghan cities, and expands along 150+ km 

in Nw-SE direction. During the past two decades, the 

Iranian seismic network has surveyed this area, and no 

important seismic activity has occurred in the northern 

region of the NTF (Yazdi et al. 2017). GPS-derived 

velocities at the NTF indicate a mainly north-northeast 

tectonic movement close to Ahar city, the recent average 

slip has been measured to be about 11 mm/year (Djamour 

et al. 2011).The recent relative quietness of this area was 

broken on 11 august 2012, with the occurrence of the 

earthquake sequence. Preliminary estimates placed, and 

the deaths were more than 330 persons and the number of 

injured persons was about 26,000 and overall, more than 

50000 persons who have been resettled. Therefore, 

regarding the recent occurrence of this large earthquake 

in Ahar-Varzegan, it is very important to monitor these 

earthquake-induced geo-hazards, determine their spatial 

distribution, and support the process of geo-hazard risk 

assessment and mitigation. To obtain accurate 

information on earthquake-triggered geo-hazards, 

typically for landslides, two major methods be used, as 

previously described by Xu (2015). These methods are 

field investigation and remote sensing image 

interpretation. Although the field investigation is able to 

generate highly accurate and reliable results, it is cost-

inefficient and labor-intensive, and it usually blocked in 

unreachable mountainous areas comparatively. Remote 

sensing technologies allow coverage of large regions at 

high frequency. This advantage enables remote sensing-

based methods to become popular for monitoring 
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landslides at different spatial-temporal scales (Travelletti 

et al. 2012, Martha et al. 2015, Zhao et al. 2017). 

Artificial visual interpretation is the typical method for 

landslide inventory. It avoids problems with missing a 

large number of landslides on small scales and can obtain 

detailed and comprehensive earthquake-triggered 

landslide inventories (Petschko et al. 2015, Xu 2015, 

Zhao et al. 2017). In addition to visual interpretation, the 

automatic extraction method has become popular in 

landslide detection due to its high efficiency and 

adjustable thresholds for landslide identification mean 

(Moosavi et al. 2014, Martha et al. 2015). Pixel-based and 

object-oriented automatic extraction approaches are two 

major types (Rastner et al. 2014). Pixel-based approaches 

mainly include the direct way by comparing the radiation 

intensity in each waveband and the post-classification 

way conducted by comparing pre-earthquake and post-

earthquake classification maps (Nichol et al. 2005, 

Callaghan et al. 2015). The object-oriented automatic 

extraction method applied by generating a target polygon 

of pixels with the same characteristics based shape, color, 

texture, and context, and then extracting and classifying 

the characteristics of each target (Shi et al. 2015, Dou et 

al. 2015). In addition to the development in remote 

sensing-based methods, the availabilities of very high-

resolution optical remote sensing images (Lacroix et al. 

2013, Li et al. 2016, Zhao et al. 2017), point cloud, light 

detection, ranging data (Jaboyedoff et al. 2012, Zhan and 

Lai 2015),and Synthetic Aperture Radar (SAR) images 

and interferometric SAR technology (Milillo et al. 2014, 

Ciampalini et al. 2015, Zhao et al. 2017), promote the 

accurate mapping of earth surface because of their 

different advantages as ability to measure millimetre-

scale changes in deformation over spans of days to years. 

So, it has applications for geophysical monitoring of 

natural hazards, for example earthquakes, volcanoes and 

landslides. 

Other researchers had already studied changes in the 

earth surface. For example Moosavi and Ranjbar (2014) 

in order to monitor the landuse changes in Abarkooh 

mountain basin using techniques such as monitoring 

classification and accuracy evaluation after classification 

and application of base component analysis functions, 

Tasseled cap and image difference were used to monitor 

changes. (Emamgholi et al. 2007) investigated landuse 

changes using supervised classification method and 

modis images. (Moghimi et al. 2005) reviewed the 

methods to identify changes from bi-temporal satellite 

imagery using the base pixel and the base object 

approach. therefore, due to the previous researches in 

order to investigate the changes in the use of optical 

landsat images, in this paper, due to the lack of access to 

radar images such as Sentinel-1 or Envisat, for the time 

period of the Ahar-Varzaghan earthquake accurance, the 

changes investigate method has been used to study the 

changes using the pixel-based extraction method and 

landsat images - 8 and 5. Therefore, the main objective of 

this paper is to extract the slope instabilities arising from 

the 2012 Ahar-Varzaghan earthquake, such as collapse, 

creep, slip, debris flow, and fallings that are generally 

considered as landslide in this study. 

 

2. Methodology 
2. 1. Study Area 

The studied region is a part of Ahar chai basin with an 

area of 1,593 square kilometers, which is one of the 

largest catchments in the East Azerbaijan province. The 

study area places in latitudes of 46° 35´ to 47° 10´ and 

longitudes of  38° 20´ to 38° 45´ (Roostaei 2000). 

Therefore, mentioned region is limited to the Arasbaran 

forests to the north, the eastern slopes of the Owrtat 

Sakhvor Mountain to the east, the eastern slopes of the 

Kohneloo Mountain to the west and the Aji chai basin to 

the south. The main river of this region is Ahar Chai, 

which eventually joins the river Ghara Soo and finally 

reaches to the Aras border river. The best ways to access 

this region is the Tabriz-Khajeh-Ahar-Caliber road, 

which passes through the area from north to south. Figure 

1 shows the location of the study region from Varzaghan 

to Ahar. In terms of topography, the region includes the 

northern mountainous area, southern mountain range, 

mountain slopes range and Ahar plain. 

 

2. 2.  Remote Sensing Data 

In this paper, landsat 5 images to date, 2014/09/15 and 

landsat 8 images to date, 2013/08/11 for row and passage 

number of 166-33 were used. As well as ARCGIS 10.4.1 

and ENVI5 3 and SAGA 6.4 software were used to do the 

research. 

2.3. Methodology 

Based on the pixel-based extraction method, a semi-

automated geo-hazard detection method was proposed to 

derive reliable earthquake-induced geo-hazard mapping 

results. Figure 2 shows the flowchart of the method. After 

radiometric normalizing of landsat images, a novel 

change detection method (Zhao et al, 2017) is applied to 

obtain difference images and map the earthquake-

induced landslides. The last step involves validation of 

the landslide mapping results. 

2.3.1. Image Preprocessing 

Because all images were acquired from the USGS Earth 

Resources Observation and Science Center, terrain 

correction, as well as radiometric correction, atmospheric 

correction, and geometric precision correction, has been 

performed for Landsat- 8 &5 products (Vermote et al. 

2016, Zhao et al. 2017).  

2.3.2. Radiometric Normalization  

Radiometric normalization is a particularly important 

step in this process. It is well known that changes between 

multitemporal remote sensing data can be caused by 

many other factors, including spatial, spectral, thematic
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 Fig1. Location of the study region from Varzaghan to Ahar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. Flowchart of the used semi-automated landslide detection method. 
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and temporal constraints, radiometric Resolution, 

atmospheric conditions, vegetation growth, and soil 

moisture conditions. Therefore, accurate discrimination 

of the changes from landslides requires the exclusion or 

reduction of the impacts caused by these other factors. A 

relative radiometric normalization was conducted using 

the post-earthquake Landsat-8 image as a reference and 

the pre-earthquake Landsat-5 image was adjusted to 

match the radiometric level of the reference image. 

Because there are some disturbances from land surface 

changes, a robust linear regression was performed 

between the bi-temporal Landsat-8 & 5 images for each 

study area to obtain the normalization coefficients. The 

formula is (Zhao et al. 2017) expressed as follows: 

  

Obspost, i = ai · Obspre, i + bi                                           (1) 

  

Where Obspost, i and Obspre, i are the surface 

reflectance for the ith band of the post- and pre-

earthquake Landsat-8 images, and ai and bi are the 

derived coefficients from the robust linear regression. 

Areas covered by clouds and shadows are excluded from 

the linear regression. 

2.3.3. Landslide Mapping 

Landslide mapping typically uses multitemporal remote 

sensing data to analyze the temporal effects of 

phenomena and quantify of the changes. Regarding 

landslides in these study areas, their major impacts on the 

surface are the disturbance of vegetation cover and the 

exposure of soil and rock. The associated damage is more 

serious in regions with steep slopes in the high mountain 

areas. Therefore, the investigation was majorly 

conducted based on the spectral differences between 

vegetation and bare surfaces. 

2.3.4. Image Difference Calculation  

Before landslide identification, an important step is to 

obtain the difference images for bands or spectral indices 

related to geo-hazards. Considering the disturbance of 

vegetation cover by landslides, three vegetation indices, 

including the normalized difference vegetation index 

(NDVI), the Enhanced vegetation index (EVI), and the 

Soil adjusted vegetation index (SAVI), were calculated. 

Then, the difference images were derived for the surface 

reflectance of band 1to band 7 except  band 6 for Landsat-

5 and band 2 to band 7 for Landsat-8 and the vegetation 

indices were calculated to the equations(Zhao et al. 2017) 

as follows: 

 

Diffb(X) = SRb,post(X) − SRb,pre(X)                      ( 2) 

b=(band 2.3.4 .5.6.7 landsat 8) and (band 1.2.3.4.5.7 

Landsat5) 

Diffvi(X) = VIpost(X) − VIpre(X) 

 (VI = NDVI, EVI, or SAVI) 

 

Where SRb, pre (X) and SRb, post (X) are the surface 

reflectance values of the pre- and post-earthquake images 

for pixel X, b represents a band number, and VIpre (X) 

and VIpost (X) are the pre- and post-earthquake 

vegetation indices for pixel X. In addition to the 

difference images from each individual band, the change 

magnitude of the integrated spectral feature differences is 

calculated based on the change vector. Two vectors Vpre 

and Vpost can be defined according to the six bands for 

the pre- and post-earthquake Landsat-5 and Landsat-8 

data, and the change vector is determined by the 

differences between them: 

                                                                                      (3) 

  

[
 
 
 
 
𝑆𝑅1,𝑝𝑜𝑠𝑡 − 𝑆𝑅1,𝑝𝑟𝑒

𝑆𝑅1,𝑝𝑜𝑠𝑡 − 𝑆𝑅1,𝑝𝑟𝑒

𝑆𝑅2,𝑝𝑜𝑠𝑡 − 𝑆𝑅2,𝑝𝑟𝑒
… . .

𝑆𝑅6,𝑝𝑜𝑠𝑡 − 𝑆𝑅6,𝑝𝑟𝑒]
 
 
 
 

= pre V– postCV=V 

  

The magnitude of the change vector (MCV) is then 

calculated by following expression: 

                                                                                      (4) 

MCV= √∑ (SRb,post 
(X) − (SRb,pre (X)n

b1 )2                  

b=(  band 2 ,3,4 ,5,6,7 landsat 8) and (band 1,2,3,4,5,7  

Landsat5) 

 

It is clear that the band differences only reflect the 

changes in a single band, while the MCV contains 

information from all the included bands. Ideally, a pixel 

that has undergone no change will record a value of zero 

for all values, and their absolute values represent the 

magnitude of the change between the post- and pre-

earthquake images. However, there is still one obvious 

difference between the band difference and the MCV. 

Both positive and negative pixel values can be found in 

the band difference images, and the positive and negative 

signs represent different directions of changes. The MCV 

only measures the size of the change without directional 

information. 

2.3.5. Threshold Determination for Change Detection  

The difference images obtained using the above-

mentioned expressions should include changes caused by 

earthquake-induced landslides. However, the differences 

are still affected by errors from imprecise 

orthorectification, differences in phonological state, 

atmospheric conditions, illumination and view angles, 

and soil moisture. Although the radiometric 

normalization reduces the impacts of these factors, but 

influences cannot be ignored. So for reducing the 

uncertainty related to these impacts, a threshold method 

is employed in this study. This method is reflected by the 

following expression: 

 

                                                                                     (5) 

  



Khodaei Geshlag et al. / Iranian Journal of Earth Sciences, Vol. 12, No. 4, 2020, 266-279. 

 

 

270 

If the image difference value ρ(X) of pixel X is greater 

than or equal to the threshold V threshold, the pixel is 

labeled a landslide candidate; otherwise, the pixel is 

labeled a background pixel. It is clear that the 

determination of the threshold value plays a critical role 

in this method. Usually, the selection of a threshold to 

identify a changed or unchanged pixel can be done 

empirically through experience or objectively through an 

optimal threshold search algorithm. According to the 

landslide inventory study by Li et al. (2016) the threshold 

value is expressed as: 

 

V threshold = ρ̄ + α×σ                                                 (6)  

Where ρ̄ and σ are the mean and standard deviation of ρ, 

respectively. α is a free parameter representing a 

multiplier applied to the standard deviation. According to 

this formula, the parameter α plays a critical role in 

determining the final geo-hazard identification accuracy. 

Usually, a comparative experiment is done to compare 

the detection performances with different α values, and 

the final value is chosen based on this experiment. 

 

2.3.6. Validation 

To effectively validate the landslide mapping accuracy, 

both Google Earth images and the original Landsat-8 data 

were used. High spatial resolution Digital-Globe images 

acquired after the earthquake were provided by Google 

Earth (http://www.earth.google.com). Visual 

interpretation was conducted to identify earthquake-

induced landslides in both study areas. Then, visual 

assessment was applied to check the accuracy by 

comparing the mapping results, and the landslide samples 

as introduced in the flowchart. Finally, the validating 

results obtained by using the error matrix. 

 

3. Results asd discussion 
3. 1. Radiometric Normalization 

 Figure 3 shows the density plots from the band 

(1,2,3,4,5,7 for Landsat-5 and 2,3,4,5,6,7 for Landsat-8) 

for the pre-earthquake and post-earthquake images in the 

study area. Good linear relationships can be observed 

between the bi-temporal surface reflectance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3. Density plots for band (1,2,3,4,5,7 for Landsat-5 Equal to 2,3,4,5,6,7 for Landsat-8 = band 1 to 6)  surface reflectance 

(∗10000) for the pre- and post-earthquake Landsat 5 and 8 images in study area. 
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According to the radiometric normalization method 

introduced in this study, a linear regression method was 

first applied to the dataset to reduce the influence of 

outliers. Table. 1. Lists the linear regression results of the 

six bands in the study area. The R2 values of study area 

change from 0.6745to 0.9432, with the root mean square 

deviation (RMSD) ranging from 0.0032 to 0.0186. The 

equation of RMSD is:  

  RMSD=√
1

𝑁
 ∑ 𝛿𝑖

2𝑁
𝑖=1                                                   (7)   

is the distance between pixel i and either a reference 

structure or the mean position of the N equivalent pixels. 

It should be noted that in order to equate bands of Landsat 

5 and 8, the similar and equal bands will be called 1 to 6 

in throughout of the paper. Of R2 reflects good correlation 

between the bi-temporal images. However, among these 

six bands, there are still some obvious differences, 

especially for band 4. The points in band 4’s density plot 

for the study area are much more dispersed than those of 

other bands, with relatively low R2 and the highest 

RMSD. This result means that there are many factors 

inducing the high uncertainty during this regression. In 

the study area, the regression lines are very close to the 

1:1 ideal regression line except for that of band 4. From 

the density plots, it can be learned that although the 

radiometric differences in the study area for different 

bands are quite different, it is still necessary to conduct 

radiometric normalization between the bi-temporal 

images. According to the regression coefficients, 

radiometric normalization was performed to recalibrate 

the pre-earthquake Landsat-5 data to the same level as the 

post-earthquake Landsat-8 data in the study areas. 

 
Table 1. Liner Regression coefficients of the bi-temporal 

Landsat-8 & 5 data for Band 1 to 6 in study area. 
Band 

No. 

a b R2 RMSD 

1 0.9441 0.0015 0.8944 0.0032 

2 0.9517 0.0017 0.9145 0.0165 

3 0.9835 0.0041 0.9222 0.0050 

4 0.8968 -0.0024 0.6745 0.0186 

5 0.8785 0.0100 0.9121 0.0056 

6 1.001 0.0021 0.9432 0.0064 

 

3.2. Difference Images Calculation 

Difference images were calculated with the pre and post-

earthquake Landsat-5 and Landsat-8 data, including the 

band differences of the band reflectance images 

(1,2,3,4,5,7 for Landsat-5 Equal to 2,3,4,5,6,7 for 

Landsat-8 = band 1 to 6), the three vegetation index 

difference images (NDVI, EVI, and SAVI), and the MCV 

image Were derived from all six bands difference images. 

Fig. 4 shows the different images in the study area with 

the natural color Landsat-8 image in 2013 as the 

background. The colorbars indicate that the value ranges 

of the images with a width of two standard deviations. 

Based on prior knowledge about changes related to 

earthquake-induced landslides, the Red to Red-Orange 

areas are highly suspect. To visually inspect the 

differences in detail, two sub regions, A and B, are 

selected for closer inspection of the change detection 

results in all the difference images. Sub region A is in the 

Southwest part of the study area and Sub region b is 

located in the middle part of the study area and the 

Satarkhan Dam is located in this sub region. Generally, 

the colorbars of Fig. 4 clearly indicate the magnitude of 

the changes varies for different bands, which shows the 

different sensitivity of each band to surface changes. Big 

change ranges can be observed for band 4 to band 6, 

where as band 1 to band 3 have relatively small change 

ranges. However, for band 1 to band 3, band 5 and band 

6, the difference images exhibit almost the same ability 

to represent land surface changes related to landslides. 

The zoomed-in images of sub region b shows similar 

patterns of surface changes, whereas sub region A is 

contaminated by errors in the original data of band 1 to 

band 3 with very coarse pixels observed for this region. 

Comparatively, the changing areas detected by the 

difference image of band 4 are quite inconsistent with 

those of other five bands. It is attributed to the high 

sensitivity of band 4 to vegetation growth, and the 

detected changing areas are mixed with vegetation cover 

differences and landslide induced changes.  

Regarding the vegetation index difference images, the 

changing patterns are very similar. However, compared 

with the spectral differences, the vegetation index 

difference images also suffer from variations in 

vegetation phenology, especially for the downstream of 

the river. When comparing the MCV image with the other 

difference images, we find that the integration of the 

differences in all spectral bands ensures that the change 

vector method captures land surface change well. 

 

3.3. Results of Landslide Mapping 

According to the difference detection results for the study 

area shown in Fig 4, it can be concluded that it is difficult 

to directly identify areas prone to landslides from a single 

difference image. The changing areas that are related to 

landslides are mixed with surface changes induced by 

other factors, especially vegetation phenology 

differences. The comparison study indicates that the band 

difference images (except for band 4) are less disturbed 

by vegetation growth differences than other difference 

images. This conclusion is supported by the band 

differences of landslide pixels shown in Fig. 5. Six 

sampling pixels in landslide-influenced areas were 

selected as examples to present the band surface 

differences between post and pre-earthquake images. It is 

clear that the band reflectance values (except for band 4) 

have significant increases due to the exposure of bare soil 

or rocks by landslide. In contrast, the surface reflectance 

in band 4 is highly correlated with vegetation cover, and 

it has an opposite change direction. Negative values can 

be observed for this band.  
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Fig 4. Difference images of study area based on pre- and post-earthquake Landsat-5 & Landsat -8 data. 

 

 

Therefore, according to the spectral variation 

characteristics of the six bands that contain information 

on landslides, a simple model, proposed by (Zhao et al. 

2017), was used to measure the bi-temporal reflectance 

changes. The model is expressed by the following 

equation: 

 
Diff = ∑ (𝜌𝑖.𝑝𝑜𝑠𝑡−  

7
𝑖=1 𝜌𝑖.𝑝𝑟𝑒 )(𝑖 ≠ 4 )/ ∑ 𝜌𝑖.𝑝𝑜𝑠𝑡

7
𝑖=1 (𝑖 ≠ 4) (8) 

Where Diff is the value that measures the changes, ρi, post 

is the post-earthquake surface reflectance, ρi, pre is the pre-

earthquake surface reflectance, and I represent the band 

number. The model enhances the reflectance differences 

by calculating the sum of the five band differences, and 

then normalizes by the sum of the spectral differences of 

the five bands. 
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Fig 4. Continued 

 

 

 The spectral information about vegetation in band 4 is 

not included in the model to reduce the influence of 

vegetation phenology differences. Meanwhile, the 

normalization, similar to the relative change calculation, 

is helpful be helpful for describing the magnitudes of the 

identified changes. The difference maps for the study area 

derived by the used model are shown in Fig 6. Compared 

with the simple band difference images in Fig 4, the 

difference images in Fig 6 shows better ability to suppress 

the disturbances from vegetation growth and other 

factors. The land surface changes induced by the 

occurrence of landslides can be clearly identified in these 

difference images. Based on the difference images in Fig 

6, the threshold method was applied to identify the 

changes induced by landslides. As described in the 

methods section, a comparative experiment with the 

value of α changing from 1.0 to 4.0 was conducted for the 

study area. Clearly, errors involving the false 

identification of geo-hazard related features will decrease 

with increasing values of α. However, some real geo-

hazardous areas will be eliminated at the same time. 

Therefore, an appropriate value of α should be 

determined to make a compromise between the 

investigation accuracy and the missing identification. 

Based on the comparative experiment, the value of α was 

set to 1.5 and. 3.5 for the study area, respectively, and the 

threshold value was chosen to enable accurate mapping 

of the landslide areas. Fig 7 shows the landslide mapping 

results in the study area. It shows that the landslide-prone 

areas are primarily located in the valleys along the river 

and roads, and greatly threaten the safety of people and 

goods moving along the road and the local villages along 

the roads and valleys. Regarding the spatial distribution, 

the landslides are mainly distributed in the middle to 

north and south part in the study area. The high mountain 

topography with deep valleys and steep slopes causes 

slope instability and earthquake-triggered landslides. 

 

3. 4. Validation 

3.4.1. Validation of results using Google Earth Images 

To effectively validate the landslide mapping results, we 

used high-resolution images from Google Earth provided 

by Digital- Globe that were acquired before the 

earthquake and the original Landsat-8 images to 

quantitatively evaluate the investigation accuracy.  
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Fig 5. Band differences for six sampling pixels in geo-hazard-affected areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Difference images of study area derived with the used model. 

 

 

 
Fig 7. Landslides investigation results (Red color areas) for study area. 
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Figures 8 and 9 show the visual validation results for the 

two sub-regions in the study area. The red arrows point 

out the corresponding relationship between the detected 

landslides of all sub-regions and the landslides digitized 

in the Google Earth images. It is obvious that the 

investigation results are quite consistent with the manual 

explanation results from high-resolution images. 

Meanwhile, the comparison of the pre and post-

earthquake true color images used in this study also 

clearly represents changes due to the occurrence of 

landslides. It is clear that the big linear landslide can be 

accurately identified by the used method as shown in 

Figs. 8 and 9. The validation results truly support the 

good performance of the used method. 

 

3.4.2. Accuracy Assessment of the Results of the Slope 

instabilities 

In summary, 133 control ground points were collected 

from five classes of unstable slopes In Google earth to 

validate experiment. The selection of points was based on 

the accessibility and the homogeneity of the samples. The 

accuracy of the map was obtained through the confusion 

matrix using all the 133 points (Table 2). Overall 

accuracy reached 92.1%, with a kappa coefficient of 0.99. 

The accuracy of non-instability reached 100%, whereas 

the class of extreme instability reached 89.25%. Results 

indicate that the implication vegetation coverage 

fractions in a feature space can be a feasible and useful 

tool for assessment and identifying of changed areas 

(Table 3). The errors of omission represent pixels that 

belong to the ground truth class. However, the 

classification technique failed to classify them into the 

proper class. The errors of commission represent pixels 

that belong to another class, which are labelled as 

belonging to the class of interest. 

 

3.5. Spatial Distribution Analysis 

Quantitatively analyzing the spatial distribution of the 

landslides induced by this big earthquake was conducted 

based on the Aster 30 m DEM data. Fig 10 presents the 

histogram maps of the elevation and slope information 

related to detected landslides in the study area. The large 

landslide in south of the study area is excluded from this 

analysis because it occurred before the earthquake. It can 

be realized that most of the landslides occurred in areas 

of steep slopes. The landslides in the study area are 

mostly distributed in areas with slopes ranging from 15° 

to 40°, with an average value of 36.02°. In addition to the 

topographic analysis against the investigation results, the 

changes in NDVI of the landslide areas also clearly 

present the influence of the landslides on surface 

vegetation cover. As discussed in the previous section, 

the major impacts of the occurrence of landslide are the 

destruction of surface vegetation cover and the exposure 

of bare surfaces. The pre- and postearthquake histogram 

of the NDVI values in the landslide areas shown in Fig. 

10 clearly indicates these changes with significant 

decreases in NDVI distribution. The mean NDVI values 

of these slope instabilities areas change from 0.5893 to 

0.3400 for study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 8. Visual validation of the landslide investigation results in the sub-region A of study area with high-resolution Digital-Globe 

images from Google Earth and pre- and post-earthquake Landsat-8 and Landsat-5 images. 
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Fig 9. Visual validation of the landslide investigation results in the sub region B of study area with high-resolution Digital Globe 

images from Google Earth and pre- and post- earthquake Landsat-8 and Landsat-5 images. 

 

 
Table 2. The confusion matrix 
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25 0 0 0 0 25 Non 

33 0 0 0 33 0 Low 

23 0 1 20 2 0 Moderate 

24 3 20 1 0 0 Severe 

28 25 3 0 0 0 Extreme 

133 28 24 21 35 25 Total 

Ground Truth (%) 
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18.8 0 0 0 0 100 Non 

24.81 0 0 0 94.28 0 Low 

17.30 0 4.17 95.23 5.71 0 Moderate 

18.04 10.71 83.33 4.77 0 0 Severe 

21.05 89.29 12.5 0 0 0 Extreme 

100 100 100 100 100 100 Total 

 

 

Regarding the elevation, most of the landslides in the 

study area fall within the range of 1420–2000 m, with an 

average value of 1843 m. regarding of the histograms 

indicates that the landslides in the study area are generally 

distributed over higher elevation areas with steeper 

slopes. Figure 11 shows some of the slope instabilities 

due to from the earthquake 2012 on the slopes located on 

the north of the Dopeyag village. 

Although the validation partly confirms the ability of the 

used method, ability for identifying the locations and 

magnitude of landslides with relatively high accuracy, 

there are still some constraining factors that influence the 

method accuracy. 

It is verified that the used method is able to detect 

landslides over relatively large areas. However, a closer 

examination of the results shows many pixel-level geo-

hazards, and it is hard to check their real situation. For 

these small-scale geo-hazards, the relatively large size of 

Landsat-5 and Landsat-8 pixels (30 m) may include 

mixed information from the landslides and the adjacent, 

unchanged natural surfaces, resulting in smaller surface 

reflectance changes than those associated with middle to 

large scale geo-hazards. Therefore, it is hard to fully 

discriminate the landslides at small scale from other 

surfaces. So, the pixel resolution becomes an important 

limitation for small-scale geo-hazard investigation. It 

also indicates that the spatial resolution of the remote 

sensing data used in landslide investigations strongly 

influences the survey accuracy.  

In present study two Landsat-5 & Landsat-8 remote 

sensing data were used (June 5 and August 11) acquired 

in the same season or nearly the same season in 2011 and 

2013, respectively, to represent the pre and post-

earthquake images to reduce the impacts of seasonal and 

phonological variation. There is about a one-year gap 

between two images.  
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Table 3. Classification accuracy of the map of desertification degrees. 
Omission (pixels) Commission (pixels) Omission (percent) Commission 

(percent) 

 

0/25 0/25 0 0 Non 

2/35 0/33 5.71 0 Low 

1/21 3/23 4.76 13.04 Moderate 

4/24 4/24 16.66 16.66 Severe 

3/28 3/28 10.71 10.71 Extreme 

User Acc  

(Pixels) 

Pro Acc (Pixels) User Acc (percent) Pro Acc (percent)  

25/25 25/25 100 100 Non 

33/33 33/35 100 94.28 Low 

20/24 20/21 86.95 95.24 Moderate 

20/24 20/24 83.33 83.33 Severe 

25/28 25/28 89.25 89.25 Extreme 

 

 

 
 

Fig 10. Histograms of the slope and elevation and NDVI of the identified landslides in study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 11. Slope instabilities due to the earthquake 2012 (Slopes located on the north of Dopeyag village). 
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Therefore, the final change detection results contain 

surface changes not only caused by earthquake-induced 

landslides, but also induced by other natural hazards and 

human activities (deforestation and villageation). These 

later changes should be regarded as errors when only 

considering the earthquake-induced landslides 

investigation; however, it is difficult to discriminate them 

from the investigation results. For example, there is a 

landslide recognized by the used method in the study 

area. In reality, these landslides occurred in between the 

two remote sensing data acquisition dates and they were 

induced by rainfall not the earthquake. Consequently, 

although the used method is able to identify landslides, 

the big time gap between the bi-temporal remote sensing 

data will introduce uncertainty in the final investigation 

results, and the individual landslides should be checked 

whether they are induced by the earthquake with remote 

sensing data acquired during this period. The study area 

is located in a typical mountain environment; the 

mentioned area is limited to the Arasbaran forests to the 

north, the eastern slopes of the Owrtat Sakhvor Mountain 

to the east, the eastern slopes of the Kohnaloo Mountain 

to the west and the Aji Chai basin to the south. It is well 

known that slopes facing toward the sun usually receive 

more light and appear brighter than slopes facing away 

from the sun. The illumination of remote sensing data is 

greatly modified by topography, and the proportion of 

light reflected toward the satellite varies with the 

geometry of the sun, target, and viewer (Shepherd and 

Dymond 2003, Szantoi and Simonetti 2013, Zhao et al. 

2017). The topographic effect on remote sensing data 

greatly influences their use in the quantitative analysis. 

Therefore, the topographic effect on Landsat- 5 and 

Landsat -8 data used in this study introduces large 

uncertainties into the final investigation results. This 

influence is even more serious in areas covered by 

shadow, which can be observed from the sub- region 

images shown in Figs. 8 and 9. The weak signal in the 

shadow region not only partly distorts the real surface 

reflectance spectra, but also prevents accurate detection 

of changes in the shadow region. Therefore, an effective 

topographic correction should be applied to remote 

sensing data before its usage for geo-hazard 

investigations in mountainous areas. 

 

4. Conclusion 
This study used the pixel-based change detection method 

for mapping landslides induced by the 2012 ahar-

varzegan earthquake in the study area from ahar to 

varzegan by using the multispectral information from 

pre- and post-earthquake Landsat-5 and Landsat-8 

remote sensing data. The validation results indicated that 

the used method was able to identify the landslides with 

a relatively high accuracy and Landsat-5 and Landsat-8 

images can be used as a good data source for landslides 

investigation because of its multispectral advantage. The 

accuracy of the map was obtained through the confusion 

matrix using all the 133 points Overall accuracy reached 

92.1%, with a Kappa coefficient of 0.99. The mapping 

results suggested that the landslides were mostly located 

along the river valleys and roads in the high mountain 

areas with deep valley and steep slopes. Although the 

study shows that this method has potential for 

investigating earthquake-induced landslides, there are 

still some problems that should be noted: 1) the relatively 

coarse spatial resolution of Landsat-5 and Landsat-8 data 

limits the method’s ability to recognize small-scale 

landslides, 2) although the use of images separated by 

almost exactly one year reduces confounding effects 

from vegetation phenology differences, the change 

detection results reflect all the landslide events during 

this year. Landslides that occurred before the earthquake 

will be included in the detection results. Therefore, the 

incorporation of high spatial resolution remote sensing 

data are helpful for identifying small-scale landslides, 

and the determination of the individual landslides 

occurring is very important for real-time disaster 

assessment and relief. 
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