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ABSTRACT 

With the aim of portfolio optimization and management, this article utilizes the 
Clayton-copula along with copula theory measures. Portfolio-Optimization is one 
of the activities in investment funds. Thus, it is essential to select an appropriate 
optimization method. In modern financial analyses, there is growing evidence 
indicating the distribution of proceeds of financial properties is not customary. 
However, in common risk management methods the main assumption is that the 
distribution of assets returns is normal. When the distribution of earnings isn’t 
normal, the linear correlation coefficient isn’t considered to be an appropriate 
measure to express the dependency structure. The investors are required to make 
use of methods that concentrate on the aggregated risks, considering the whole 
positions and the links between risk factors and assets. Therefore, we use copula 
as an alternative measure to model the dependency structure in this research. In 
this regard, given the weekly data pertaining to the early 2002 until the late 2013, 
we use Clayton-copula to generate an optimized portfolio for both copper and 
gold. Finally, the Sharpe ratio obtained through this method is compared with the 
one obtained through Markowitz mean-variance analysis to ascertain that Clayton-
copula is more efficient in portfolio-optimization. 
 

 

1 Introduction 

   In Robust Portfolio Optimization and Management, it is stated that “as the use of quantitative tech-
niques has become more widespread in the financial industry, the issues of how to apply financial 
models most effectively and how to mitigate model and estimation errors have grown in importance 
[18]. There are different definitions of portfolio optimization and here is one example from Campbell 
[9]: “Determination of weights of securities in a portfolio such that it best suits a given objective, e.g. 
to maximize return for a given risk”. 
       Empirical results have shown that financial time series exhibit higher dependence on financial 
crises than in calm periods [15]. In their groundbreaking essay "Copula Concepts in Financial Mar-
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kets," Rachev and Stein [42] discuss some reasons of why the usual linear correlation is not a suitable 
measure for the dependency of different securities: 
  
First, when the variance of returns in those securities tends to be infinite, that is, when extreme events 
are frequently observed, the linear correlation between these securities is undefined. Second, the cor-
relation is a measure for linear dependence only. Third, the linear correlation is not invariant under 
nonlinear strictly increasing transformations, implying that returns might be uncorrelated whereas 
prices are correlated or vice versa. Fourth, linear correlation only measures the degree of dependence 
but does not clearly discover the structure of dependence. The last caveat has an especially important 
implication in light of the current crisis. It has been widely observed that market crashes or financial 
crises often occur in different markets and countries at about the same time period even when the cor-
relation among those markets is fairly low.  

 
      Three evidences of the real financial markets act as the motivations for the formation of this paper. 
Firstly, financial return series are unequal and they cannot be estimated with a normal symmetrical 
distribution matching the market data. Secondly, there is instability in time since stable periods and 
very unstable periods come to happen alternately. And eventually, instead of simple linear correlation, 
a dependence structure of distribution with many variables is required. The dependence model must 
have adequate flexibility to explain numerous pragmatic phenomena perceived in the data.   
        Hoping to provide circumstances for more consumption in the future, each individual starts in-
vesting by cutting down on current consumption. Therefore, each individual seeks higher returns in 
comparison with lower risk tolerance so that the utility is maximized. He prepares a portfolio in order 
to achieve the above-mentioned objective. Some assets with different weights are placed together to 
prepare a portfolio. Optimization portfolio may be defined as “selecting the best combination of assets 
which guarantees the highest return at a specific risk level or the lowest risk tolerance at a specific 
return level is called optimization portfolio” [7]. 
        Given the fact that one of the main activities done by investment funds, subsidiaries agencies and 
investment companies, so on is to organize and optimize portfolios, it is essential to select the appro-
priate optimization method for these companies. In fact, one of the popularities of these companies is 
their ability to organize portfolios [19]. Portfolio optimization has been taken from Markowitz [34] 
influential work which introduces a structure for controlling the risk of return/variance.  Portfolio op-
timization is promoted and stirred through two rudimentary factors: “(1) adequate modeling of utility 
functions, risks, and constraints; (2) efficiency, i.e., ability to handle large numbers of instruments and 
scenarios. An important principle at work here is that of portfolio diversification” [6]. Portfolio diver-
sification is also of much importance. Precariousness of the portfolio depends not only on the co-
variances of its components but on the average riskiness of its distinct assets. This principle was not 
ordinary in the analysis of classical financing which focused on the concept of the importance of sin-
gle investments, that is, “the belief that investors should invest in those assets that offer the highest 
future value given their current price” [20]. In the seventh decade William Sharpe, Lintner [25] and 
Mossin [23] presented the first model concerning the capital asset pricing (CAPM) based on Marko-
witz’s work [34]. This model is used as the measuring standard for the risk-adjusted performance of 
professional portfolio managers [46]. 
       The question of what risk function should be used in the mean-risk approach has been examined 
extensively in the literature. Artzner et al. [5] commenced a new research in their paper “Coherent 
Risk Measures”. They specified some mathematical properties that a meaningful risk measure has to 
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satisfy. It was argued that these axioms the interests of risk-averse investors. In another vein, 
Ogryczak and Ruszczynski [39,40,41] used stochastic dominance relations to compare portfolio re-
turns [30]. They recognized a number of risk functions for which the top portfolio proceeds are non-
dominated as the second order accidental ascendency relation. Important examples include the semi 
deviation and weighted deviations from quantile [29,32]. Portfolio choice based on SD is critically 
more demanding compared to the conventional Mean-Variance (MV) analysis. Nevertheless, modern-
day computer hardware and optimization software bring this approach within the reach of practical 
application [2]. For the common second-order SD (SSD) criterion and a discrete or discretized proba-
bility distribution, portfolio optimization is framed as a Linear Programming (LP) problem [48,51]. 
The problem is very large, but it remains tractable for realistic applications to security selection and 
asset allocation [20,49]. 
Using copula theory is traced back to researches by Sklar [52]; however, this tool has been a new fi-
nancial theory which has been growing a lot for the recent years. Copula has many applications which 
includes risk management, time series’ dependency, and pricing the financial derivatives. Copula has 
many applications in financial theories because it has expanded the hypothesis which states returns 
have normal distributions and provided financial models for each variable with every marginal distri-
bution [29,32]. Modern monetary analyses indicate an increasing irregularity of the distribution of 
earnings on monetary assets. However, in common risk management methods such as minimum vari-
ance presented by Markowitz [34], the main assumption is that the distribution of returns on assets is 
normal. When there is no standard distribution of earnings, the linear correlation coefficient is not a 
proper measure for declaring the dependency structure [11]. Therefore, in this research copula is used 
as the substitute measure to model the structure of the dependence. First, the works done by copula 
are reviewed. Then copula and Clayton copula function is introduced, and financial portfolio optimi-
zation is stated in Clayton copula method. After that, the Shape measure obtained through this method 
is compared with the Sharpe measure obtained through Markowitz mean-variance analysis. Finally, 
the performances of these two methods are evaluated [8]. 
         There are many documents which indicate that a lot of economic variables do not have a normal 
distribution, a fact which is traced back to the work done by some authors. Some cases which indicate 
that single-variable distributions are not normal are excessive strains in series and skewness. Recent 
studies have even indicated multi-variable distributions are not normal too. In other words, it is said 
that they have asymmetric dependency. One of the instances of asymmetric dependency is the case in 
which two assets have higher correlation coefficients at the time of descending market rather than 
ascending market. Ang and Chen [4] also have mentioned to this matter in their research works. They 
studied the correlation coefficient of stocks among G-7 countries. They realized that correlation coef-
ficient in periods of recession is higher than in periods of economic growth. Using the extreme value 
theory, they modeled the series of multivariable distribution functions. In their research, the hypothe-
sis pertaining to multivariable distribution of returns in negative series was refuted, while they could 
not refute the hypothesis zero in positive series. 
        Modeling the dependency is one of the key factors in creating the portfolio and risk management. 
Selecting an inappropriate model would result in the selection of a non-optimal portfolio and inaccu-
rate risk measurement. Traditionally, the correlation coefficient has been used to explain the depend-
ency between variables; however, the recent researches indicate the superiority of copulas for model-
ing dependency due to their higher flexibility rather than correlation coefficient approach. The works 
done by Embrechts et al. [17] can be assumed as an examples. The linear correlation coefficient has a 
major flaw. It is not based on nonlinear transformation invariant. However, the dependency measures 
which have been taken from copula can overcome this problem [44]. They have more extensive appli-
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cations. The term copula was first used by Sklar [52]. It is now one of the important methods of gen-
erating multivariable distributions. They, studied the application of copula in pricing the derivatives. 
Also, Campbell et al. [9], and Ang and Chen [4] studied the use of copula in portfolio diversification 
[26]. Conditional copula was first introduced in the PhD thesis by Paton. They also studied the appli-
cation of copula in pricing the options. Neslehova et al. used copula to investigate banking operations 
[43]. 
        Wei and Xiong [55] made use of copula-GARCH with the intention of estimating the dependen-
cy structure between Stock Market of Shenzhen and that of Shanghai. Using the method of copula-
GARCH, Ang and Chen [4] investigated portfolio risk in China’s Stock Market. Archimedean copula 
functions have been applied by several authors to model the dependence structure between stock mar-
ket returns [13,16,24,21,47,53] and the dependence structure between exchange rate returns. To mod-
el the dependence structure between stock market returns, several authors such as Chollete [12] and 
Tsafack [27] have utilized Archimedean copula functions and the dependence structure between ex-
change rate returns. Copulas have been used in various papers and books on portfolio optimization 
with different approaches and techniques. See for example; Alexander [1], Kakouris and Rustem [31] 
and Jahanbakhshi, [22].  
Aleš Kresta [3] in a study entitled “Application of GARCH-Copula Model in Portfolio Optimization” 
states that Markowitz established the basis of modern portfolio theory in 1952.  The portfolio optimi-
zation problem is a never-ending research topic for both academics and practitioners. In this problem, 
the future prediction of time series evolution plays an important role. However, it is rarely addressed 
in research. He analyses the applicability of the GARCH-copula model. To be more concrete he as-
sumes the investor maximizing Sharpe ratio while the future evolution of the time series is simulated 
by means of the AR-GARCH model using the copula modelling approach. The bootstrapping tech-
nique is applied as a benchmark. From the empirical results, he found out that the GARCH-copula 
model provides better forecasts of future financial time series evolution than the bootstrapping meth-
od. Assuming the investor is maximizing the Sharpe ratio, both the final wealth increases and maxi-
mum drawdown decreases when he applies the GARCH-copula model compared to the application of 
bootstrapping technique. 
 

2 Research Methodologies 
 
2.1. Copula Functions 

    We can define a copula function as an instrument to join or “couple” a multivariate distribution 
function to its one-dimensional marginal distribution functions. Copula modeling describes multivari-
ate distribution functions via their marginal distribution functions and a dependency function named 
copula. Nelsen [38] presents the theoretical and practical aspects. It is intended to set apart the de-
pendency structure from the marginal distributions structure. 
    The copulas’ characteristics simplify studying dependencies in financial markets. As some of these 
characteristics, we can note that first; copulas are invariant to constant transformations of random 
variables. Second; parameters of copulas and measures of concordance have a direct relation, which is 
widely used by Kendall’s (tau). And Third; we can observe an asymptotic dependence treatment in 
the tails of the distributions by copulas. 
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    In financial markets the marginal distribution of returns is not considered normal, and on the other 
hand the inter-return dependency should not be linear. Therefore, we can conclude that dependency 
cannot be measured by Pearson’s linear correlation. Instead, copula functions which are very logical 
tools can be used to model joint distributions. Joint distribution functions can usually be modeled 
through copula functions in a better way than oval distributions. 
    To understand the concept of copula better, a short description pertaining to the simulation method 
based on a specific distribution function helps a lot. However, the basic concepts are dealt. We can 
consider X as a continuous random variable within the domain D. 
The distribution function F for the random variable X is a monotonic ascending function from D to [0, 
1], so: 
 
F(x) = P(X < 𝑥) (1) 
 
For each, therefore, the probability at which X is smaller than x is equal to the value of the distribu-
tion function X at point x. 
Inverted distribution function X is defined as every other inverted function in the following way: 
 
Fିଵ: [0,1] → D (2) 

Fିଵ൫F(x)൯ = x (3) 

 
If we assume that F is differentiable all over D; then, the density function of X is equal to the deriva-
tive of distribution function F, and since F is a monotonic ascending function, then. 
Quintile1 is the continuous random variable X with the probability 𝛼 ∈ [0,1]and the value of the ran-
dom variable X in a way that: 
 
P(X < X) = α  
 
Quintile is used for simulation. First we simulate a random variable like u which indicates probability. 
Since this value is obtained from a standard uniform distribution, it is indicated with the symbol u. 
Now the inverted distribution function is used to find the relevant quintile. The u of quintile pertaining 
to the distribution X is as follows: 
                                            
𝑥 = 𝐹ିଵ(𝑢) (4) 
 
The variable, which has a uniform distribution, has a linear normal distribution. Especially, the stand-
ard uniform variable  𝑈~𝑈(0,1) has the following characteristics. 
 
𝑃(𝑈 < 𝑢) = 𝑢 (5) 

𝑃(𝐹(𝑥) < 𝑢) = 𝑃൫𝑋 < 𝐹ିଵ(𝑢)൯ = 𝐹(𝐹ିଵ(𝑢))=u 

                                               
Therefore, we conclude that: 

                                                                        
1. in statistics, a quintile for the case where the sample or population is divided into fifths or one of the four 
numbers (values) that divide a range of data into five equal parts, each being 1/5th (20 percent) of the range. 
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𝐹(𝑋)~𝑈(0,1) (6) 
     
   Equation (6) indicates that using the distribution function for the random variable X, would result in 
the new random variable F(X). This variable has a standard uniform distribution. This action is called 
probability integral transform in mathematics. We can define probability integral transform as an in-
strument to transfer a continuous random variable to a uniform one. If, then we have: 
 

𝑃൫𝑈 < 𝐹(𝑥)൯ = 𝐹(𝑥) (7) 

       

   In other words, we have  𝐹(𝑥) = 𝑃൫𝐹ିଵ(𝑈)൯ < 𝑥 .The above-mentioned equation indicates that the 

distribution of the variable X can be simulated by using the inverted distribution function and the 
standard uniform variable. Each time the random variable u is generated, a series of independent vari-
ables is transformed to a set of simulated values of distribution X by using the inverted distribution 
function. 
   In other words, whenever we want to simulate a value for the random variable, first we generate a 
random number which has a uniform distribution. Then we perform the simulation process by using 
the inverted distribution function. If we want to simulate some random variables, the procedure is the 
same. However, we should consider the mutual dependency of random variables here. If we go away 
from the assumption which states the joint distribution of variables is oval, the linear correlation coef-
ficient loses its importance, and other dependency measures should be used as copula. 
 

2.2. Definition of Copula 

   We can define Copulas as functions that join or link multivariate distribution functions to their one-
dimensional marginal distribution function [38]. If two random variables such as X1 and X2 are con-
sidered with marginal continuous distribution functions such as F1(X1) and F2(X2), and 𝑢 = 𝐹(𝑥)𝑖 =

1,2, then the functions which have the following characteristics are considered to be 2-dimenshional 
copula functions: 
 
𝐶: [0,1] × [0,1] → [0,1]  
𝐶(𝑢ଵ, 0) = 𝐶(0, 𝑢ଶ) = 0 (8) 

𝐶(𝑢ଵ, 1) = 𝑢ଵ    𝑎𝑛𝑑    𝐶(1, 𝑢ଶ) = 𝑢ଶ  
𝐶(𝑣ଵ, 𝑢ଶ) − 𝐶(𝑢ଵ, 𝑣ଶ) ≥ 𝐶(𝑣ଵ, 𝑢ଶ) − 𝐶(𝑢ଵ, 𝑢ଶ) If     𝑢ଵ ≤ 𝑣ଵ    and     𝑢ଶ ≤ 𝑣ଶ    
                                       
   The first condition requires that copula function be placed within the value limits of distribution 
function. According to the previous discussion, we know that the value of each distribution function is 
a standard uniform variable. Therefore, we can put  𝑢 = 𝐹(𝑋),   𝑖 = 1,2. 
   The next three conditions indicate copula function as the joint distribution function of U1 and U2. 
There are many functions which meet the above-mentioned conditions; therefore, copula functions in 
number is a lot. 
In 1959, Esklar indicated that copula functions were uniform under certain circumstances. The dou-
ble-variable format of Eskelar’s theory is as follows: 
For each joint distribution function F (x1, x2), there is a unique copula function. 
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Inversely, if C is a copula function, as F1(x1) and F2(x2) are distribution functions, then the copula 
function is a joint distribution function with marginal functions such as F1(x1) and F2(x2). If the copula 
function is differentiated on x1 and x2, the joint density function f (x1, x2) is indicated according to the 
marginal density functions f1(x1) and f2(x2) as follows: 
 

𝑓(𝑥ଵ, 𝑥ଶ) = 𝑓ଵ(𝑥ଵ)𝑓ଶ(𝑥ଶ)𝑐(𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)) (9) 

                                             
If we place in the above-mentioned equation, Equation (10) can be indicated as: 
 

𝑐(𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ))=
(డమ(ிభ(௫భ),ிమ(௫మ))

(డிభ(௫భ)డிమ(௫మ))
 

(10) 

                               
   If the above equation Fi (xi) = ui placement, the equation (10) can be for c (u1, u2) showed. When 
equation (10) is calculated according to (u1, u2) instead of (x1, x2), it is called copula density. 
   The above-mentioned concepts can be more generalized. If n random variables such as are consid-
ered with specific marginal distribution  
Functions such as, copula is a monotonic ascending function of provided that it meets all three condi-
tions. 
Eskelar’s theory tells us that separate copulas for different density functions by using sets resulting 
from continuous suits of marginal functions. Using a specific joint density function such as, the 
unique copula functions C is obtained as Equation (11): 
 
𝐹(𝑥ଵ, 𝑥ଶ, … , 𝑥) = 𝐶(𝐹ଵ(𝑥ଵ), … , 𝐹(𝑥))  (11) 
 
                   
If this function exists, its copula density is as follows: 
 

𝑐൫𝐹ଵ(𝑥ଵ), … , 𝐹(𝑥)൯ )12(  

             
Now we can obtain the joint density function for variables by using copula density function and mar-
ginal density functions as follows: 

 

𝑓(𝑥ଵ, … , 𝑥) = 𝑓ଵ(𝑥ଵ) … 𝑓(𝑥)𝑐൫𝐹ଵ(𝑥ଵ), … , 𝐹(𝑥)൯ (13) 

                     
   Since the values of marginal density distribution functions are uniform, we can present copula func-
tions by using the variables. If, each joint distribution function F is an implicit copula which is defined 
as follows: 

𝐶(𝑢ଵ, … , 𝑢) = 𝐹ቀ𝐹ଵ
ିଵ(𝑢ଵ), … , 𝐹

ିଵ(𝑢)ቁ (14) 

                       
   In the above-mentioned equation, is the quintile pertaining to marginal distribution functions. There-
fore, there is one implicit copula function for each joint distribution function. Copula density function 
is indicated with the symbol as follows: 

𝑐(𝑢ଵ, … , 𝑢) =
𝜕𝐶(𝑢ଵ, … , 𝑢)

𝜕𝑢ଵ … 𝜕𝑢
 

(15) 
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2.3 Archimedean Copulas 
 
    In contrast to implicit copulas, Archimedean copulas are often called explicit copulas since they 
can be constructed using an explicit formula. Within the Archimedean copulas this paper will focus 
on the one parameter Clayton copula. This means that there is only one parameter that forms the dis-
tribution and determines the strength of dependence. 
The Archimedean copulas are constructed by using a generator function Ψ(𝑢) and its pseudo-inverse 

Ψ[ିଵ](u). A continuous, strictly decreasing convex function Ψ ∶  [0,1] → [0, ∞]which satisfiesΨ(1) =

0, is define as an Archimedean copula generator. If  Ψ(0) = ∞,  it is also known as a strict generator. 
Let Ψ(𝑢) be an Archimedean generator function that fulfillsΨ(0) ≤ ∞. Then the function Ψhasa 

pseudo inverse, Ψ[ିଵ] defined by [1]. 
 

Ψ[ିଵ](u) = ൜
Ψ[ିଵ](u), 0 ≤ u ≤ Ψ(0).

0,                     Ψ(0) < 𝑢 ≤ ∞ 
 

 
Given any generator functionΨ(𝑢), an Archimedean copula is defined by: 
 

𝐶(𝑢ଵ, … , 𝑢) = Ψିଵ൫Ψ(𝑢ଵ) + ⋯ + Ψ(𝑢)൯   (16) 

 
Its density function is as follows: 
 

𝑐(𝑢ଵ, … , 𝑢) = Ψ()
ିଵ൫Ψ(𝑢ଵ) + ⋯ + Ψ(𝑢)൯ ∏ Ψᇱ(𝑢)

ୀଵ                                         (17) 

In above equation,Ψିଵ
() is the nth derivative of the inverse generator function and Ψᇱ(u)denotes the 

derivative of Ψ(𝑢). Since there are many generator functions, different Archimedean copulas would 
be resulted. Only Nelson (2006) has introduced about 22 single-variable Archimedean copulas. Clay-
ton copula is of importance for us because it presents the asymmetric dependence of the distribution 
sequence. Clayton Copula shows dependence in the sequence below: 
 

2.4. Clayton Copula 
 
    The Clayton copula is one of the many proper subsets of Archimedean copulas and was first stud-
ied by Clayton (1978). This type, has become popular in financial risk modeling since it can handle 
asymmetric tail dependence and has a strong dependence in the lower tail of these modeling’s. The 
Clayton copula is described by the parameter α and can be modeled in D dimensions, considering the 
generator function is strict and its inverse is entirely monotonic. The following function is of famous 
and commonly used generator functions in financial calculations: 
 
Ψ(𝑢) = 𝛼ିଵ(𝑢ିఈ − 1), 𝛼 ≠ 0                                                                                    (18) 
 
Thus, the inverse of this function is as follows: 
 

Ψିଵ(𝑥) = (𝛼𝑥 + 1)ି
భ

ഀ                                                                                      (19) 
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Using these two functions, the Archimedean Copula function is obtained as follows: 
Equation (20) 

𝐶(𝑢ଵ, … , 𝑢; 𝛼) = (𝑢ଵ
ିఈ, … , 𝑢

ିఈ)ି
ଵ
ఈ 

(20) 

                                                                               
    This function was firstly proposed by a person named Clayton in 1978, so it is called Clayton copu-
la. If we take the first order derivative of the function Clayton copula, density function of Clayton 
copula will be obtained. 
 

𝑐(𝑢ଵ, … , 𝑢) = (1 − 𝑛 +  𝑢
ିఈ



ୀଵ

)
ିିቀ

ଵ
ఈ

ቁ
ෑ(𝑢

ିఈିଵ൫(𝑗 − 1)𝛼 + 1൯



ୀଵ

 
(21)   

  
    While the parameter α varies, when 𝛼 → ∞  we will notice the dependence of the Clayton copulas 
and complete positive dependence. 
 
When there are only two variables, density function of Clayton copula is as follows: 

𝑐(𝑢ଵ, 𝑢ଶ) = (𝛼 + 1)(𝑢ଵ
ିఈ + 𝑢ଶ

ିఈ)
ିଶିቀ

ଵ
ఈ

ቁ
𝑢ଵ

ିఈିଵ𝑢ଶ
ିఈିଵ                                                                           

(22) 

function is positive.  
As noted above, Clayton copula presents the asymmetric dependence of the distribution sequence. 
This function has a sequence affinity above zero, but dependence coefficient of lower sequence of 
this. Dependence of lower sequence of this function is as follows: 
 

𝜆 = ቊ2ି
ଵ
ఈ  , 𝛼 > 0

0      , 𝛼 ≤ 0
                                                                                                               

(23) 

 

 
 

Fig. 1: Density function of Clayton copula with α=0.5 

 
2.5. Copula Function and Multi-Dimensional Simulation by Monte Carlo 
 
     Copula function can be defined as the joint cumulative distribution function (cdf) of variables such 
as x1, x2, …, xn with the marginal cdf F1 (x1), F2(x2), …, Fn (xn) respectively [38]. So, considering H 
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(x1, x2, …, xn) as the joint cumulative distribution function, we can conclude that the copula function 
C (u1, u2, …, un) satisfies H (x1, x2, …, xn) = C (F1 (x1), F2 (x2), …, Fn (xn)), where, H (x1, x2, …, xn) = 
C (F1 (x1), F2(x2), …, Fn (xn)). 
    Now returning to how we defined the copula function, we notice that using of copula provide us the 
opportunity to estimate the joint cdf by two parts: 
I. Ascertaining the marginal distributions F1 (x1), F2 (x2), …, Fn (xn) which represent the distribution of 
each variable, and calculating their parameters. For the marginal cdf, we can use the traditional time 
series models like GARCH model, as well as the student-t distribution or empirical distribution; 
II. Ascertaining the dependence construction of the variables x1, x2, …, xn, designating a proper copu-
la function. 

In this paper we have applied the empirical 𝐹ଵ(𝑥) =
ଵ

்
∑(𝑋௧ ≤ 𝑥) distribution for the marginal MLE, 

using the maximum likelihood estimation (MLE) for the Archimedean copula’s parameters, and for 
the good-of-fit test of estimated copula function, we have applied Kolmogorov-Smirnov. 
And regarding to maximum likelihood estimation, we have chosen the method of solving the extreme 
of the sample’s joint pdf’s multiplying value. The two-dimensional variable’s joint pdf is f (x1, x2) = c 
(u1, u2). f(x1). f(x2), where f(x1), f(x2) are the cdfs of the variables x1, x2; and the function c (u, v) = ∂C 
(u, v)/∂u∂v is the copula’s density function. So the maximum likelihood function L ((x1, y1), (x2, y2), 
θ) can be stated as: 
 

𝐿 = ෑ 𝑓(𝑥ଵ, 𝑥ଶ) = ෑ 𝑐(𝑢ଵ, 𝑢ଶ)𝑓(𝑥ଵ)𝑓(𝑥ଶ) (24) 

                                                       
    Now we can attain an estimate of copula’s parameters by solving the extreme value. After design-
ing the copula model, this model can describe the joint distribution involving all dependence struc-
ture, using it we can grasp a better conclusion for risk management and portfolio management, which 
is more accurate than the results given by normal hypothesis. 
   After perceiving all parameters of the copula, we have to generate series of variables x1, x2, …, xn 
with the joint cdf of C (u1, u2, …, un), where the uniformly distributed variables u1, u2, …, un equals 
the marginal cdf F1 (x1), F2 (x2), …, Fn (xn) of random variables x1, x2, …, xn respectively. 
Firstly, by using two-dimensional Clayton copula of C (U1, U2), variables u1i and u2i are simulated and 
n denotes the number of simulated samples. Conditional distribution is used to achieve this goal. For 
this purpose, Cu1 is placed in two-dimensional Clayton copula of C (U1, U2) as conditional distribution 
function of random variable u2 in order to obtain the values of u1. Accordingly, the following equation 
will be resulted: 
 
𝐶௨భ

(𝑢ଶ) = 𝜕𝐶(𝑢ଵ, 𝑢ଶ)/𝜕𝑢ଵIn addition, Cu1 is non-decreasing and always in the range [0, 1]. 

 

2.6. Clayton Copula in Optimization of Portfolio 
 
   One of the most rewarding and useful areas in decision-making is the process of optimization of 
portfolio. The mean-variance formulation by Markowitz in 1950s was the cornerstone for modern 
portfolio selection analysis.  
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Tobin [54], using the works of Markowitz, added the risk-free asset to the portfolio. The main effica-
cy of using the variance for describing portfolio risk is because of easiness of the computation, but the 
symmetry problem makes the variance somehow unsatisfactory.  
In the classical portfolio management theory, it is considered that the multivariate joint distribution of 
the return variables is joint normal distribution, but at the end it’s not an ideal and useful instrument 
for the real financial return variables. 
   If we want to take care of the variables which are not distributed elliptically and to increase the ac-
curacy of risk measuring, we can use the copula in the portfolio optimization, noting that we must 
express the variances without normal hypothesis. So for showing the variance of the portfolio using 
copula, we use the copula based simulation to calculate the variance in rundowns analytically. 
The multivariate joint pdf can be indicated by the copula function, which is given by f(x1, x2, …, xn) = 
c(u1, u2, …, un) .∏ f(x).

ୀଵ  

Where 𝑐(𝑢ଵ, 𝑢ଶ, … , 𝑢) =
డ(௨భ,௨మ,…,௨)

డ௨భడ௨మ…డ௨
 is the cdf of copula in formula, the function f (xi) denotes the 

𝑖௧ variable’s pdf. Let ƒ(r) = ƒ (r1, r2,…, rn), then the variance of the portfolio can be denoted by: 
 

𝜎
ଶ = න ൣ𝑟 − 𝐸൫𝑟൯൧

ଶ
𝑓൫𝑟൯𝑑𝑟 = ර  𝑤𝑟 − 𝐸൫𝑟൯



ୀଵ

൩

ଶ

𝑓(𝑟)𝑑𝑟ଵ𝑑𝑟ଶ … 𝑑𝑟

ାஶ

ିஶ

 

To avoid the complex analytical calculation, we can use the distinct samples as follows: 
 

𝜎
ଶ =

1

𝑚
  𝑤𝑟 − 𝐸(𝑟)



ୀଵ

൩

ଶ

=
1

𝑚
 |𝑤ଵ𝑟ଵ + 𝑤ଶ𝑟ଶ + ⋯ + 𝑤𝑟 − 𝐸(𝑟)|ଶ



ୀଵ



ୀଵ

 

 
Where n is the number of loss variables, and m is the number of discrete samples, which can be calcu-
lated by the copula based Monte Carlo simulation. This analytical calculating formulation, let us have 
the optimization of a portfolio manager using the copula method as follows; 
 

𝑚𝑖𝑛 𝜎
ଶ =

1

𝑚
  𝑤𝑟 −  𝑤𝐸(𝑟)



ୀଵ



ୀଵ

൩

ଶ

ୀଵ

 

s. t. 𝐸൫𝑟൯ =  𝑤𝐸(𝑟) = 𝜅,  𝑤 = 1



ୀଵ



ୀଵ

 

In which K is the portfolio target return. 
   Now we can attain the mean-variance efficient frontier by giving series of target returns κ. noting 
the added risk-free asset, the optimal proportions can be calculated by the following programming 
formula. 
 

max
𝐸(𝑟) − 𝑟

𝜎
=

𝐸(𝑟) − 𝑟

ට 1
𝑚

∑ ൣ∑ 𝑤𝑟 − 𝐸(𝑟)
ୀଵ ൧

ଶ
ୀଵ

 

𝑆. 𝑡.  𝑤 = 1 , 𝑤 > 0



ୀଵ
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2.7. Using Copula in Modeling the Marginal Distributions and the Dependence Struc-
ture 
  
   We considered the GARCH models for the series r1, r2 as initial models with normal and student-t 
distribution.  
With analysis we find that there is no autocorrelation between the two series. And the simple GARCH 
(1,1) model we apply is in the following expression: 
 

𝑟௧ = 𝜇 + 𝑎௧ , 𝑎௧ = ඥℎ௧ . 𝜀௧ 

ℎ௧ = 𝑐 + 𝛽ଵ.𝑎௧ିଵ
ଶ +𝛽ଶ.ℎ௧ିଵ 

 
   Where εt is white noise processes with zero mean and unit variance, β1 and β2 follows the restriction 
β1 + β2< 1. We can anticipate the distributions of the two return variables using the GARCH model. 
The copula function we have used here is Clayton copula which mainly defines the dependence of left 
tail. The multi-dimensional Clayton copula is indicated as follows: 

𝐶(𝑢ଵ, 𝑢ଶ, … , 𝑢) = ൭ 𝑢
ିఏ



ୀଵ

+ 1 − 𝑛൱

ି
ଵ
ఏ

 

 
   After the maximum likelihood estimation, the parameter θ of the two-dimensional copula between 
Gold and Copper is 0.1186. Then the two-dimensional copula function can be expressed in the follow-
ing formula. 

𝐶(𝑢ଵ, 𝑢ଶ) = (𝑢ଵ
ିఏ + 𝑢ଶ

ିఏ − 1)ି
ଵ
ఏ = (𝑢ଵ

ି.ଵଵ଼ + 𝑢ଶ
ି.ଵଵ଼ − 1)ି

ଵ
.ଵଵ଼ 

 
   As we have expressed, the conditional distribution u2 → Cu1 (u2) = ∂C (u1, u2)/∂u1 is uniformly dis-
tributed on [0, 1]. Now using the Kolmogorov-Smirnov method, we can examine the values of Cu1 
(u2) assessed by the sample data (r1i, r2i). The result shows that the P value is 0.2869, which is higher 
than the confidence level 0.05. As a result, the two-dimensional Clayton copula puts in place the sam-
ple data properly. 
Applying the copula based Monte Carlo simulation; we will have 10000 series of data for the follow-
ing empirical analysis. 
 

2.8. Traditional portfolio efficient frontier 
 
   We note ω1, ω2, are the proportions of the portfolio. Based on the traditional mean-variance theory, 
we get the minimum standard variance with the optimal proportion sunder given target mean of the 
portfolio. 

 
2.9. Copula based portfolio efficient frontier 
 
   Opposite to the traditional mean-variance theory, we used the GARCH based marginal distributions 
and copula based Monte Carlo simulation to calculate the efficient frontier. We have used MATLAB 
software. 
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2.10. Markowitz Mean-Variance Optimization Method 
 
   Mean-variance analysis has had the most prevalence in solving the problems of portfolio manage-
ment. Mean-variance analysis presents the scheme to build and select portfolios, which is based on the 
expected performance of the investments and the investor tendency toward risks. Mean-variance anal-
ysis provided us with a comprehensive new vocabulary, which has become the standard in the area of 
investment management.  
However, now and more than 50 years after Markowitz’s seminal work, we see that only quantitative 
companies are using mean-variance portfolio optimization, where processes for automated forecast 
generation and risk control are already in place.  
Still portfolio management remains an exclusively judgmental process based on qualitative, not quan-
titative, assessments. It seems that the quantitative efforts at most companies are meant to provide risk 
measures to portfolio managers.  
These measures provide asset managers a view of the risk level in a particular portfolio, where risk is 
defined as underperformance relative to a mandate. 
Markowitz believed that a wise investor, given different choices between portfolios, for any given 
level of expected return, would choose the portfolio with minimum variance. These different choices 
between portfolios is called the feasible set. 
Minimum variance portfolios are called mean-variance efficient portfolios. The set of all mean-
variance efficient portfolios, for different desired levels of expected return, is called the efficient fron-
tier. 
Mean-variance optimization model can be defined within the target function and the following con-
straints: 

𝑚𝑖𝑛 Ω =   𝑤𝑤𝜎

ே

ୀଵ

ே

ୀଵ

 

𝑊்1=1 

𝑊்𝐸(𝑦) = 𝜇 
𝑊 = [𝑤ଵ, 𝑤ଶ, … , 𝑤]    W≥ 0 

)26(  

 

           
   Where, w,𝜎, y, µ, and 1 denote vector of portfolio weights, covariance matrix (conditional or un-

conditional) of return on asset (ROA), vector of ROA, expected return of optimized portfolio, and the 
vector whose all elements are equal to 1, respectively.  
Since there is no short-selling assumption in portfolio optimization, the adverb which corresponds to 
the weights is considered equal to 1.  
As the portfolio covariance is equal to correlation coefficient of assets (p) multiplied by standard de-
viation of the asset (𝜎), portfolio variance can be presented in the form of following model: 
 
𝜎 = 𝜎𝜎𝜎 , -1≤ 𝜌  

Ω =   𝑤𝑤𝜎𝜌𝜎

ே

ୀଵ

ே

ୀଵ

 

 

)27(  

Standard deviation of portfolio is obtained by the following equation: 
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Ω =   𝑤𝑤𝜎𝜌𝜎

ே

ୀଵ

ே

ୀଵ



.ହ

 

 

)28(  

     As can be observed in the above equations, variance and correlations are decisive factors in deter-
mining the optimal weights of portfolio aimed at minimizing the risk. 
We can show a schematic view of the investment process as seen from the perspective of modern 
portfolio theory in the image below. 
 
After the optimal portfolio was obtained by both methods, inter-subject performance of Clayton copu-
la method, compared with Markowitz mean-variance method, was evaluated using Sharp index. 
 

3 Data and Findings 

   Since copper and gold assets are traded in different markets, their trading hours are different. In 
order to eliminate false correlation in the present study, we attempted to use the data of the days when 
there was a price range for both assets.  
Therefore, data of this study included 625 weekly observations of price of copper and gold in two-
time series during the period from the early 2002 until the end of October 2013 and these data are 
extracted from the MetaTrader4 software. 615 observations were used for analysis and modeling. 
Then, 10 investment portfolios were fitted on the efficient border and Sharp index commensurate with 
these 10 portfolios were calculated. Then, by rolling method, a week was removed from the beginning 
of 2002 and was added to the first week in November 2013 and this process was repeated for 9 con-
secutive weeks. For investigating Clayton copula and mean-variance methods in optimization of port-
folio, Sharp index was calculated for these two methods. The results are shown in the following ta-
bles. 
 
Table 1: Sharpe Measure with Markowitz Mean-Variance Analysis 
Sharpe Measure with Markowitz Mean-Variance Analysis 

First Week Second 
Week 

Third Week Fourth 
Week 

Fifth Week Sixth Week Seventh 
Week 

Eighth 
Week 

Ninth 
Week 

0.043273 0.043968 0.042315 0.040234 0.040864 0.039866 0.040883 0.039647 0.040859 

0.042919 0.043939 0.042294 0.040132 0.040644 0.039842 0.040859 0.039499 0.040796 

0.041776 0.043839 0.042209 0.039294 0.039674 0.039075 0.040086 0.038626 0.039975 

0.040021 0.043678 0.042056 0.037861 0.038123 0.037724 0.038709 0.037182 0.038553 

0.037891 0.043437 0.041838 0.036043 0.036193 0.035989 0.03694 0.035361 0.036742 

0.035594 0.043141 0.041558 0.034039 0.034087 0.03406 0.034968 0.033361 0.034741 

0.033282 0.042785 0.041219 0.031992 0.031957 0.032082 0.032939 0.031324 0.032694 

0.031053 0.042372 0.040827 0.030009 0.029898 0.030154 0.030957 0.029345 0.030702 

0.028967 0.041909 0.040386 0.028142 0.027963 0.028333 0.029084 0.027482 0.028821 

0.027038 0.041404 0.039902 0.026416 0.026179 0.026646 0.027347 0.025763 0.027081 
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Table 2: Sharpe Measure with Clayton Copula 
Sharpe Measure with Clayton Copula and Normal Model for Variance Anisotropy GARCH (1.1) 

First Week Second 
Week 

Third Week Fourth 
Week 

Fifth Week Sixth Week Seventh 
Week 

Eighth 
Week 

Ninth Week 

0.068343 0.055138 0.095888 0.073519 0.097714 0.08248 0.090781 0.098419 0.088538 

0.068733 0.055718 0.095408 0.073653 0.099699 0.082966 0.093384 0.098549 0.090751 

0.069039 0.056026 0.089307 0.073774 0.100275 0.083368 0.094309 0.098667 0.091588 

0.069258 0.05606 0.081059 0.073883 0.099592 0.083683 0.093782 0.098772 0.091207 

0.069393 0.055839 0.072831 0.073979 0.097857 0.083914 0.092111 0.098865 0.089827 

0.069444 0.055378 0.065521 0.074061 0.095331 0.084058 0.089636 0.098945 0.087697 

0.06941 0.054701 0.059314 0.07413 0.09228 0.084117 0.086677 0.099012 0.085072 

0.069298 0.053843 0.054137 0.074187 0.088947 0.084092 0.083477 0.099066 0.082179 

0.069108 0.052841 0.04983 0.074229 0.085522 0.083987 0.080231 0.099107 0.079166 

0.068845 0.05173 0.046226 0.074258 0.082125 0.083806 0.077054 0.099135 0.07617 

 
5 Conclusion and Discussion 
    
This paper applies the Clayton copula theory for the optimization of portfolio management. Our em-
pirical analysis in the first place uses two-dimensional copula for Monte Carlo simulation.  
With the Clayton copula based multi-dimensional simulated scenarios, we attain the optimal investing 
proportions of the portfolio under the minimum of standard variance calculated by Clayton copula. 
Adding the risk-free asset, we also get the optimal proportion and the tangent of “the mean-standard 
variance” efficient frontier. Furthermore, we apply the Clayton copula into the portfolio optimization, 
which we call it Clayton copula method. Under the objective function of minimum of Clayton copula, 
we get another series of optimal investing proportions. And eventually, the “mean- variance” frontier 
is calculated with the tangent under risk-free asset. In order to study the significance of difference 
between the performance of Clayton copula and Markowitz mean-variance methods and for testing 
the hypotheses, t-student test was used for comparing the mean of two communities regarding the 
variance anisotropy. The results are shown in the following tables.  
The null (H0) and alternative (H1) hypotheses were as follows:  
H0: There is no significant difference between the mean community of Clayton copula and Markowitz 
mean-variance methods. 
H1: There is a significant difference between the mean community of Clayton copula and Markowitz 
mean-variance methods. 
 
According to Table 3, the obtained value of t-student is equal to -24, which it is in the critical range. 
This means that H0 is rejected at a confidence level of 95% and it can be stated that there is a signifi-
cant difference between the mean community of Clayton copula and Markowitz mean-variance meth-
ods. Since the mean value of Clayton copula method is more than that of Markowitz mean-variance 
method, it can be concluded that, at a confidence level of 95%, Clayton copula method is more accu-
rate than Markowitz mean-variance method in the prediction of returns based on Sharp index. It 
should be also mentioned that with regard to the P-Value obtained from Excel, the results of the 
above-mentioned test are reliable at a confidence level of 99%. 
      The main objective of the present study was to identify the most appropriate method for optimiza-
tion of portfolio between two methods of Clayton copula and Markowitz mean-variance. Hence, port-
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folio optimization by Clayton copula function was introduced in previous parts. Although this method 
is commonly used in the world, it is less used in Iran. 

 
Table 3: Clayton Copula Paired Comparison Test and Markowitz Mean-Variance Analysis 

  Variance-Mean Copula Clayton 

Mean 0.0364633 0.0799480 

Variance 2.97049E- 0.0002202 

Observations 90 90 

Pearson Correlation -0.2917754   

Hypothesized Mean Difference 0 

Df 89 
t Stat -23.931541 

P(T<=t) one-tail 0.0000000 

t Critical one-tail 1.6621553 

P(T<=t) two-tail 0.0000000 

t Critical two-tail 1.9869787 

    
      From the empirical results we found out that COPULA- CVaR model provides better forecasts of 
future financial time series evolution than mean-variance method. Finally, the Sharpe ratio obtained 
through this method is compared with the one obtained through Markowitz mean-variance analysis to 
ascertain that Clayton-copula is more efficient in portfolio-optimization. 
     Given that, this study takes benefit from a research done by Bai and Sun [32] the results of this 
study are consistent with that research. The research of Bai and Sun Copula- CVaR model were com-
pared with the mean-CVaR model. The results showed excellence copula- CVaR model than the 
mean-CVaR model. According to the results of this study, based on Sharpe index, Clayton copula 
method has a better performance than Markowitz mean-variance method. Also our research results are 
based on researches results of Jondeau & Rockinger [24], Aleš Kresta [3], Cherubini & Luciano & 
Vecchiato [11], Lujie Sun & Manying Bai [29] and Chollete et al. [12]. 
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