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 ABSTRACT 

 

Stock price prediction is one of the most important concerns of stockholders. This 

prediction, independent of the method which is used or the assumptions which 

are applied, is welcomed and trusted if it can guarantee a high fitting. So due to 

the high performance prediction, using some complicated models as Machine 

Learning family such as Support Vector Regression (SVR) was recommended 

instead of older and lower performance approaches such as multiple discriminant 

technique. SVR model have achieved high performance on forecasting problems, 

however, its performance is highly dependent on the appropriate selection of SVR 

parameters. In this study, a novel GSA-SVR model based on Golden Sine 

Algorithm is presented. The performance of the proposed model is compared with 

eleven other meta-heuristic algorithms on some stocks from NASDAQ. The 

results indicate that the given model here is capable of optimizing the SVR 

parameters very well and indeed is one of the best models judged by both 

prediction performance accuracy and time consumption.  

1 Introduction 
 

Forecasting is a major target in finance or economic future studies that utilizes many methods in 

mathematics, especially in optimization fields. Among these different type of models, machine learning 

algorithms becomes more considerable and reliable since they have shown better results than other 

techniques. [27] By expanding these algorithms hyper-parameters becomes an important tasks in 

learning algorithms configuration since it is a core component of the model's architecture and must be 

set before using the model for the problems. Automated hyper-parameters optimization is the task of 

tuning automatically in contrast to the trial and error method as the traditional procedure. It reduces the 

human efforts needed for using machine learning algorithms and leads to improvement of learning 

processes. Meta-heuristics algorithms are one of the set of the suitable methods for parameter tuning. 

In this article the hyper-parameters of support vector regression are optimized using these algorithms. 

For validation, eleven other meta-heuristic algorithms, namely Whale Optimization Algorithm (WOA), 

Salp Swarm Algorithm (SSA), Neural Network Algorithm (NNA), Firefly Algorithm (FA), Multi-

Verse Optimizer (MVO), Moth-Flame Optimization (MFO), Harris Hawks Optimization (HHO), Grey 

Wolf Optimization (GWO), Butterfly Optimization Algorithm (BOA), Biogeography-Based 

Optimization (BBO) and Artificial Bee Colony Optimization (ABC) are also used to optimize the 

parameters, and their results are compared with the proposed algorithm based on the mean square error, 

mean absolute percentage error and consumption time.( Some Cases for Meta Heuristic algorithm in 

portfolio optimization can be studied in [17]) The remainder of our work is as follows: In Section 2, a 

https://portal.issn.org/resource/ISSN/2538-5569
https://portal.issn.org/resource/ISSN/2645-4610


Support Vector Regression Parameters Optimization using Golden Sine Algorithm and Its Application in Stock Market 

 

 
   
 

[478] 

 

  Vol. 7, Issue 2, (2022) 

 

Advances in Mathematical Finance and Applications  

 
 

literature of the work is reviewed. In section 3 we discuss the presented GSA-SVR model, the support 

vector regression and GSA. In Section 4, the model is tested on some datasets and compared with other 

models and the obtained experimental results are discussed. Conclusions and future research directions 

are provided in Section 5. 
 

2 Literature Review 
 

Support Vector Machine (SVM) was originally introduced by Vapnik [5] for classification problems. It 

can potentially solve small-sample, non-linear and high dimensions’ problems by using structural risk 

minimization principle instead of the empirical risk principle. Essentially, the SVM is a convex 

quadratic programming method by which it is possible to find the global, rather than local optimum. 

After on, SVM was developed and extended to Support Vector Regression (SVR) to solve regression 

problems [5]. SVR is arguably one of the best techniques and experimental results show considerable 

performance compared to other nonlinear methods [23]. However, setting of the parameters for the SVR 

plays a significant role and the performance accuracy changes considerably upon a bad choice of 

parameters [24]. Concerning this issue, a main approach to select the SVR parameters optimally is to 

make use of an optimization technique for finding optimal values.  

Generally, three common techniques to optimize the SVR parameters are grid search [20], which in 

practical applications, it is usually vulnerable to get to a local optimum, gradient descent [11] and meta-

heuristics algorithms [16]. Meta-heuristics algorithms have been introduced that may provide a 

sufficiently good solution to an optimization problem especially on presence of incomplete information 

or limited computing capacity. They have shown superior results in the case of solving optimization 

problems for parameter tuning of complex models [9]. In the past, many meta-heuristics algorithms 

have been proposed for the selection of optimal SVR parameters with different application area 

including stock market, load capacity, traffic management and weather. Example are, Genetic 

Algorithm (GA) [8, 15, 25], Grey Wolf Optimizer (GWO) [14], Particle Swarm Optimization (PSO) 

[10, 30], Butterfly Optimization Algorithm (BOA) [7], Henry gas solubility optimization algorithm 

(HGS) [3], Harris Hawks Optimization (HHO) [18], whale optimization algorithm (WOA) [18], Sine 

Cosine Algorithm (SCA) [13], Firefly Algorithm (FA) [27] and Bat Algorithm (BA) [24, 29]. Recently, 

a novel math-based meta-heuristic optimization algorithm inspired by sine function, named as Golden 

Sine Algorithm (GSA), was designed by [22]. The GSA algorithm searches to approach a better solution 

in each iteration by trying to bring the current point closer to the target value and the solution space gets 

to be narrowed by the golden section algorithm so that the areas with supposedly good results instead 

of the whole solution space are examined. Here, we propose a novel GSA based SVR model where 

GSA is used to set the parameters of SVR.  

 

3 Materials and Methods 
In this section, we briefly discuss about Support Vector Regression (SVR) and the Golden Sine 

Algorithm (GSA).  

3.1 Support Vector 
 

Support vector Machine (SVM) is a machine learning algorithm introduced by Vapnik in 1995 for 

classification problems. It has been one of the more widely used methods in recent years as a powerful 

method. It was first used to address a binary pattern classification problem. Then, it was promoted to 

support vector regression (SVR) for regression problems by using 𝜖-insensitive loss function to penalize 

data when they are greater than 𝜖 [5]. SVR aims to provide a nonlinear mapping function to map the 

training dataset to a high dimensional feature space [26]. The given training dataset is{(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , 

where 𝑥𝑖 ∈ 𝑅𝑑 is input data, 𝑦𝑖 ∈ 𝑅 is the output value of the i-th data point in the dataset, d is the 
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dimension of samples and n is the number of samples. The nonlinear function between the input and 

the output is formulated as: 

  𝑦 = 𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏                                                                                                                                (1)  

Where Ф: 𝑅𝑑 → 𝐹 is a nonlinear mapping to the feature space, 𝑤 ∈  𝐹 is a vector of weight 

coefficients and b is a bias constant. The w and F are estimated by minimizing the following 

optimization problem:  

𝑀𝐼𝑁 
1

2
‖𝑤‖2,                                                                                                                                       (2) 

s.t. {
𝑦𝑖 − 𝑤𝑇𝜑(𝑥) − 𝑏 ≤  𝜖

𝑦𝑖 − 𝑤𝑇𝜑(𝑥) − 𝑏 ≥ −𝜖
 

The slack variables 𝜀 and 𝜀∗ are used to penalize points from 𝜖 -insensitive band:  

𝑀𝐼𝑁 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜀 + 𝜀∗)𝑛

𝑖=1 ,                                                                                                   (3) 

s.t. {
𝑦𝑖 − 𝑤𝑇𝜑(𝑥) − 𝑏 ≤  𝜖 + 𝜀

𝑦𝑖 − 𝑤𝑇𝜑(𝑥) − 𝑏 ≥ −𝜖 − 𝜀∗

𝜀 . 𝜀∗ ≥ 0 , 𝑖 = 1, … , 𝑛

 

Where C is a constant known as the penalty parameter to specify the trade-off between the empirical 

risk and regularization terms, 𝜖 is the insensitive loss function and the slack variables 𝜀 and 𝜀∗, 

correspond to upper and lower deviations, respectively, and n is the number of training patterns. Using 

the Lagrangian and corresponding optimality conditions, the obtained generic equation is written as [5]:  

𝑓(𝑥) =  ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝐾(𝑥𝑖 . 𝑥) + 𝑏𝑛

𝑖=1                                                                                             (4) 

Where 𝛽𝑖 and 𝛽𝑖
∗ are nonzero Lagrange multipliers and 𝐾(𝑥𝑖. 𝑥) is the kernel function. In our work, 

Radial Basis Function (RBF) has been used as kernel function:  

𝐾(𝑥𝑖 . 𝑥) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖2)                                                                                                          (5) 

Where 𝛾 is the RBF width parameter. 

 

3.2 Golden Sine Algorithm  
 

Golden Sine Algorithm (GSA) is a novel math-based meta-heuristic optimization algorithm inspired 

by sine function for solving optimization problems [22]. Sine, a trigonometric function, is the coordinate 

relative to the y-axis of a point on a 1-unit radius circle that is the central origin. An orthogonal triangle 

with an angle made by the 𝑦-axis of a straight line drawn from the origin or with the same angle is 

calculated with the hypotenuse section of the edge opposite this angle. The defining range of the 

function is [−1, 1]. The scan of the unit circle of all values of the sine function is similar to the search 

of the search space in optimization problems. This similarity has inspired the development of GSA. The 

operator used in the algorithm is shown by 

𝑉𝑖𝑗 = 𝑉𝑖𝑗|𝑠𝑖𝑛 (𝑟1)| − 𝑟2𝑠𝑖𝑛 (𝑟1)|𝑥1𝐷𝑗 − 𝑥2𝑉𝑖𝑗|                                                                                      (6) 

Where 𝑉𝑖𝑗 is the value of current solution in the i-th dimension, 𝐷 is the determined target value, 𝑟1 

is a random number in the range [0, 2𝜋] and 𝑟2 is a random number in the range [0, 𝜋], and 𝑥1 and 𝑥2 

are the coefficients obtained by the golden section method. These coefficients limit the search space 

and also allow the current value to approach the target value. The wide range of the search space is a 

major issue for solving problems. The effect of limiting the search space in solving problems is 

significantly affecting the results. GSA uses the golden section method to make this process the best 

possible way. Golden section search is an optimization technique that can be used to find the maximum 
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or minimum value of a single unimodal function. The name is from the golden ratio. Two numbers, 𝑝 

and 𝑞, are in a golden ratio if  

𝑝+𝑞

𝑝
=

𝑝

𝑞
= 𝜏                                                                                                                                                      (7) 

Or equivalently,  

1 +
𝑝

𝑞
= 𝜏                                                                                                                                                        (8) 

Or 

1 +
1

𝜏
= 𝜏                                                                                                                                                         (9) 

Solving Eq. 9, we get the positive root as 

𝜏 =
1−√5

2
≈ 0/618033                                                                                                                                 (10) 

Here 𝜏 is called the golden number. In GSA, initial default values for 𝑎 and 𝑏 are considered to be 

−𝜋 and 𝜋, respectively. These two coefficients are applied to the current and target values in the first 

iteration. Then, the coefficients 𝑥1 and 𝑥2 are updated as the target value changes. To avoid the situation 

of equality for 𝑥1 and 𝑥2 , an equality check is performed. It means that if the two values are equal, then 

the random numbers 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are generated in the range, respectively, [0, 𝜋], [0, −𝜋], 𝑥1 and 

𝑥2 are recalculated. 

3.3 GSA for Parameter Optimization of SVR 
 

Before presentation the algorithm, we first discuss the data pre-processing of time series. Phase Space 

Reconstruction [21] is a method in which uncover the hidden information embedded in the time series 

dynamics. This method provides a simplified multidimensional representation of data. Let {𝑥}𝑖=1
𝑛  

represent an n point time series. Then, the reconstructed phase space can be expressed as a matrix as 

follows: 

𝑋 = [

𝑥1     𝑥1+𝜏   …   𝑥1+(𝑚−1)𝜏

𝑥2     𝑥2+𝜏    …  𝑥2+(𝑚−1)𝜏

⋮           ⋮         ⋱      ⋮
𝑥𝑛−1−(𝑚−1)𝜏     𝑥𝑛−1−(𝑚−2)𝜏   …    𝑥𝑛−1

]                                                                                           (11) 

Where 𝜏 the time delay constant and m is called the embedding dimension of the reconstructed phase 

space. [12] proposed an efficient method of finding the minimal sufficient embedding dimension, 

named as false nearest neighbors (FNN) procedure, in which the nearest neighbors of every point in a 

given dimension are found, and then checks are made to see if these points are still close neighbors in 

one higher dimension. To estimate the delay parameter, here we use the first minimum of the Mutual 

Information (MI) function [1]. After finding the optimal 𝑚 and 𝜏, the input data and the output vector 

were designed by Eq. (11) and Eq. (12). 

𝑌 = [

𝑌1

𝑌2

⋮
𝑌𝑛

] = [

𝑥2+(𝑚−1)𝜏

𝑥2+(𝑚−1)𝜏

⋮
𝑥𝑛−1

]                                                                                                                                  (12) 

 After construction of the input and output matrix, we normalize the data by using min-max formula  

𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                                                                                 (13) 
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To scale to the range [0, 1].  Finally, the data is divided into the training set and the testing set. In the 

first step of our proposed algorithm, the GSA parameters including the number of agents and maximum 

number of iterations are set. Then, GSA-SVR starts with a set of candidate solutions generated randomly 

within predetermined lower and upper bounds. In this case, each solution is a three-dimensional vector 

represented by (𝐶, 𝛾. 𝜖), where 𝐶, 𝛾 and 𝜖 are the SVR parameters to be optimized. The objective 

function is equal to the Mean Square Error (MSE), Eq. 15, of the tested SVR model. A predetermined 

maximum number of iterations is used as a criteria to stop the algorithm. Figure 1 shows flowchart of 

the complete the complete procedure. A step-wise procedure of the proposed algorithm is described 

next:  

Step 1: Assign the parameters including the number of search agents and the maximum number of 

iterations. Set the iteration number, 𝑡, equal to zero.  

Step 2: Initialize the random solutions of search agents with 

𝑠𝑖 = 𝐿𝑏𝑖 + (𝑈𝑏𝑖 − 𝐿𝑏𝑖). 𝑢                                                                                                           (14) 
And evaluate fitness function using Eq. (15) and Eq. (16) on the test data. Here, Lb (Ub) is lower 

(upper) bound and 𝑖 ∈  {𝐶, 𝛾. 𝜖 }, and u is a uniform random number in the interval (0, 1). 
 Step 3: Update the position of search agents for every dimension based on Eq. (6) and set 𝑡 = 𝑡 + 1. 

 Step 4: If the maximum number of iterations is reached then the optimized parameters of SVR are 

selected, thus go to step 5; otherwise go back to step 3.  

Step 5: Use the SVR model with the optimal parameters (𝐶, 𝛾. 𝜖) for prediction. 

 

Fig. 1: GSA-SVR procedure 

4 Experimental Results 
 

In this section, a number of stocks are chosen to test the performance of our proposed GSA-SVR model. 

The proposed algorithm is compared to the other meta-heuristic algorithms, being used for parameter 

optimization of SVR, including Whale Optimization Algorithm based SVR (WOA-SVR), Salp Swarm 

Algorithm based SVR (SSA-SVR), Neural Network Algorithm based SVR (NNA-SVR), Firefly 

Algorithm based SVR (FA-SVR), Multi-Verse Optimizer based SVR (MVO-SVR), Moth-Flame 

Optimizer based SVR (MFO-SVR), Harris Hawks Optimization Algorithm based SVR (HHO-SVR), 

Grey Wolf Optimization Algorithm based SVR (GWO-SVR), Butterfly Optimization Algorithm based 

SVR (BOA-SVR), Biogeography-Based Optimization Algorithm based SVR (BBO-SVR) and 
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Artificial Bee Colony Optimization Algorithm based SVR (ABC-SVR). Stock market price prediction 

is regarded as one of the most challenging tasks of financial time series prediction. The difficulty of 

forecasting arises from the inherent non-linearity and nonstationary of the stock market and financial 

time series. Thus, daily closing stock market prices of three companies, namely Alibaba Group Holding 

Limited (BABA) (from 03/10/2016 to 01/10/2019), Tesla, Inc. (TSLA) (from 03/10/2016 to 

01/10/2019) and Taiwan Semiconductor Manufacturing (TSM) Company Limited (from 03/10/2016 to 

01/10/2019), were extracted from Yahoo Finance historical quotes. After finding the time delay, 𝜏, the 

embedding dimension, m and reconstructing the phase space, 80% of the data were used as the training 

set and the remaining were used as the testing set. All the predictions were based on one-step ahead 

prediction results and the computations were carried out in MATLAB R2019a environment using the 

LIBSVM Toolbox [2] on a laptop with an Intel(R) Core(TM) i3-3110M CPU @ 2.40GHz and 4 Gbytes 

memory. In our work, Mean Squared Error (MSE) and Mean Absolute Percent Error (MAPE) were 

used in order to calculate the accuracy 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑓𝑖)

𝑁
𝑖=1 .                                                                                                                      (15) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑓𝑖

𝑦𝑖
|𝑁

𝑖=1 .                                                                                                                                  (16) 

Where 𝑦𝑖and 𝑓𝑖 denote the actual and predicted values for the i-th data point, respectively and 𝑁 is 

the number of forecasting days. Since meta-heuristics algorithms use initial random population, we ran 

each algorithm several times to get the optimal answer. However, to increase the probability of finding 

the global optimum we used diversity in population and a sufficiently large number of iterations. In this 

study, the number of populations and the maximum number of iterations are selected to be 20 and 50 

respectively. Also, the search space for both parameters 𝐶 and 𝛾 were [4−7, 44]and the range for 

parameter 𝜖 was[4−7, 0/25]. All details of datasets including name, embedding dimension m and time 

delay 𝜏 are shown in Table 1. The size of training datasets is equal to 530 and the size of testing datasets 

is equal to 133 for all of three datasets. For phase space reconstruction we used the recurrence plot and 

recurrence quantification analysis of MATLAB toolbox [4]. 
 

Table 1: Estimation of 𝑚 and 𝜏 for phase space reconstruction. 
Parameters BABA TSLA TSM 

𝒎 10 12 10 

𝝉 10 2 5 

 

Actual and predicted values obtained by our model compared to eleven other methods for the three 

datasets TSM (Fig. (2a)), BABA (Fig. (2b)) and TSLA (Fig. (2c)) are illustrated in Fig. 2 after de-

normalization. Also, Table 3 presents the optimal values for the three parameters 𝐶, 𝛾 and 𝜖, as well as 

MSE, MAPE and the computing time for BABA testing dataset for all of SVR-based methods. The 

same results for TSLA and TSM testing datasets are shown in Tables 4 and 5, respectively. We now 

discuss results of our proposed algorithm in comparison with others. As shown in Fig. 3a, the MAPE 

of GSA-SVR ranked 6th with a slight difference of 0.001 with the first rank, MFO-SVR. Even though 

MAPE accuracy of GSA-SVR is slightly below the other five methods MFO-SVR, MVO-SVR, GWO-

SVR, ABC-SVR and FA-SVR, its computing time is significantly better than these methods except for 

GWO-SVR. Also, Fig. 3b illustrates that GSA-SVR, FA-SVR, ABC-SVR, MFO-SVR, GWO-SVR and 

SSA-SVR achieved the best MSE accuracy below 0.0012 in comparison with all the other methods. 

Thus it shows that the proposed algorithm is one of the best based on MSE error. Finally, Fig. 4a, Fig. 

4b and Fig. 4c respectively depict the bar plots of MAPE, MSE and cost time. Based on Fig. 3c, the 

average time consumption of the GSA-SVR model ranked seventh but competitively close to the other 

methods. Also it is important to mention that although BBO-SVR, BOA-SVR, HHOSVR and NNA-

SVR algorithms are computationally less expensive, but their MSE and MAPE accuracy are very bad 

in comparison with GSA-SVR algorithm as it is shown in Fig. 3a and Fig. 3b. Also to compare the 
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predictive accuracy results of our method with others here we used Diebold-Mariano test [6]. Base on 

the test, the null hypothesis of equality of any two given methods at the 5% confidence level is rejected 

if |𝐷𝑀| > 1.96, where DM is the test statistic of the Diebold-Mariano test calculated based on the 

corresponding squared-error residuals.  

 
(a) TSM 

 
(b) BABA 

 
(c) TSLA 

Fig. 2: Prediction comparison for datasets a) TSM b) BABA and c) TSLA show that among the twelve 

algorithms, GSA-SVR performs as one of the best based on accuracy. 
 

Table 2. Diebold Mariano Test 

Methods BABA TSLA TSM 

ABC-SVR -0.2507 1.2437 -0.5011 

BBO-SVR 5.8814 5.0089 0.2784 

BOA-SVR 1.8033 2.8169 0.2922 

FA-SVR -0.7461 1.2767 -0.6720 

GWO-SVR -0.5394 1.2555 -0.6085 

HHO-SVR 7.3394 3.9379 2.5401 

MFO-SVR -0.5634 1.0731 -0.5184 

MVO-SVR 3.9999 0.2153 0.1945 

NNA-SVR 3.8801 2.5598 0.1225 

WOA-SVR -0.3112 1.5994 2.1655 

SSA-SVR 1.3241 1.4862 -0.0073 

 

DM-values obtained by the Diebold-Mariano test on our three stocks is presented in Table 2. As shown 

in the table, there is a significant difference between our algorithm and BBO-SVR, HHO-SVR, MVO-

SVR and NNA-SVR and in fact GSA-SVR is better than these algorithms and also there is no 

significance difference between the proposed algorithm and the rest of methods for BABA data. For 

TSLA, the null hypothesis of equality is rejected for GSA-SVR and BBO-SVR, BOA-SVR, HHO-SVR 

and NNA-SVR and indeed, GSA-SVR based on forecasting accuracy performed better. For TSM, 

HHO-SVR, WOA-SVR have DM-test absolute value greater than 1.96, therefore there is only 

significant difference between these models and GSA-SVR. To summarize, based on time efficiency, 

MSE and MAPE measures, we conclude that our GSA-SVR algorithm is capable to find the optimal 

values of the SVR parameters and can yield promising results and also is one of the best models among 

the same other meta-heuristics based SVR methods studied. 
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(a) MAPEs 

 
(b) MSEs 

 
(c) Time Consumption 

Fig. 3: Fig. 3a and Fig. 3b compare the MAPE and the MSE of the twelve methods. Also Fig. 3c compares 

the cost time. 
 

 
(a) MAPEs 

 
(b) MSEs 

 
(c) Time Consumption 

Fig.4: Fig. 4a and Fig. 4b compare the MAPE and the MSE bar time plots of the twelve methods. Also Fig. 

4c compare the cost time. 

 

5 Conclusion and Future Research 
 

In support vector regression, parameters namely, penalty factor, 𝐶, RBF kernel function width 

parameter, 𝛾 and radius of the epsilon tube, 𝜖 can change the performance of the algorithm considerably. 

Therefore, there is a need to optimize the parameters in an appropriate way. In this study, a novel hybrid 

method based on support vector regression and Golden Sine algorithm for selecting these parameters is 

presented. The proposed method were tested on three financial time series of technology based 

companies, Alibaba Group Holding Limited, Tesla, Inc. and Taiwan Semiconductor Manufacturing 

Company Limited, using their daily closing stock market prices. For invalidation, the results are 

compared with eleven other meta-heuristics algorithms based SVR. According to the experimental 

results, GSA-SVR is capable of tuning the parameters efficiently in terms of computational time, MSE 

and MAPE errors. 
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Appendix 

Table 3: Optimized parameters for BABA data. 

Models 𝐶 𝛾 𝜖 MSE MAPE Cost time 

ABC-SVR 113.2752 0.002117915 0.01608924 0.00076193 0.03159439 61.5194 

BBO-SVR 0.257373 3.12473 6.10E-05 0.00180953 0.0518886 13.957 

BOA-SVR 41.3041 0.00109727 0.0124801 0.00089146 0.0339914 10.3919 

FA-SVR 254.4579 0.001383811 0.008534498 0.0007394 0.0312368 94.71895 

GSA-SVR 1.25782 0.220345 0.000172123 0.00077329 0.0321525 33.0719 

GWO-SVR 254.6702 0.00127615 0.01754627 0.00074881 0.03133175 15.51003 

HHO-SVR 246.7128 0.9452953 0.06805752 0.00156628 0.04784143 15.86751 

MFO-SVR 251.2928 0.001859763 0.01025836 0.00074726 0.03121457 22.78994 

MVO-SVR 251.3184 0.05405353 0.009142361 0.00094357 0.036104 135.5701 

NNA-SVR 256 6.10E-05 0.006907721 0.00130049 0.04111579 16.66189 

SSA-SVR 254.9338 0.0041949 0.0123411 0.00075183 0.03122928 77.0712 

WOA-SVR 246.8061 0.001580238 0.01645499 0.00075927 0.0315578 15.11345 

 

Table 4: Optimized parameters for TSLA data. 

Models 𝐶 𝛾 𝜖 MSE MAPE Cost time 

ABC-SVR 256 0.0931836 0.01365015 0.00136099 0.1213265 182.4114 

BBO-SVR 7.85094 0.9454 6.10E-05 0.00228979 0.140091 18.7108 

BOA-SVR 0.807825 0.751053 0.00616621 0.00148971 0.121654 27.5524 

FA-SVR 254.41284 0.098945875 0.01357314 0.00136376 0.12223358 1004.9159 

GSA-SVR 26.58903 0.1041562 0.00074545 0.00129006 0.1225588 127.6254 

GWO-SVR 255.0317 0.0955308 0.01363054 0.00136184 0.1215525 132.128 

HHO-SVR 197.209 0.4205269 0.01706072 0.00220655 0.1291157 40.27025 

MFO-SVR 194.3398 0.08970023 0.01441153 0.00134894 0.1197894 126.3 

MVO-SVR 181.4413 0.05951673 0.01497712 0.00129902 0.1149064 79.70025 

NNA-SVR 253.9341 0.1465462 0.00812801 0.00148744 0.1337156 17.06885 

SSA-SVR 255.3342 0.1333912 0.00467436 0.00136979 0.1581744 227.6579 

WOA-SVR 256 0.1364358 0.00424138 0.00137741 0.1548629 221.5676 

 

Table 5: Optimized parameters for TSM data. 

Models 𝐶 𝛾 𝜖 MSE MAPE Cost time 

ABC-SVR 256 0.001393767 0.0320872 0.001427 0.042772 32.55109 

BBO-SVR 13.4353 0.14468 6.10E-05 0.00147 0.043286 15.6106 

BOA-SVR 51.0281 0.0233701 0.0106542 0.001466 0.042897 21.3761 

FA-SVR 145.3738 0.004001169 0.03353944 0.001417 0.042468 157.6236 

GSA-SVR 1.4889 0.0970193 0.00213057 0.001454 0.042101 20.1198 

GWO-SVR 6.35558 0.0320962 0.00284335 0.001442 0.042212 24.3695 

HHO-SVR 171.9925 0.9798621 0.1031784 0.001826 0.04655 22.02656 

MFO-SVR 230.3153 0.003261379 0.04130702 0.001425 0.042671 28.87215 

MVO-SVR 252.9431 0.03697545 6.10E-05 0.001465 0.043254 151.9899 

NNA-SVR 256 0.01576342 0.0005394 0.00146 0.042764 16.40153 

SSA-SVR 255.9636 0.004876394 0.00013112 0.001454 0.042515 185.3799 

WOA-SVR 1.76772 0.0728386 6.10E-05 0.001471 0.04229 33.9208 
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