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ABSTRACT 

In this article, at first standard linear Black-Scholes model and then some nonlinear 

Black-Scholes models will be considered and thereupon alternating direction ex-

plicit (ADE) method is applied firstly for solving the standard Black-Scholes model 

and then for Barles and Soner model which is one of the most complete and com-

prehensive nonlinear Black-Scholes models. Furthermore, the stability of this 

method has been considered and its accuracy will be compared with other numerical 

methods such as finite difference methods. Since in solving nonlinear Black-Scholes 

models by the ADE methods, we need to solve only some scalar nonlinear equations 

instead of a full nonlinear system of equations that we should solve in implicit meth-

ods, so this method can be a suitable choice for solving such models.   

 

1 Introduction 
 

Standard Black-Scholes-Merton model is a linear partial differential equation which is introduced in 

1973 by Fischer Black and Myron Scholes [3] and earlier by Robert Merton [16] for financial deriva-

tives pricing such as options. This model is also called the Black-Scholes model. An option is a contract 

that gives the holder of the option a right (not obligation) to buy (call option) or sell (put option) a stock 

at a fixed price (called an exercise price or a strike price), at a fixed date (called the expiry date or 

maturity date). Myron Scholes and Robert Merton were awarded the Nobel Prize in 1973 for their re-

markable work when unfortunately, Fisher Black passed away two years earlier. The standard Black-

Scholes equation is assumed in a complete market where some parameters such as illiquid market, 

transaction cost and large investor performance were not taken into account.  

In recent years several nonlinear Black-Scholes models have been introduced that considered one or 

some of these parameters to give a more accurate model for derivative security pricing. For more details 

refer to [1, 2, 8, 10, 11, 14]. One of the most accurate nonlinear Black-Scholes models called Barles 

and Soner model [2] will be considered in this work. Nonlinearity in the nonlinear Black-Scholes mod-

els arises from a nonlinear volatility function which not only depends on time t  and underlying asset 

price S but also on the Greek Gamma that is the second derivative of the option price ( , )V S t with 

respect to S while in the classic Black-Scholes model the volatility of the underlying asset was assumed 

constant. However, the linear Black-Scholes equation has an analytical solution but the nonlinear Black-
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Scholes equations do not have. Therefore, we should look for numerical methods for solving such non-

linear equations to find an approximation for their solutions. Several numerical methods have been 

applied for dealing with different nonlinear models such as the upwind finite difference method [12], a 

positivity-preserving scheme [9], fourth-order semi-discretization [5] and [7], standard and nonstandard 

finite difference methods [15], alternative direction implicit (ADI) scheme [6] and alternative direction 

explicit (ADE) scheme [4]. In the next section, the Barles and Soner model will be considered then, in 

Section 3, the ADE method will be applied for dealing with the Barles and Soner model. This scheme 

has been applied before for solving the linear Black-Scholes equation and Frey and Patie nonlinear 

model in [4] but to our knowledge, the efficiency of this method for the Barles and Soner model has 

not been considered yet. Therefore, in Section 4, the Barles and Soner model will be solved by the ADE 

method and compared with some other numerical methods. Finally, in the last section, some conclusions 

have been demonstrated.   
 

2 Linear and Nonlinear Black-Scholes Models  

A nonlinear Black-Scholes model has the following form: 
2 2

2 2

2 2

1
( , , ) 0, ( , ) (0, ) [0, ]

2
max

V V V V
S t S rS rV S t S T

t S S S


   
     

   
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max{ ,0} ,
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 
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(2) 

( )

0 ,
(0, )

,r T t

call option
V t

Ke put option 


 
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(3) 

( )

max
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,
( , )

0 ,

r T tS Ke call option
V S t

put option

  



 
(4) 

where two-variable function ( , )V S t is the value or price of the option for a value S of the underlying 

risky asset at time t . ,r K and maxS  are respectively the interest rate, strike price and the upper bound 

of S  domain and   is the volatility on an underlying risky asset which is assumed constant in the 

classic linear Black-Scholes model while in a nonlinear Black-Scholes model is a function of ,S t  

and 
2 2/ .V S     Several nonlinear Black-Scholes models have been introduced in recent years such 

as the Leland model [11], Risk-Adjusted Pricing Methodology(RAPM) [10], Barles and Soner [2], 

Feedback and illiquid market [8], Parameterized Illiquid Model [1] where took into accounts one or 

some parameters such as illiquid market, transaction cost and large investor performance. Since the 

Barles and Soner model is one the most comprehensive nonlinear models for option pricing, this model 

will be considered in the rest of this work. By the way as most of the nonlinear models do not have 

analytical solutions therefore, we must solve them by numerical methods to achieve approximations for 

their solutions. While the linear Black-Scholes equation has the following analytical solution: 
( )

1 2( , ) ( ) ( )r T tV S t SN d Ke N d    (5) 

Where 

2

1,2

1
log ( )( )

2 ,

S
r T t

Kd
T t





  


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(6) 
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and (.)N indicates the standard joint normal distribution. In fact this ( , )V S t is the price of a European 

call option (sometimes is shown by  ,C S t ) which is the solution of the linear form of (1) with constant 

volatility ( ) . By put-call parity the European put option price will be computed as follow: 

( )( , ) ( , ) r T tS P S t C S t Ke     (7) 

where ( , )P S t  is the put option price. 

2.1 The Barles and Soner Nonlinear Volatility Model 
 

Barles and Soner [2] considered both the transaction cost and the risk from volatile portfolios. They 

took an approach based on utility maximization which results in the following adjustment of the vola-

tility: 

2
2 2 ( ) 2 2

0 2
( , , ) 1[ ( )]r T t

SS

V
t S V e RS

S
   

 


 (8) 

where 0 is the original volatility constant,  is the Leland transaction cost [11] and R  is a risk aversion 

factor. Finally, ( )x  is the solution of the following nonlinear ODE: 

( ) 1
( ) , 0

2 ( )

x
x x

x x x

 
  

 
 (9) 

with the initial condition (0) 0.   We have used Maple's "fsolve" command to find specific values 

of .  The implicit exact solution takes the form 

1

1

sinh ( ( )
( )  for 0

( ) 1
| |

sinh ( ( )
( )  for 0

( ) 1

x
x x

x
x

x
x x

x





 
  

 
 

 
    

 (10) 

 

and it is shown in [5] that 

(0, )  for 0
( )  and ( ) 0 for 0.

( 1,0)  for 0

x
x x x

x

 
    

 
 (11) 

In appendix A of [2] the existence of a unique continuous viscosity solution to this problem has been 

shown. 

 

3 Alternating Direction Explicit Schemes 
 

    Here different kinds of ADE schemes will be considered. These methods consists of two explicit sub-

steps. One step is constructed from lower boundary to upper one which is called upward and another 

step vice versa which is called downward. Suppose we discretize the interval [0, ]maxS  to J equidistant 

subinterval, hence the step size of this discretization is /maxh JS and the nodal points are jS j h   
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for 0,1,...,j J . Similarly the time interval [0, ]T  will be discretized to N equidistant subinterval with 

step size /k T N  with the nodal points 
nt n k   for 0,1,...,n N . Suppose 

nu  and 
nd  are the 

numerical solutions of the Black-Scholes equation where is solved upward and downward respectively. 

Therefore, the value of the ADE method is the average of these two values i.e. ) / 2,(n n nv u d 

where 
nv  is the numerical approximation of the option value ( , )nV S t  at time nt .Applying different 

approximations for the convection term in a partial differential equation causes different ADE schemes. 

For instance, Towler and Yang  [19] used central differences for an approximation of the convection 

term as follows: 

11

1 12

( , )
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2
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


 




  


 

 

11

1 12

( , )

, 1,...,1.
2

n nj
n

j j

v S t
d d

j J
S h




 




  


 

(12) 

More accurate approximation is introduced by [17] and [18] as follows: 

1 11
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(13) 

Where, the last discretization for the convection term have been implemented in the next section. For 

the partial derivative concerning to time in both upward and downward steps following approximation 

will be used: 
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(14) 

and for discretization of the diffusion term: 
2

1 11

1 12

2 2

( , )

, 1, , 1 ,

n n n nj
n

j j j j

v S t
u u u u

j J
S h

 


 


  

  


 

 

2

1 11

1 12

2 2

( , )

, 1, ,1.

n n n nj
n

j j j j

v S t
d d d d

j J
S h

 


 


  

  


 

(15) 

To obtain a symmetric scheme, following approximations for reaction term have been used: 
1

1
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( , ) , 1, , 1,
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v S t j J






    (16) 



Mashayekhi 
 

 

 

Vol. 6, Issue 4, (2021) 

 

Advances in Mathematical Finance and Applications  
 

[749] 

 

 

1

1

2

( , ) , 1, ,1.
2

n n

j j
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d d
v S t j J






    

By substituting the discretizations (13)-(16) in (1) and the central approximation 

1 1

2

2
( , )

n n n

j j j

SS j n

v v v
V S t

h

  
  in the Barles and Soner volatility function (8) for both the upward and 

the downward steps, for every 0,..., 1n N  , two systems of equations will be obtained as follows: 

n+1 n

u u
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1 1
1
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ADE : .

,

2

n n

d d

n n
n

A d B v

u d
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A v



 







 
(17) 

Where uA and dB   are the lower and uB and dA are the upper triangular matrices of size 1J   with the 

following diagonal elements for 1,..., 1j J  : 

2 2

0

2 2

0
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[ , ] 1 (1 ( , )) ,

2 2 2
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2 2 2
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2 2 2
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 (18) 

 

where  ( ) 2 2

1 1( , ) ( 2 ) .nr T t n n

j j jj n e Rj v v v

      Since in this ADE scheme, the symmetric dis-

cretizations of convection, diffusion and reaction terms have been implemented, the scheme is uncon-

ditionally stable for the linear Black-Scholes equation, for more details refer to [4] and [13]. Here we 

will show that this scheme is conditionally stable for the nonlinear Barles and Soner Black-Scholes 

equation. It is sufficient to show that under some condition, the spectral radius of the matrix of the 

system of equations is less than one. i.e. 

{| |, 1, , 1} 1.jmax j J      (19) 

The system of equations in the upward and downward steps are 
1 1n n
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1 1 n

d

n
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respectively, where both
1

u uA B
and 

1

d dA B
 are the tridiagonal matrices. Also, the eigenvalues of the 

lower diagonal matrices 
1

uA
 and dB  , and the upper diagonal matrices uB  and 

1

dA
are their diagonal 

elements. Furthermore, the spectral radius of a product of matrices is less than or equal to the product 

of their spectral radiuses, then we have: 
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From (11) we have 1 ( ) 0x  for every ,x therefore (18) implies that 

[ , ]
1, 1, , 1.

[ , ]

u

u
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j J
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[ , ]
1, 1, , 1.
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(21) 

 

Now we check under which condition the above fractions is greater than one for every 1,..., 1.j J   
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

   
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(22) 

Therefore, the upward step is conditionally stable if 

2 2

0

2
0 , 1,..., 1.

1
1 (1 ( , ))

2 2 2

rjk
j J

rjk rk
kj j n


  
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(23) 

Similarly, the downward step is stable if 

2 2

0

2
1 1 1, 1,..., 1.

1
1 (1 ( , ))

2 2 2

rjk
j J

rjk rk
kj j n


      

   

 
(24) 

Since the above inequalities satisfy for every 1, , 1j J  and the time step k , hence the downward 

step is unconditionally stable and finally, the combination of the upward and the downward steps i.e. 

the ADE scheme is conditionally stable. 
 

4 Numerical Solution for the Linear and Nonlinear Black-Scholes Equation 
 

Here at first the standard linear Black-Scholes equation has been solved by the ADE scheme to show 

its efficiency for solving linear partial differential equations. Consider an European put option with 

parameters 0.2  , 0.03r  , 1T  , 30K  and max 90S  . Table 1 shows the maximum error of the 

ADE scheme for finding the European put option price which is the solution of the linear Black-Scholes 

equation with different step sizes but with the same mesh ratio (
2

0.0025
k

h
 ). This example as we 

expected shows the smaller step sizes in discretization cause more accurate solutions and then less 

numerical errors. Furthermore Fig. 1 and Fig. 2 indicate that maximum error occur around the strike 

price, which is assumed  30K   here and its reason is the non-smooth final condition in this point. 

Now the Barles and Soner nonlinear Black-Scholes model will be solved by the ADE scheme and the 

accuracy of this method has been compared with two other finite difference methods.  

Since the Barles and Soner model does not have any analytical solution, to evaluate the accuracy of the 

numerical methods and calculate the numerical errors, a solution with tiny step size will be considered 
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as a reference solution and the difference absolute value of other solutions with the reference indicate 

approximation errors. 

 

Table 1: Maximum Error of the ADE in the Last Iteration ( 0t  ) for linear B-S 

 

In the following, the price of a European put option in the Barles and Soner model has been computed 

by the ADE scheme with these parameter 0 0.2  , 0.1r  , 1T  , 40K  , max 80S  and the trans-

action cost
2 0.02a R  . The reference solution is achieved with step sizes 0.375h  for discretiza-

tion in S and 0.00009765625k  in time  t  i.e. . 215J  and 10240N  which is computed in 33 

hours by a computer with 2.9 GHz Intel Core i5 and memory 8 GB.  

S and t  have been halved in every iteration so, the convergence order in the method will be achieved 

by
/2

/2 /4

2
h hq

h h

e e

e e





. The last column of Table 2 indicates by reducing the step sizes the order of con-

vergency is approximately 2.  

          

Fig. 1: Put Option Price (Left Figure) and its Numerical Errors (Right Figure) at 0t   with 2h  and

0.01k   . 

 
Fig. 2: Put Option Price (Left Figure) and its Numerical Errors (Right Figure) at 0t   with 1h  and 0.0025k   

asset step size (h) time step size (k)  max error of ADE 

4  0.04 0.0507025 

2  0.01 0.022887 

1 0.0025 0.00600658 

0.5 0.000625 0.00245572 

0.25  0.00015625 0.00119212 
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Table 2: Maximum Error in the Last Iteration ( 0t  ) of the ADE for the Barles and Soner Model 

 

Figures 3, 4 and 5 show the approximation errors of the European put option in the nonlinear Barles 

and Soner model which is solved by the ADE scheme with different step sizes in comparison with the 

reference solution with 0.375h  and 0.00009765625k  . Similar to the linear Black-Scholes 

model, the figures of the approximations errors indicate the maximum error in the Barles and Soner 

model and generally in the nonlinear Black-Scholes models takes place close to the strike price K. 

 
Fig. 3: Approximation Error of the Barles and Soner Put Option at 0t  with 8h  and 0.003125k  (Left Fig-

ure) and 4h  and 0.0015625k  (right figure). 

 

 

Fig. 4: Approximation Error of the Barles and Soner Put Option at 0t  with 2h  and 0.00078125k  (left 

figure) and 1h  and 0.000390625k  (right figure). 

 

asset step size (h) time step size (k)  max error of ADE error difference  error ratio 

8  0.003125 0.15197770   

4  0.0015625 0.04869464 0.10328306  

2  0.00078125 0.01359658 0.04791339 2.94 

1  0.000390625 0.00327254 0.01032404 3.40 

0.5 0.0001953125 0.00037647 0.00289607 3.56 
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Fig. 5: Approximation Error of the Barles and Soner Put Option at 0t  with 0.5h  and 0.0001953125k   

 

Now the accuracy of the ADE scheme for solving the Barles and Soner model has been compared with 

two standard finite difference methods in Table 3 such as Crank-Nicolson with Rannacher time stepping 

(CNR) and forward Euler (explicit scheme with the first order difference in time and central second 

order in S (FtCS)) which indicates that however for the coarse meshes the ADE method has bigger error 

than other two methods but by halving step sizes the maximum error of the ADE method decreases 

more rapidly than CNR and FtCS methods and finally we can see for the finest mesh in this table, the 

ADE method has smaller maximum error than two others. 
 

Table 3: Maximum Error in the last Iteration ( 0t  ) of the Barles and Soner Model 

 

5 Conclusions 
 

In this work, the Barles and Soner nonlinear Black-Scholes model has been solved with the ADE 

method and compared with two standard finite difference schemes CNR and FtCs. We demonstrated 

the ADE scheme for the considered nonlinear model has the second order of convergency and condi-

tionally stable and also is more accurate than CNR and FtCS methods for the finer meshes. Therefore 

the ADE method would be a suitable choice for solving such nonlinear equations to avoid suffering 

from computational times of implicit schemes.  
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