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 ABSTRACT 

Any investor in stock markets around the world has a deep concern about the 

shortfalls of allocation wealth to any stock without accurate estimation of related 

risks. As we review the literature of risk management methods, one of the main 

pillars for the risk management framework in defining risk measurement ap-

proach using historical data is the estimation of the probability distribution func-

tion. In this paper, we propose a new measure by using kernel density estimation 

via diffusion as a nonparametric approach in probability distribution estimation 

to enhance the accuracy of estimation and consider some distribution character-

istics, investor risk aversion and target return which will make it more accurate, 

comprehensive and consistent with stock historical performance and investor 

concerns. 

 

1 Introduction 
      

Investors in the stock market face so many issues for asset allocation. They want to gain maximum 

return on their investments but price volatilities may hurt investments and decrease their value. The 

other issue makes this decision a more complicated relationship between stock price movements in 

investment portfolio selection. Therefore, the calculation of price risk plays a key role for individual 

and corporate investors in the stock market. As investment managers and individuals try to optimize 

their stock portfolio, they should determine the model for risk measurement for each stock and they 

should determine the model of risk measurement for each stock and overall portfolio. One of the famous 

papers in the area published by Markowitz in 1952 [1] employing standard deviation as risk metric and 

stock expected return as return metric. So many other researches and academics have been trying to 

enhance the accuracy and quality of calculations to optimize portfolios ever since and have proposed 

various models and metrics. In different studies on stock price fluctuation risk, one of the most serious 

issues has been historical price movement analysis and the result applications. For this purpose, we can 
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understand important characteristics by implying the probability distribution function in which so many 

papers have been discussed and benefit from them to build our statistical model. Some of the researchers 

assumed the historical daily price return of stocks follows Normal distribution or other parametric ones 

that many other papers have rejected [2] and this shows the importance of implying accurate probability 

nonparametric distribution. The other weakness in some studies for risk measurement is neglecting 

investor’s risk aversion in mathematical calculation. The fact that some investors are more sensitive 

against risk in comparison to others is clear but the method to measure it in terms of risk aversion 

quantification is important and critical. On the other hand, the definition of downside for any investor 

depends on the expectations and his/her target, so it seems necessary to involve the investor’s target 

return in risk measurement. For this purpose, researchers sometimes use decision making models to 

optimize their portfolio with predetermined goals [3, 4] or use target rate of return as a variable in 

statistical calculations. They also may use metaheuristic models for optimization to consider future 

estimations [5].   

The main question here is what statistical distribution can be implied to consider stock price fluctuation 

characteristics, investor’s risk aversion and target return in the same time for measuring the risk and 

optimize the stock portfolio? To answer this question, we set forming new risk metric using kind of 

statistical distribution considering broader variables to calculate risk of stock portfolio more accurately 

as main objective of this study.  

 

2 Review of Related Literature 

2.1 Research Background 
 

For financial data analysis, PDF estimation may be one of the initial steps for academics and investors. 

So looking for the right probability distribution based on historical price movements seems important 

or even pivotal. As mentioned before, there can be segmentation in a class of distributions as parametric 

and nonparametric. If we assume the distribution estimation is based on one of a known parametric 

family of distributions, the distribution could then be estimated by finding the estimates of its parame-

ters and substituting these estimates into distribution function. The assumption that the historical data 

follow parametric distributions such as Normal, Binomial and Poisson allows academics to run para-

metric tests for data analysis, but sometimes we conclude data does not follow these common distribu-

tions or it may be hard or impossible to assess assumptions, so we adopt another class of distributions 

named nonparametric.  

Fix and Hodges, as two first academics, published a technical report in 1951 [6] about nonparametric 

models and they also first introduced two popular methods for nonparametric density estimation: the 

kernel density estimate and the nearest neighbour estimate [7]. One of the advantages of using nonpar-

ametric models refers to the time there is no reliable information about population parameters and the 

other one is regardless of historical data in regression, estimation of the function by parametric method 

would not be better than the best function with assumed parametric structure [8]. There have been many 

studies in the field of measuring investment risk, which is related to this study and will be discussed as 

followed. Roy in 1952 published a paper named “Safety First and the Holding of Assets” and discussed 

the importance of downside risk. He insisted on reasonability that an individual would seek to reduce 

the possibility of the chance of getting hurt from a catastrophic occurring as the Principle of Safety First 

[9]. Brian Rom and Kathleen Ferguson in 1994 explicitly discussed between bad or good variability 

with reminding that Markowitz and Sharp acknowledged drawbacks and limitations MPT theory. They 
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pointed out that Variance is a symmetric risk measure, which is counter-intuitive for investors in the 

real world. They also introduced the investment risk dependent on the investor’s goal and any outcome 

more would not be recognized as a risk. They named their theory as Post-Modern Portfolio Theory [10]. 

Adams and Montesi in 1995 asserted that investment managers are more concerned about hedging 

downside risk and they assume lowering upside risk as a negative point [11]. Lien and Yiu TSE in 1998 

constructed a bivariate APARCH-M model to derive investment risk’s hedge ratios in Nikkei Stock 

Average index.  

They discussed using lower partial moments for calculation of hedge ratios and exhibited some ad-

vantages of this variable for risk measurement [12]. They also published another paper in 2000 discuss-

ing more LPM and insisted on the inefficiency of conventional minimum variance hedge when investors 

only care about hedging downside risk [13]. Chen et al in 2004, in their research for achieving accurate 

risk measurement and optimal hedge ratios, studied ratios based on different criteria such as expected 

utility, mean-Gini coefficient, generalized semi-variance and minimum variance under some normality 

and martingale conditions. They found out there would be convergence between these ratios if assumed 

conditions were satisfied [14]. 

 

2.2 Theoretical Fundamentals of Risk Measures 
 

In this section, there will be a review of theoretical fundamentals about measurement approaches of 

stock price’s volatility risk and related results of other studies. Bond and Satchel (2002) studied semi-

variance as an alternative for standard deviation in risk measurement. They mathematically discussed 

the properties of semi-variance under different conditions to compare the volatility risk measures to 

gauge their usefulness to practitioners. They mentioned a decisive factor in comparison between these 

measures in the conclusion of the paper, as when returns are symmetrically distributed, semi-variance 

will be inefficient [15].  

The important drawbacks can be seen in both measures are unfulfillment of taking investor’s risk aver-

sion and target rate of return into account, which tells us the need to use more qualified measure. For 

this purpose, Fishborn [16], Harlow and Rao [17], Huang [18] and some other papers paid attention to 

“Lower Partial Moment” as an alternative measure. For instance, Harlow and Rao tried to cover draw-

backs by adding risk aversion and the target rate of return as new variables to their calculations [17]. 

On the other hand, some other papers (Porter and Gaumnitz [19]; Leibowitz and Langetieg [20]; Sortino 

and Forsey [21]) focused on the preference of using “mean-Lower Partial Moment” approach in select-

ing optimal portfolios for risk-averse investors.  

 

2.3 Related Literatures to Kernel Estimation 
 

Kernel density estimation method which also known as the Parzen-Rozenblatt window method (, after 

Emanuel Parzen and Murray Rozenblatt) is one of the famous nonparametric methods in estimation of 

the probability density for a random variable. This method is rooted in histogram methodology and it 

is naïve for uses the center of bins instead of bin edges for each point of estimation. Rozenblatt [21] 

defined the naïve kernel density estimator by using simply a bin centered at variable. Silverman [23] 

discussed more main methods available for univariate density estimation. Foster and Nelson [24] dis-

cussed kernel estimator by studying the point-wise asymptotic normality of the estimator and concluded 



Introduction of New Risk Metric using Kernel Density Estimation via Linear Diffusion 

 
 

   
 

[470] 

 

Vol. 7, Issue 2, (2022) 

 

Advances in Mathematical Finance and Applications 

 

some new results about optimal bandwidth and kernel functions. Botev et al. [25] studied mathemati-

cally kernel density estimators based on diffusion processes for multiple cases. They discussed the plug-

in method for optimal bandwidth selection by considering this method would be adversely affected by 

normal reference rule [26, 27], so they proposed the method free from the arbitrary normal reference 

rules. Figueroa-Lopez and Li [28] discussed providing a formal justification of the optimal convergence 

rate of the kernel estimator. They also, by proposing as plug-in type bandwidth, proceeded to show 

optimal bandwidth while deriving the leading order terms of Mean Square Error.  

 

3 Research Methodology 

3.1 Model Variables 

As this research tries to discuss financial fundamentals in portfolio optimization while introducing new 

risk metric using some statistical concepts, so in this proposed model, there are different variables will 

be introduced shortly in Table 1. 

 
Table 1: Review of Important Variables in the Proposed Model 

Item Name Short introduction 

1 
Generalized Co-Lower 

Partial Moment 

This variable has been calculated by the proposed model for risk measurement in this 

research and has been used as a risk metric in the portfolio selection model. 

2 Risk Aversion Degree 
This variable defined as representative of investor’s risk aversion and it been used as 

the order of the lower partial moment.   

3 Target Rate of Return 
This variable is the rate of return for an investor as a target and has been considered as 

upper bound in model integral for calculation risk.   

4 Gaussian Kernel 
This kernel, as one of the kernels for density estimation, considers stochastic processes 

whose finite-dimensional distributions are multivariate Gaussians. 

5 
Asymptotic Mean Inte-

grated Squared Error 

The asymptotic mean integrated squared error (AMISE) is an optimality criterion func-

tion, which used for assessment of the performance of a kernel density estimator.  

6 Plug-in Bandwidth 
This method, which usually compares with the Cross-Validation method, has been 

used to optimize asymptotic mean integrated squared error.  

7 
Stock daily price vola-

tility 

This variable shows the volatility of stock price and used in a model for measuring the 

risk.  

  
3.2 Research Models 
 

For building the risk variable in this research, Generalized Semi Variance has been used as the main 

body of the model while using a Gaussian kernel density estimator via linear diffusion with implement-

ing plug-in type bandwidth selection for achieving optimal estimation. For this purpose, Asymptotic 

Mean Integrated Squared Error has been considered as validation criteria. In this research for calculating 

lower partial moment for each stock, we used Gaussian kernel, (2𝜋)−0.5 exp (−𝑧2

2⁄ ) for implying the esti-

mation function as (1). 

𝑓(𝑦) =
1

𝑁𝜑
∑ 𝑔(

𝑦 − 𝑅𝜑

𝜑
)

𝑁

𝑖=1

 (1) 

Then based on (1), a lower partial moment calculation model can be presented as follows (2). 

𝜗(𝑅𝑡 , 𝑛, 𝑅𝜑) = ∫ (𝑅𝑡 − 𝑦)𝑛
𝑅𝑡

−∞

1

𝑁𝜑
∑ 𝑔(

𝑦 − 𝑅𝜑

𝜑
)𝑑𝑦

𝑁

𝑖=1

 (2) 

One of the decisive variables that influences model calculation critically and should be paid attention 
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is bandwidth. As mentioned before, Mean Integrated Squared Error is one of the good variables that 

could help to assess the performance of kernel density estimation, which can be estimated through (4). 

𝑀𝐼𝑆𝐸(𝜑) =
1

𝑁2𝜑
∑ ∑ 𝑔∗ (

𝑦 − 𝑅𝜑

𝜑
) +

2

𝑁𝜑
𝑔(0)

𝑁

𝑖=1

𝑁

𝑖=1

 (3) 

Now by considering the leading order bias to give the asymptotic approximation to the MISE, minimiz-

ing the Asymptotic Mean Integrated Squared Error can be used to achieve optimal bandwidth as follows 

(4) [25]. 

𝜑∗ = (2𝜋𝑁(𝜓0,2 + 𝜓2,0 + 2𝜓1,1))
−1

3⁄
 (4) 

In which 𝜓𝑖,𝑗  can be calculated through (5). 

𝜓𝑖,𝑗 = (−1)𝑖+𝑗 ∫ 𝑓(𝑥)
𝜕2(𝑖+𝑗)

𝜕𝑥1
𝑖 𝜕𝑥2

𝑗

ℝ2

𝑓(𝑥) 𝑑𝑥 (5) 

Now with implying the optimal bandwidth, the mathematical model of calculation bivariate PDF for 

each two selected stocks can be presented as follows (6). 

𝑓(𝑥, 𝑦) =
1

𝑁𝜑𝑥𝜑𝑦
∑ 𝐾 [

𝑥𝑖 − 𝑥

𝜑𝑥
,
𝑦𝑖 − 𝑦

𝜑𝑦
]

𝑁

𝑖=1

 (6) 

As of final steps for risk measurement in this research, Generalized Co-Lower Partial Moment has been 

calculated as follows (7) [29, 30]. 

𝜏𝛼(𝑅𝑡, 𝑅𝑖 , 𝑅𝑗) = ∫ ∫ (𝑅𝑡 − 𝑅𝑖)𝛼−1(𝑅𝑡 − 𝑅𝑗)𝑑𝐹(𝑅𝑖 , 𝑅𝑗)
+∞

−∞

𝑅𝑡

−∞

 (7) 

We denoted investor’s target rate of return by Rt and investor’s risk aversion degree by α. After con-

ducting the generalized co-lower partial moment for each two of stock candidates, an efficient frontier 

for optimal stock portfolios can be determined as follows (8).  

min 𝑧 = ∑ ∑  𝜔𝑖𝜔𝑗𝜏𝑛(𝑅𝑡, 𝑅𝑖 , 𝑅𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

  

max 𝑅𝑝 = ∑ 𝜔𝑖

𝑁

𝑖=1

�̅�𝑖 

Subject to: 

∑ 𝜔𝑖

𝑁

𝑖=1

�̅�𝑖 ≥ 𝑅𝑡 

∑ 𝜔𝑖 = 1

𝑁

𝑖=1

 

𝜔𝑖 ≥ 0,      i=1, 2, …, N. 

(8) 
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3.3 The Research Hypothesis and Data 
 

The Research Hypothesis: The main hypothesis examined in this research is as follows: 
1- There is a well-performed method for risk measurement based on characteristics of stocks 

listed in the Tehran Stock Exchange which considers investor’s target rate of return and risk 

aversion degree in calculations. 

2- It’s possible to conduct nonparametric estimation for historical return’s density estimation 

instead of assuming the following Normal distribution based on the Central Limit Theorem.  

3-There is a possible way to select optimal bandwidth free from the arbitrary normal reference 

rules in comparison with classical bandwidth selection methods. 

Statistical Population for Investigation: The statistical population is composed of all firms listed on 
the Tehran Stock Exchange during the years 2010-2017. This sample needs to meet the following 
conditions and corrections: 

1- They were listed on the Tehran Stock Exchange between October 13, 2013, and October 13, 

2018. 

2- They are not included in financial intermediate and investment companies.  

3- To increase sample reliability, stocks with trading days lower than 250 days in this period 

were deleted from the sample. 

4- All of the incidental effects of equity capital raising on stock’s price volatility in this period 

were adjusted. 

5- The effect of dividend payments to shareholders on stock’s price volatility in this period 

were adjusted. 

After conducting adjustments, 215 firms remained a statistical population for empirical study in this 

research. 

 

4 Empirical Results 
 

In the first step, the price time series for all of 215 firms changed to daily price return based on (9). 

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
 (9) 

For conducting mathematical calculations based on (6), bivariate PDF for each two selected stocks 

estimated by coding the model in MATLAB software. In the second step, the lower partial moment for 

each stock and generalized co-lower partial moment for each two selected stocks were calculated which 

gave us a 215×215 matrix as a risk matrix. For instance, the figure of PDF for stock named “Electric 

Khodro Shargh” is plotted vertically and horizontally as Fig. 1. 
 

  

Fig. 1.a: Vertical Plot for Presentation the PDF of 

“Electric Khodro Shargh” 

Fig. 1.b: Horizontal Plot for Presentation the PDF of 

“Electric Khodro Shargh” 
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Now the figure of joint PDF for stocks named “Electric Khodro Shargh” and “Alborz Darou” is plotted 

vertically and horizontally as Fig. 2. 

 

  
Fig. 2.a: Vertical Plot for Presentation the Joint 

PDF of “Electric Khodro Shargh” and “Alborz Da-

rou” 

Fig. 2.b: Horizontal Plot for Presentation the Joint 

PDF of “Electric Khodro Shargh” and “Alborz Da-

rou” 

 

At the next step, the average return for each stock was calculated and a matrix 1×215 consists of returns 

considered for conducting the efficient frontier. For this purpose, we prepared 10000 iterations for 

changing stocks’ weights in each portfolio to achieve the efficient frontier, which the figure of result 

can be seen as Fig 3. 

 

 
Fig. 3: The Result of the Investigation of 10,000 Different Portfolios with Candidate Stocks  

 

At the final step, we conducted 10000 iterations again to test the reliability and sustainability of re-

sults for reassurance, which the figure of result can be seen as Fig 4. 

 
Fig. 4: The Result of Re-investigation of 10,000 New Portfolios with Candidate Stocks  
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As Fig 3 and 4, there is sustainability and consistency in results, which assures the proposed model can 

give us reliable answers with considering new variables and complex distributions in stock portfolio’s 

risk measurement.  

 

5 Conclusions 
 

The important issue any individual or institutional investor is mitigating the investment risk as much 

as maximizing the return in a portfolio. As this research tried to investigate, the possibility of adding 

more decision variables to mathematical calculations to enhance the efficiency of the model alongside 

choosing a more accurate statistical model for historical data analysis was the main assumption to ex-

amine. If the investor is a company or person who has low tolerance or appetite for risk-taking, then 

the risk is more important for this investor in comparison with another investor who is wealthier or has 

the willingness to take a risk, so using the model with risk aversion variable would seem necessary. 

This logic also works out for investor’s target rate of return. In our empirical findings, proposed model 

showed that we, as an investor, could replace our target rate of return instead of price return mean and 

resize the difference based on sensitivity of investor to daily price volatility. Therefore, proposed meas-

ure in this paper would be consistent with previous studies about drawbacks of using standard deviation 

[10-12] and semi-variance [14,15] as portfolio risk metrics. In this research, some assumptions were 

examined which results will be discussed as follows.  

Hypothesis 1- There is a well-performed method for risk measurement based on characteristics of 

stocks listed in the Tehran Stock Exchange which considers investor’s target rate of return and risk 

aversion degree in calculations.  

Result 1- For this hypothesis, we proposed a generalized semi variance model as the main body of the 

risk measurement model, which measured the deviation of daily returns from “investor’s target rate of 

return” as the downside deviation and magnified it using the result to the power “investor’s risk aversion 

degree”.  

Hypothesis 2- It’s possible to conduct nonparametric estimation for historical return’s density estima-

tion instead of assuming the following Normal distribution based on the Central Limit Theorem.  

Result 2- As we saw so much evidence in data, not following normal distribution like the one in Fig 

2.b, it seemed necessary to find PDF that is more accurate. For this purpose, we used the Gaussian 

kernel, which captured the characteristics of historical data more accurately.  

Hypothesis 3-There is a possible way to select optimal bandwidth free from the arbitrary normal refer-

ence rules in comparison with classical bandwidth selection methods.  

Result 3- As we investigated in using kernels, one of the issues for using kernels in studies is bandwidth 

selection and decreasing the leading order bias, so we proposed and used plug-in bandwidth selection 

approach to eliminate this problem and used asymptotic mean integrated squared error for a reliability 

check.  

In this research, we tried to use an eligible mathematical model for estimating the PDF of stocks’ his-

torical price returns based on a more realistic estimator and add some of the investor’s concerns as 

decision variables. Therefore, our results showed that proposed risk metric using generalized semi var-

iance model and kernel density estimation via linear diffusion in measurement of generalized co-lower 

partial moment is more accurate risk measure in portfolio selection. For assurance of the model’s effi-

ciency, we also used asymptotic mean integrated squared error as a decisive factor to choose optimal 
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bandwidth for bins in estimation to propose a more realistic model. There are still some issues in se-

lecting optimal stock portfolio that can be addressed in future studies such as finding suitable variable 

to measure the performance of stock portfolio, which should be more consistent with characteristics of 

proposed risk metric. The other issue can be discussed in future studies is using suitable simulation 

tools for investigation on efficiency of this optimization model for future reference. There can be also 

suggestion to use proposed risk metric or optimization model in empirical fields like insurance and 

pension industry or other institutional investors like investment companies.  

 

References 
  

[1] Markowitz, H.M., Portfolio selection, Journal of Finance, 1952, 7, P. 77–91. Doi: 10.2307/2975974. 

[2] Lien, D., and Tse, Y K., Hedging downside risk with futures contracts, Applied Financial Economics, 2000, 

10(2), P. 163–170. Doi: 10.1080/096031000331798. 

[3] Miryekemami, S.A., Sadeh, E., and Amini Sabegh, Z., Using Genetic Algorithm in Solving Stochastic Pro-

gramming for Multi-Objective Portfolio Selection in Tehran Stock Exchange, Advances in Mathematical Finance 

and Applications, 2017, 2(4), P. 107-120. Doi: 10.22034/AMFA.2017.536271.  

 

[4] Navidi, S., Rostamy-Malkhalifeh, M., and Banihashemi, S., Using MODEA and MODM with Different Risk 

Measures for Portfolio Optimization, Advances in Mathematical Finance and Applications, 2020, 5(1), P. 29-51. 

Doi: 10.22034/AMFA.2019.1864620.1200.  

 

[5] Rahmani, M., Khalili Eraqi, M., and Nikoomaram, H., Portfolio Optimization by Means of Meta Heuristic 

Algorithms, Advances in Mathematical Finance and Applications, 2019, 4(4), P.83-97. 

 Doi: 10.22034/AMFA.2019.579510.1144.  

 

[6] Fix, E., and Hodges, J.L., Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties, 

International Statistical Review, 1989, 57(1), P.238-247. Doi: 10.2307/1403797. 

 

[7] Silverman, B.W., Jones M.C., E. Fix and J.L. Hodges (1951) An Important Contribution to Nonparametric 

Discriminant analysis and Density Estimation, International Statistical Review, 1989, 57(3). P. 233-247. Doi: 

10.2307/1403796. 

 

[8] Gyorfi, L., Kohler, M., Krzyzak, A., and Walk, H., A Distribution-Free Theory of Nonparametric Regression, 

Springer Series in Statistics, 2002, P. 9-12. Doi: 10.1007/b97848.  

 

[9] Roy, A.D., Safety first and the holding of assets, Econometrica, 1952, 20, P. 431- 449. Doi: 10.2307/1907413. 

 

[10] Rom, B.M. and Ferguson, K., Post-Modern Portfolio Theory Comes of Age, Journal of Investing, 1993, 2(4), 

P. 27-33. Doi: 10.3905/joi.2.4.27. 

 

[11] Adams, J. and Montesi, C. J., Major Issues Related to Hedge Accounting, Financial Accounting Standard 

Board, 1995, Newark, Connecticut. Bib ID: 1091732.  

 

[12] Lien, D., Tse, Y.K., Hedging time-varying downside risk, Journal of Futures Markets, 1998, 18, P. 705–

722. Doi: 10.1002/(SICI)1096-9934(199809)18. 

[13] Lien, D., and Tse, Y. K., Hedging downside risk with futures contracts, Applied Financial Economics, 2000, 

10(2), P. 163–170. Doi: 10.1080/096031000331798. 

[14] Chen, S.S., Lee, C.F., and Shrestha, K., Empirical analysis of the relationship between the hedge ratio and 

https://doi.org/10.1080/096031000331798
https://doi.org/10.1002/(SICI)1096-9934(199809)18:6%3C705::AID-FUT4%3E3.0.CO;2-R
https://doi.org/10.1080/096031000331798


Introduction of New Risk Metric using Kernel Density Estimation via Linear Diffusion 

 
 

   
 

[476] 

 

Vol. 7, Issue 2, (2022) 

 

Advances in Mathematical Finance and Applications 

 

hedging horizon: A simultaneous estimation of the short- and long-run hedge ratios, Journal of Futures Markets, 

2004, 24, P. 359–386. Doi: 10.1002/fut.10121. 

[15] Bond, S.A., and Satchell, S. E., Statistical properties of the sample semi-variance, Applied Mathematical 

Finance, 2002, 9(4), P. 219-239. Doi: 10.1080/1350486022000015850. 

[16] Fishburn, P.C., Mean-risk analysis with risk associated with below target returns, American Economic Re-

view, 1977, 67(2), P.116–126. Doi: 10.2307/1807225. 

 

[17] Harlow, W.V., and Rao, R.K.S., Asset pricing in a generalized mean-lower partial moment framework: The-

ory and evidence, Journal of Financial and Quantitative Analysis, 1989, 24, P. 285–311. Doi: 10.2307/2330813. 

 

[18] Huang, X.X., Mean-semi variance models for fuzzy portfolio selection, Journal of Computational and Applied 

Mathematics, 2008, 217(1), P. 1-8. Doi: 10.1016/j.cam.2007.06.009. 

 

[19] Porter, R.B., and Gaumnitz, J.E., Stochastic dominance vs. mean-variance portfolio analysis: An empirical 

evaluation, American Economic Review, 1972, 62(3), P. 438-446. 

 

[20] Leibowitz, M.L. and Langetieg, T.C., Shortfall risk and the asset allocation decision: A simulation analysis 

of stock and bond risk profiles, Journal of Portfolio Management, 1989, P. 61-68. Doi: 10.3905/jpm.1989.409236 

 

[21] Sortino, F. and Forsey, H., On the Use and Misuse of Downside Risk, The Journal of Portfolio Management, 

1996, P. 381-408. Doi: 10.3905/jpm.1996.35. 

 

[22] Rosenblatt, M., Remarks on some nonparametric estimates of a density function, Annals of Mathematical 

Statistics, 1956, 27, P. 832–837. Doi: 10.1214/aoms/1177728190. 

 

[23] Silverman, B.W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, 1986, London. 

ISBN-13: 978-0412246203.  

 

[24] Foster, D.P., and Nelson, D.B., Continuous Record Asymptotics for Rolling Sample Variance Estimators, 

Econometrica, 1996, 64(1), P. 139-174. Doi: 10.2307/2171927. 

 

[25] Botev, Z.I., Grotowski, J.F., and Kroese, D.P., Kernel Density Estimation via Diffusion, The Annals of Sta-

tistics, 2010, 38(5), P.2916–2957. Doi: 10.1214/10-AOS799. 

 

[26] Devroye, D., Beirlant, J., Fraiman, R., Hall, P., Jones, M. C., Logosi, G., Mammen, E., Marron, J.S., Sanchez-

Sellero, C., de Una, J., Udina, F. and Devroye, L., Universal smoothing factor selection in density estimation: 

Theory and practice, Test, 1997, 6, P. 223–320. Doi: 10.1007/BF02564701.  

 

[27] Jones, M.C., Marron, J.S., Sheather, S.J., A brief survey of bandwidth selection for density estimation, Journal 

of the American Statistical Association, 1996, 91, P. 401–407. Doi: 10.2307/2291420. 

 

[28] Figueroa-Lópeza, J.E., and Li, C. Optimal kernel estimation of spot volatility of stochastic differential equa-

tions, Stochastic Processes and their Applications, 2020, 130(8), P. 4693-4720. Doi: 10.1016/j.spa.2020.01.013.  

 

[29] Hogan, W.W. and Warren J.M., Computation of the Efficient Boundary in the E-S Portfolio Selection Model, 

Journal of Financial and Quantitative Analysis, 1972, 7(4), P. 1881-1896. Doi: 10.2307/2329623. 

 

[30] Bawa. V.S., and Lienderberg E.B., Capital Market Equilibrium in a Mean-Lower Partial Moment Frame-

work, Journal of Financial Economics, 1977, 5(2), P.189-200. Doi: 10.1016/0304-405X(77)90017-4. 

https://doi.org/10.1002/fut.10121
https://doi.org/10.1080/1350486022000015850
https://doi.org/10.1016/j.cam.2007.06.009
https://doi.org/10.1016/j.spa.2020.01.013
https://doi.org/10.1016/0304-405X(77)90017-4

