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Abstract

In this paper, we use a combination of Legendre and Block-Pulse functions
on the interval [0, 1] to solve the nonlinear integral equation of the second kind.
The nonlinear part of the integral equation is approximated by Hybrid Legen-
dre Block-Pulse functions, and the nonlinear integral equation is reduced to a
system of nonlinear equations. We give some numerical examples. To show
applicability of the proposed method.
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1 Introduction

In recent years, many different basic functions have used to estimate the solution of
integral equations, such as orthonormal bases and wavelets. In this paper we are
going to use a simple base, that is a combination of Block-Pulse functions on [0, 1),
and Legendre polynomials, that is called the Hybrid Legendre Block-Pulse functions.
Consider the Legendre polynomials Lm(t) on the interval [−1, 1]:

L0(t) = 1
L1(t) = t
Lm+1(t) = 2m+1

m+1 tLm(t)− m
m+1Lm−1(t) m = 1, 2, 3, . . .

(1.1)
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set {Lm(t) : m = 0, 1, . . .} in Hilbert space L2[−1, 1] is a complete orthogonal set
[3]. A set of Block-Pulse functions bi(t), i = 1, 2, . . . ,m on the interval [0, 1) are defined
as follows:

bi(t) =

 1 i−1
m ≤ t < i

m

0 otherwise.
(1.2)

The Block-Pulse functions on [0, 1) are disjoint, also these functions have the property
of orthogonality on [0, 1). For m = 0, 1, . . . ,M − 1 and n = 1, 2, . . . , N the Hybrid
Legendre Block-Pulse functions are defined as:

bn,m,t(t) =

 Lm(2Nt− 2n+ 1) n−1
N ≤ t < n

N

0 otherwise.
(1.3)

2 Function approximation

A function x(t) ∈ L2[0, 1) may be expanded as:

x(t) =

∞∑
n=0

∞∑
m=0

X(n,m)b(n,m, t), (2.1)

where

X(n,m) =
(x(t), b(n,m, t))

(b(n,m, t), b(n,m, t))
. (2.2)

In (2.2), ( . , . ) denotes the inner product.
If the infinite series in (2.1) is truncated, then (2.1) can be written as:

x(t) ' xN,M (t) =

N∑
n=1

M−1∑
m=0

X(n,m)b(n,m, t) = X
T

B(t), (2.3)

where B(t) and X are NM × 1 matrices given by:

X = [X(1, 0), X(1, 1), . . . , X(1,M − 1), . . . , X(N, 0), . . . , X(N,M − 1)]
T

. (2.4)

and

B(t) = [b(1, 0, t), b(1, 1, t), . . . , b(1,M−1, t), . . . , b(N, 0, t), . . . , b(N,M−1, t)]
T

. (2.5)

Similarly a function k(t, s) ∈ L2([0, 1]× [0, 1]) may be approximated as:

k(t, s) ' kN,M (t, s) = B
T

(t)KB(s); (2.6)
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where K is an MN ×MN matrix such that:

Kij =
(Bi(t), ((k(t, s), Bj(s)))

(Bi(t), Bi(t))(Bj(s), Bj(s))
for i, j = 1, 2, . . . ,MN. (2.7)

Also the integer powers of a function may be approximated as

[y(s)]p = [Y TB(s)]p = B(s)TY ∗p . (2.8)

Where Y ∗p is a column vector, whose elements are nonlinear combinations of the el-
ements of the vector Y . Y ∗p is called the operational vector of the pth power of the
function y(s).

3 The operational matrices

The integration of the vector B(t) defined in (2.5) can be obtained as:∫ t

0

B(s)ds = PB(t), (3.1)

where P is an MN ×MN matrix, that is called the operation matrix for Hybrid
Legendre Block-Pulse functions. Then the operation matrix P has the following form
[2]:

P =



L H H . . . H H
0 L H . . . H H
0 0 L . . . H H
...

...
...

. . .
...

...
0 0 0 . . . L H
0 0 0 . . . L H


(3.2)

Where H and L are M ×M matrices given by:

H =
1

N


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 (3.3)

also the L is a M ×M matrix on the interval [0, 1
N ) are defined as follows [1]:

L =
1

2N



1 1 0 0 · · · 0 0 0
−1
3 0 1

3 0 · · · 0 0 0
0 −1

5 0 1
5 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · −1
2M−3 0 1

2M−3
0 0 0 0 · · · 0 −1

2M−1 0


(3.4)
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We also define the matrix D as follows:

D =

∫ 1

0

B(t)B(t)T dt. (3.5)

For the Hybrid Legendre Block-Pulse functions, D has the following form:

D =


D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . DN

 (3.6)

where Di is defined as follows:

Di =
1

N

∫ 1

0

L(t)L(t)T dt. (3.7)

4 Quadrature formulae

General Idea

We often want to calculate the inner products of functions and hybrid Legen-
dre and Block-Pulse functions when we use Galerkin methods for nonlinear integral
equation. Sweldens et al. [7] obtained a quadrature formulae for wavelet. We give a
method of construction of quadrature formulae for the calculation of inner products
of smooth functions and hybrid Legendre and Block-Pulse functions. The idea of

quadrature formulae is to find weights ω
(n,m)
k and abscissae t

(n,m)
k such that:∫ 1

0
f(t)b(n,m, t)dt =

∫ n
N
n−1
N

f(t)Lm(2Nt− 2n+ 1)dt

= 1
2N

∫ 1

−1 f( t+2n−1
2N )Lm(t)dt

' Qn,m
r [f(t)] :=

r−1∑
k=0

ω
(n,m)
k f(t

(n,m)
k ). (4.1)

Set

M(n,m)
p =

1

2N

∫ 1

−1
tpLm(t)dt p ≥ 0. (4.2)

Then, we have
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∫ 1

0
tpb(n,m, t)dt =

∫ (n)
N

n−1
N

tpLm(2Nt− 2n+ 1))dt

= 1
2N

∫ 1

−1( t+2n−1
2N )pLm(t)dt

' 1

(2N)p

p∑
i=0

(
p

i

)
(2n− 1)p−iM(n,m)

i . (4.3)

For n = 1, 2, . . . , N, m = 0, 1, ...,M − 1 taking
{
tk

(n,m)
}r−1
k=0

such that t
(n,m)
k ∈

[n−1N , n
N ] by (4.1) and (4.3), we can solve the following linear equations:

r−1∑
k=0

ω
(n,m)
k (t

(n,m)
k )p =

1

(2N)p

p∑
i=0

(
p

i

)
(2n− 1)p−iM(n,m)

i p = 0, 1, . . . , r− 1 (4.4)

to find ω
(n,m)
k . So, we can get MN quadrature formulae whose degree of accuracy is

r−1 . More efficient quadrature formulae can be constructed by treating the abscissae{
tk

(n,m)
}r−1
k=0

as unknowns, cf. Gauss quadrature formulae.

Calculation of M(n,m)
p

We know that the Legendre polynomials satisfy the following conditions:

Lm(±1) = (±1)m m ≥ 0 L0(t) = 1
L1(t) = t
Lm(t) = 2m−1

m tLm−1(t)− m−1
m Lm−2(t) m ≥ 2

(4.5)

{
L0(t) = L′1(t)

Lm(t) =
L′m+1(t)−L

′
m−1(t)

2m+1 m ≥ 1
(4.6)

For n = 1, 2, . . . , N, m = 0, 1, . . . ,M − 1 and p = 0, 1, . . . , r − 1 set

α
(n,m)
p = (−1)p+m−1+(−1)p+m

2N(2m+1) .

So we have:

M(n,m)
p = 1

2N

∫ 1

−1 t
pLm(t)dt
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= 1
2N

∫ 1

−1 t
p
(

L′m+1(t)−Lm−1(t)

2m+1

)
dt

= α(n,m)
p +

p

2m+ 1

(∫ 1

−1
tp−1Lm−1(t)dt−

∫ 1

−1
tp−1Lm+1(t)dt

)
,

(4.7)
Therefor:

M(n,m)
p = α(n,m)

p +
p

2(2m+ 1)
(M

(n,m−1)
p−1 − M

(n,m+1)
p−1 ) m ≥ 1. (4.8)

Also:

M(n,0)
p =

1

2N

∫ 1

−1
tpL0(t)dt =

1 + (−1)p

2N(p+ 1)

M(n,1)
p =

1

2N

∫ 1

−1
tpL1(t)dt =

1− (−1)p

2N(p+ 1)
(4.9)

When m ≥ 2 we have:

M(n,m)
p = 1

2N

∫ 1

−1 t
pLm(t)dt

= 1
2N

∫ 1

−1 t
p
(
2m−1

m tLm−1(t)− m−1
m Lm−2(t)

)
dt

=
2m− 1

m
M(n,m−1)

p+1 − m− 1

m
M(n,m−2)

p . (4.10)

5 Solution the nonlinear Fredholm integral equa-
tions

Consider the following integral equation

y(t) = f(t) +

∫ 1

0

k(t, s)[y(s)]pds (5.1)

If we approximate y(t), f(t) , k(t, s) and [y(s)]p by (2.1)− (2.8) as follows:

y(t) = B(t)TY f(t) ' B(t)TF k(t, s) ' BT (t)KB(s) [y(s)]p = B(s)TY ∗p .

where Y ∗ is a column vector function of the elements of the vector Y . With substi-
tuting in (5.1) we have:

BT (t)Y = BT (t)F+

∫ 1

0

BT (t)KB(s)BT (s)Y ∗ds = BT (t)F+BT (t)K(

∫ 1

0

B(s)BT (s)ds)Y ∗ =
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BT (t)F +BT (t)KDY ∗ = BT (t)(F +KDY ∗) =⇒ Y = F +KDY ∗

which is a nonlinear system of equations. By solving this nonlinear system we can
find the vector Y .

6 Numerical examples

We first let M = 3 and N = 2. The six basis functions are given by:

b(1, 0, t) = 1
b(1, 1, t) = (4t− 1)
b(1, 2, t) = 3

2 (4t− 1)2 − 1
2

 0 ≤ x < 1

2
(6.1)

b(2, 0, t) = 1
b(2, 1, t) = (4t− 3)
b(1, 2, t) = 3

2 (4t− 3)2 − 1
2

 1

2
≤ x < 1 (6.2)

For the hybrid Legendre and Block-Pulse functions with M = 3 and N = 2 the second
and tired product operation vector of y is computed as follows:

Y ∗2 =


y21 + 1

3y
2
2 + 1

5y
2
3

2y1y2 + 4
5y3y2

2
3y

2
2 + 2y3y1 + 2

7y
2
3

y24 + 1
3y

2
5 + 1

5y
2
6

2y4y5 + 4
5y5y6

2
3y

2
5 + 2y4y6 + 2

7y
2
6

 (6.3)

Also

Y ∗3 =


y31 + 2

35y
3
3 + 3

5y
2
3y1 + 2

5y3y
2
2 + y1y

2
2

3y21y2 + 3
5y

3
2 + 33

35y
2
3y2 + 12

5 y3y1y2
3y3y

2
1 + 3

7y
3
3 + 6

7y
2
3y1 + 11

7 y3y
2
2 + 2y1y

2
2

y34 + 2
35y

3
6 + 3

5y
2
6y4 + 2

5y6y
2
5 + y4y

2
5

3y24y5 + 3
5y

3
5 + 33

35y
2
6y5 + 12

5 y6y4y5
3y6y

2
4 + 3

7y
3
6 + 6

7y
2
6y4 + 11

7 y6y
2
5 + 2y4y

2
5

 (6.4)

Example 1:
Consider the following integral equation:{

y(t) =
7

8
x+

1

2

∫ 1

0

xty(t)2dt (6.5)
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The exact solution for this problem is y(x) = x. We solve (6.5) by using our method
with N = 2 and M = 3. Table 1 shows the numerical results of this example, where y
and ỹ in the Table 1 denote the exact solution and the numerical solution, respectively.

Example 2:
Consider the following integral equation:{

y(t) = ex − e3

3
− 1

3
+

∫ 1

0

y(t)3dt (6.6)

The exact solution for this problem is y(x) = ex. We solve (6.6) by using our method
with N = 2 and M = 3. Table 2 shows the numerical results of this example, where y
and ỹ in the Table 2 denote the exact solution and the numerical solution, respectively.

Example 3:
Consider the following integral equation:{

y(t) = x2 − 1

10
+

1

2

∫ 1

0

y(t)2dt (6.7)

The exact solution for this problem is y(x) = x2. We solve (6.7) by using our method
with N = 2 and M = 3. Table 3 shows the numerical results of this example, where y
and ỹ in the Table 3 denote the exact solution and the numerical solution, respectively.

Table 1: Numerical results of Example 1.
hybrid Legendre and Block-Pulse functions method ỹ(xr)

xr Exact solution y(xr) M = 3, k = 2
0.1 0.1 0.1593726164
0.2 0.2 0.2597308849
0.3 0.3 0.3600891533
0.4 0.4 0.4604474218
0.5 0.5 0.5017913423
0.6 0.6 0.6021496108
0.7 0.7 0.7025078793
0.8 0.8 0.8028661477
0.9 0.9 0.9032244162

Table 2: Numerical results of Example 2.
hybrid Legendre and Block-Pulse functions method ỹ(xr)

xr Exact solution y(xr) M = 3, k = 3
0.1 1.105170918 1.111365923
0.2 1.221402758 1.227675027
0.3 1.349858808 1.356881875
0.4 1.491824698 1.498986467
0.5 1.648721271 1.657515725
0.6 1.822118800 1.828012857
0.7 2.013752707 2.019774469
0.8 2.225540928 2.232800561
0.9 2.459603111 2.467091133
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Table 3: Numerical results of Example 3.
hybrid Legendre and Block-Pulse functions method ỹ(xr)

xr Exact solution y(xr) M = 3, k = 2
0.1 0.01 0.009999999997
0.2 0.04 0.040000000000
0.3 0.09 0.089999999997
0.4 0.16 0.160000000000
0.5 0.25 0.250000000000
0.6 0.36 0.360000000000
0.7 0.49 0.490000000000
0.8 0.64 0.640000000000
0.9 0.81 0.810000000000

7 conclusion

If we solve the integral equation, using orthogonal continues or piecewise constant
functions, the accuracy of the method will be worse. Where as, using Hybrid Legen-
dre and Block-Pulse functions the accuracy of system will improve using suitable M
and N. Because the Hybrid Legendre and Block-Pulse functions orthogonal piecewise
continues functions and they have high flexibility.
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