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Abstract

Some algorithms for finding common fixed point of a family of mappings is
constructed. Indeed, let C be a nonempty closed convex subset of a uniformly
convex Banach space X whose norm is Gateaux differentiable and let {Tn} be
a family of self-mappings on C such that the set of all common fixed points
of {Tn} is nonempty. We construct a sequence {xn} generated by the hybrid
method and also we give the conditions of {Tn} under which {xn} converges
strongly to a common fixed point of {Tn}.

Keywords: Hybrid method, Common fixed point, Iterative algorithm, Uniformly con-

vex Banach space.

1 Introduction

Let {Tn}+∞n=0 be a family of mappings of a real Hilbert spaceH into itself and let F (Tn)

be the set of all fixed points of Tn. By the assumption that
+∞⋂
n=0

F (Tn) 6= ∅, Haugazeau
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[4] introduced a sequence {xn} generated by the hybrid method, as following
x0 ∈ H
yn = Tn(xn)
Cn = {z ∈ H : 〈xn − yn, yn − z〉 ≥ 0}
Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn

(x0).

In case that Ci is a closed convex subset of H for i = 1, . . . ,m,
m⋂
i=1

Ci 6= ∅ and

Tn = PCn(mod m+1)
, he proved a strong convergence theorem. Recently, Solodov and

Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi [1], Nakajo and
Takahashi [8], Iiduka, Takahashi and Toyoda [5], Nakajo, Shimoji and Takahashi [7],
studied the hybrid method in a Hilbert spaces and also Nakajo, Shimoji and Takahashi
[6] considered this method for families of mappings in Banach spaces.

Throughout this paper, let N0 = N ∪ {0} and let X be a real Banach space
with dual space X∗. The line segment between x and y is denoted and defined by
[x, y] := {tx + (1 − t)y : t ∈ [0, 1]}. For a set-valued mapping T : X ( Y , the
domain of T is Dom(T ) = {x ∈ X : T (x) 6= ∅}, range of T is R(T ) = {y ∈ Y : ∃x ∈
X, (x, y) ∈ T} and the inverse T−1 of T is {(y, x) : (x, y) ∈ T}. For a real number
c, let cT = {(x, cy) : (x, y) ∈ T}. If S and T are any set-valued mappings, we define
S + T = {(x, y + z) : (x, y) ∈ S, (x, z) ∈ T}. Set R+

0 = [0,+∞) and

G = {g : R+
0 → R+

0 : g(0) = 0, g is continuous, strictly increasing and convex}.(1.1)

Lemma 1.1. [3] Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and let x ∈ X. Then, there exists a unique element x0 ∈ C such
that ‖x0 − x‖ = inf

y∈C
‖y − x‖. Putting x0 = PC(x), we call PC the metric projection

onto C.

Lemma 1.2. [10] Let C be a nonempty closed convex subset of a uniformly convex
Banach space X whose norm is Gateaux differentiable and let x ∈ X. Then y = PC(x)
if and only if 〈y − z, J(x− y)〉 ≥ 0 for all z ∈ C.

Lemma 1.3. [10] Suppose X has a Gateaux differentiable norm. Then the duality
mapping J is single-valued and ‖x‖2 − ‖y‖2 ≥ 2〈x− y, Jy〉 for all x, y ∈ X.

Lemma 1.4. [11] The Banach space X is uniformly convex if and only if for every
bounded subset B of X, there exists gB ∈ G such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)gB(‖x− y‖) (1.2)

for all x, y ∈ B and all λ ∈ [0, 1].
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2 Main results

Let {Tn}+∞n=0 be a family of self-mappings of C and F (Tn) be the set of all fixed points

of Tn. Assume that F :=
+∞⋂
n=0

F (Tn) is a nonempty closed convex subset of C satisfies

the following condition,
∃x0 ∈ C ∃{an} ⊆ (0,+∞) with lim inf

n
an > 0 ∃{αn} ⊆ [0, 1], ∃{βn} ⊆ [0, 1] such

that

〈x− z, J(x− wn)〉 ≥ an‖x− wn‖2 (2.1)

for all x ∈ C, z ∈ F (Tn), where, wn = βnT0(x0) + (1− βn)Tn(αnx0 + (1− αn)x).

Algorithm 2.1. Let {Tn} be a family of self-mappings of C with F 6= ∅ which satisfies
condition (2.1). Let {xn}+∞n=1 be a sequence generated by the following algorithm.

x0 ∈ C, n ∈ N0

yn = αnx0 + (1− αn)xn
zn = βnT0(x0) + (1− βn)Tn(yn)
Cn = {z ∈ C : 〈xn − z, J(xn − zn)〉 ≥ an‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn

(x0)

(2.2)

Theorem 2.2. Suppose C is a nonempty closed convex subset of a uniformly convex
Banach space X whose norm is Gateaux differentiable and {Tn} is a family of self-
mappings of C with F 6= ∅ which satisfies the condition (2.1). Assume that

(∗) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1−un‖) < +∞ and
+∞∑
n=0

g(a‖un−

u‖) < +∞ for some g ∈ G and some u ∈ [T0(x0), Tn(w)], where w ∈ [x0, un] and
a > 0 imply that ww(un) ⊆ F . Then the sequence {xn} generated by Algorithm 2.1
converges strongly to PF (x0).

Proof. We split the proof into six steps.
Step 1. {xn} is well defined.

Notice that Cn and Qn are closed and convex sets for all n ∈ N0. On the other
hand, condition (2.1) and the definition of Cn in Algorithm 2.1 imply that F (Tn) ⊆ Cn

for all n ∈ N0. Hence F ⊆ Cn for all n ∈ N0. Since J(0) = 0, it follows from the
definition of Qn in Algorithm 2.1 that Q0 = C which implies that F ⊆ C0 ∩ Q0.
Lemma 1.1 guarantees that there exists a unique element x1 = PC0∩Q0(x0). By
Lemma 1.2,

〈x1 − z, J(x0 − x1)〉 ≥ 0

for all z ∈ C0 ∩Q0 and hence by F ⊆ C0 ∩Q0 we get

〈x1 − z, J(x0 − x1)〉 ≥ 0
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for all z ∈ F . Therefore, F ⊆ Q1 and so apply the fact that F ⊆ Cn for all n ∈ N0 we
have F ⊆ C1 ∩Q1. Again, Lemma 1.1 guarantees that there exists a unique element
x2 = PC1∩Q1

(x0). Inductively, we find that {xn} is well defined.

Step 2. {xn} is a bounded sequence.

From xn+1 = PCn∩Qn
(x0) and F ⊆ Cn ∩Qn for all n ∈ N0 we have

‖xn+1 − x0‖ ≤ ‖x0 − PF (x0)‖ (2.3)

for all n ∈ N0, which implies that {xn} is a bounded sequence.

Step 3. lim
n
‖xn − x0‖ exists.

Replace terms xn+1 − x0 and xn − xo respectively with x and y in Lemma 1.3,

‖xn − x0‖2 ≤ ‖xn+1 − x0‖2 − 2〈xn+1 − xn, J(xn − x0)〉

and hence xn+1 ∈ Qn implies that ‖xn − x0‖2 ≤ ‖xn+1 − x0‖2 for all n ∈ N0; i.e.,
‖xn−x0‖ is an increasing sequence and so by Step 2 we find that lim

n
‖xn−xo‖ exists.

Step 4.
+∞∑
n=0

g(‖xn+1 − xn‖) < +∞ for some g ∈ G.

It follows from Lemma 1.4 that there exists g ∈ G such that

‖xn + xn+1

2
− x0‖2 ≤

1

2
‖xn − x0‖2 +

1

2
‖xn+1 − x0‖2 −

1

4
g(‖xn+1 − xn‖)

and hence

g(‖xn+1 − xn‖) ≤ 2‖xn − x0‖2 + 2‖xn+1 − x0‖2 − 4‖xn + xn+1

2
− x0‖2 (2.4)

for all n ∈ N0. From Lemma 1.2 and the definition of Qn we get xn = PQn
(x0) and so

by xn+1 ∈ Qn and convexity of Qn we get xn+xn+1

2 ∈ Qn. Again, by xn = PQn(x0),

‖xn + xn+1

2
− x0‖2 ≥ ‖xn − x0‖2. (2.5)

It follows from inequalities (2.4) and (2.5) that

g(‖xn+1 − xn‖) ≤ 2‖xn+1 − x0‖2 − 2‖xn − x0‖2 for all n ∈ N0. (2.6)

That
+∞∑
n=0

g(‖xn+1 − xn‖) < +∞ follows from (2.6) and Step 3.

Step 5.
+∞∑
n=0

g(a‖xn − zn‖) < +∞ for some g ∈ G and a > 0.

Since an > 0 for all n ∈ N0 and lim inf
n

an > 0, there exists a > 0 for which an ≥ a
for all n ∈ N0. Now, xn+1 ∈ Cn guarantees that

‖xn − xn+1‖‖xn − zn‖ ≥ 〈xn − xn+1, J(xn − zn)〉 ≥ an‖xn − zn‖2
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and thus

a‖xn − zn‖ ≤ ‖xn+1 − xn‖ (2.7)

for all n ∈ N0. That
+∞∑
n=0

g(a‖xn − zn‖) < +∞ follows from (2.7), (1.1) and Step 4.

Step 6. {xn} → PF (x0).

It follows from our assumption, Step 4 and Step 5 that ww(xn) ⊆ F . Let the
subsequence {xni

} of {xn} converges weakly to w ∈ F . Therefore, weakly lower
semicontinuity of the norm and (2.3) imply that

‖PF (x0)− x0‖ ≤ ‖w − x0‖ ≤ lim
i→+∞

‖xni − x0‖ ≤ ‖PF (x0)− x0‖

and hence xni
→ w = PF (x0).

Corollary 2.3. Suppose C is a nonempty closed convex subset of a uniformly convex
Banach space X whose norm is Gateaux differentiable and {Tn} is a family of self-
mappings of C with F 6= ∅ which satisfies the following condition.

(a) ∃x0 ∈ C ∃{an} ⊆ (0,+∞) with lim inf
n

an > 0 ∃{αn} ⊆ [0, 1] such that

〈x− z, J(x− Tn(vn))〉 ≥ an‖x− Tn(vn))‖2

for all x ∈ C, z ∈ F (Tn), where, vn = αnx0 + (1− αn)x;

(b) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1−un‖) < +∞ and
+∞∑
n=0

g(a‖un−

u‖) < +∞ for some g ∈ G and some u ∈ [T0(x0), Tn(w)], where w ∈ [x0, un] and a > 0
imply that ww(un) ⊆ F .
Then the sequence {xn} generated by the following algorithm converges strongly to
PF (x0). 

n ∈ N0

yn = αnx0 + (1− αn)xn
zn = Tn(yn)
Cn = {z ∈ C : 〈xn − z, J(xn − zn)〉 ≥ an‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn

(x0).

(2.8)

Proof. All conditions of Theorem 2.2 hold for βn = 0 and also in this case (2.2)
reduces to (2.8). So Theorem 2.2 implies the result.

Corollary 2.4. Suppose C is a nonempty closed convex subset of a uniformly convex
Banach space X whose norm is Gateaux differentiable and {Tn} is a family of self-
mappings of C with F 6= ∅ which satisfies the following condition.

(a) ∃x0 ∈ C ∃{an} ⊆ (0,+∞) with lim inf
n

an > 0 ∃{βn} ⊆ [0, 1]

〈x− z, J(x− wn)〉 ≥ an‖x− wn‖2
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for all x ∈ C, z ∈ F (Tn), where, wn = βnT0(x0) + (1− βn)Tn(x);

(b) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1−un‖) < +∞ and
+∞∑
n=0

g(a‖un−

wn‖) < +∞ for some g ∈ G, wn = βnT0(x0) + (1− βn)Tn(un), and a > 0 imply that
ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).

x0 ∈ C, n ∈ N0

zn = βnT0(x0) + (1− βn)Tn(xn)
Cn = {z ∈ C : 〈xn − z, J(xn − zn)〉 ≥ an‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn(x0)

(2.9)

Proof. Similar to Corollary 2.3, all conditions of Theorem 2.2 hold for αn = 0
and so with this assumption, (2.2) collapses to (2.9) which it completes the proof.

Corollary 2.5. Suppose C is a nonempty closed convex subset of a uniformly convex
Banach space X whose norm is Gateaux differentiable and {Tn} is a family of self-
mappings of C with F 6= ∅ which satisfies the following condition.

(a) ∃{an} ⊆ (0,+∞) with lim inf
n

an > 0

〈x− z, J(x− Tn(x))〉 ≥ an‖x− Tn(x)‖2

for all x ∈ C, z ∈ F (Tn);

(b) for every bounded sequence {un} in C,
+∞∑
n=0

g(‖un+1−un‖) < +∞ and
+∞∑
n=0

g(a‖un−

Tn(un)‖) < +∞ for some g ∈ G and a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).

x0 ∈ C, n ∈ N0

Cn = {z ∈ C : 〈xn − z, J(xn − Tn(xn))〉 ≥ an‖xn − Tn(xn)‖2}
Qn = {z ∈ C : 〈xn − z, J(x0 − xn)〉 ≥ 0}
xn+1 = PCn∩Qn

(x0)

Proof. Put αn = βn = 0 in Theorem 2.2.

Corollary 2.6. Suppose C is a nonempty closed convex subset of a real Hilbert space
H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies the following
conditions.

(a) ∃x0 ∈ C ∃{bn} ⊆ (−1,+∞) with lim inf
n

bn > −1 and ∃{αn} ⊆ [0, 1], ∃{βn} ⊆
[0, 1] such that

‖wn − z‖2 ≤ ‖x− z‖2 − bn‖x− wn‖2

for all x ∈ C, z ∈ F (Tn), where, vn = αnx0 + (1 − αn)x and wn = βnT0(x0) + (1 −
βn)Tn(vn);
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(b) for every bounded sequence {un} in C,
+∞∑
n=0
‖un+1−un‖2 < +∞ and

+∞∑
n=0

(a‖un−

qn‖)2 < +∞, where qn = βnT0(x0) + (1 − βn)Tn(pn), pn = αnx0 + (1 − αn)un and
a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).

yn = αnx0 + (1− αn)xn
z0 = T0(x0)
zn = βnz0 + (1− βn)Tn(yn) (n ≥ 1)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − bn‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn

(x0).

(2.10)

Proof. First we note that, for x ∈ C, z ∈ F (Tn), vn = αnx0 + (1 − αn)x
and wn = βnT0(x0) + (1 − βn)Tn(vn), by our assumption we have ‖wn − z‖2 ≤
‖x− z‖2 − bn‖x− wn‖2 for all z ∈ F (Tn), if and only if

‖wn − x‖2 + 2〈wn − x, x− z〉+ ‖x− z‖2 ≤ ‖x− z‖2 − bn‖x− wn‖2

if and only if 〈x − z, x − wn〉 ≥ 1+bn
2 ‖x − wn‖2. Then condition (2.1) satisfies for

an = 1+bn
2 . In a real Hilbert space H, we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1], so, we can consider gB(t) = t2 for each bounded subset
B of H in Lemma 1.4 and hence (∗) holds. Then all assumptions of Theorem 2.2 hold
which it implies that {xn} converges strongly to PF (x0).

By putting βn = 0, αn = 0 and αn = βn = 0 in (2.10) we get the following results
respectively.

Corollary 2.7. Suppose C is a nonempty closed convex subset of a real Hilbert space
H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies the following
conditions.

(a) ∃x0 ∈ C ∃{bn} ⊆ (−1,+∞) with lim inf
n

bn > −1 and ∃{αn} ⊆ [0, 1] such that

‖Tn(vn)− z‖2 ≤ ‖x− z‖2 − bn‖x− Tn(vn)‖2

for all x ∈ C, z ∈ F (Tn), where, vn = αnx0 + (1− αn)x;

(b) for every bounded sequence {un} in C,
+∞∑
n=0
‖un+1−un‖2 < +∞ and

+∞∑
n=0

(a‖un−

Tn(vn)‖)2 < +∞, where vn = αnx0 + (1− αn)un and a > 0 imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).

yn = αnx0 + (1− αn)xn
zn = Tn(yn)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − bn‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn

(x0).
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Corollary 2.8. Suppose C is a nonempty closed convex subset of a real Hilbert space
H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies the following
conditions.

(a) ∃x0 ∈ C ∃{bn} ⊆ (−1,+∞) with lim inf
n

bn > −1 and ∃{βn} ⊆ [0, 1] such that

‖wn − z‖2 ≤ ‖x− z‖2 − bn‖x− wn‖2

for all x ∈ C, z ∈ F (Tn), where wn = βnT0(x0) + (1− βn)Tn(x);

(b) for every bounded sequence {un} in C,
+∞∑
n=0
‖un+1−un‖2 < +∞ and

+∞∑
n=0

(a‖un−

wn‖)2 < +∞, where wn = βnT0(x0)+(1−βn)Tn(un) and a > 0 imply that ww(un) ⊆
F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).

z0 = T0(x0)
zn = βnz0 + (1− βn)Tn(xn) (n ≥ 1)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − bn‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn

(x0).

Corollary 2.9. [6] Suppose C is a nonempty closed convex subset of a real Hilbert
space H and {Tn} is a family of self-mappings of C with F 6= ∅ which satisfies the
following conditions.

(a) ∃{bn} ⊆ (−1,+∞) with lim inf
n

bn > −1 such that

‖Tn(x)− z‖2 ≤ ‖x− z‖2 − bn‖x− Tn(x)‖2

for all x ∈ C, z ∈ F (Tn);

(b) for every bounded sequence {un} in C,
+∞∑
n=0
‖un+1−un‖2 < +∞ and

+∞∑
n=0
‖un−

Tnun‖2 < +∞ imply that ww(un) ⊆ F .
Then {xn} generated by the following algorithm converges strongly to PF (x0).

x0 ∈ C
zn = Tn(xn)
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − bn‖xn − zn‖2}
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PCn∩Qn

(x0).
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