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Abstract

In this paper we introduce and investigate a certain subclass of univalent
functions which are analytic in the unit disk U.Such results as coefficient
inequalities. The results presented here would provide extensions of those given
in earlier works.
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1 Introduction

Let
∑

denote the class of functions of the form

f(z) =
1

z
+
∞∑
n=0

anz
n

which are analytic in the punctured open unit disk

U∗ = {z ∈ C : 0 < |z| 6 1} =: U − {0}

where U is an open unit disk. Let for 0 6 α < 1,

(1)

Σ∗(α) = {f ∈ Σ : Re[
zf

′
(z)

f(z)
] < −α},

(2)

ME(α) = {f ∈ Σ : Re(zf(z)) > α | z2f ′
(z) + zf(z) |},

(3)

MF (α) = {f ∈ Σ :| zf
′
(z)

f(z)
+ 1 |< 1− α}.

For α = 0, we take Σ(0) = Σ∗ and ME(0) = ME and for α = 1, we take
MF (0) = MF .
For some recent investigations on analytic starlike functions, see (for
example) the earlier works [6] and the references cited in each of these
earlier investigations.

Lemma 1.1 Let h(z) = 1 + b1z
1 + b2z

2 + ... be analytic in the open unit

disk U and f(z) = h(z)
z

. Then

1)f ∈ Σ∗(α)⇔ Re[
zh

′
(z)

h(z)
] < 1− α,
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2)f ∈ME(α)⇔ Re[h(z)] < α | zh′
(z) |,

3)f ∈MF (α)⇔| zh
′
(z)

h(z)
|< 1− α.

Definition 1.1 Denote by Λ the class of functions

h(z) = 1 + Σ∞n=1bnz
n = 1 + b1z

1 + b2z
2 + .... (1.1)

which are analytic in the open unit disk U . Further suppose for 0 6 α < 1,

i)Λ∗(α) = {h ∈ Λ : Re[
zh

′
(z)

h(z)
] < 1− α},

ii)ΛE(α) = {h ∈ Λ : Re[h(z)] > α | zh′
(z) |},

iii)ΛF (α) = {h ∈ Λ :| zh
′
(z)

h(z)
|< 1− α}.

For α = 0, we take Λ∗(0) = Λ∗ and ΛF (0) = ΛF and for α = 1, we take
ΛE(1) = ΛE.

Definition 1.2 Let h, k ∈ Λ where h is given by (1.1) and k is given by

k(z) = 1 + Σ∞n=1cnz
n = 1 + c1z

1 + c2z
2 + ....

The Hadamard product (or convolution) h ∗ k is defined by

(h ∗ k)(z) = 1 + Σ∞n=1bncnz
n =: (k ∗ h)(z).
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2 Main results

We begin by proving inclusion relation between classes which are defined
in the Section 1.

Lemma 2.1 (See [5]) If the function h ∈ Λ is given by (1), and satisfy
the condition

Re[h(z)] > 0 , (z ∈ U)

then

| bn |6 2 , (n ∈ N).

Theorem 2.1 For α ≥ 1,

ΛE(α) ⊆ ΛF (1− 1

α
) ⊆ Λ∗(1− 1

α
).

Also that α = 1 all inclusions are proper.

Proof.

h ∈ ΛE(α)⇒ Re[h(z)] > α | zh′
(z) |⇒| h(z) |> α | zh′

(z) |

⇒| zh
′
(z)

h(z)
|< 1

α
⇒ h ∈ ΛF (1− 1

α
),

And

h ∈ ΛF (1− 1

α
)⇒| zh

′
(z)

h(z)
|< 1

α
⇒ Re[

zh
′
(z)

h(z)
] <

1

α
⇒ h ∈ Λ∗(1− 1

α
).

But for α = 1 it is easy to see that ez ∈ ΛF − ΛE and (1 − z)2 ∈
Λ∗ − ΛF . 2

We begin by a sufficient condition for a function of the form (1.1) to be
in the class ΛE(α).

Theorem 2.2 Suppose h ∈ Λ is given by (1.1). If Σ∞n=1(αn+1) | bn |≤ 1
then h ∈ ΛE(α).
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Proof. We get

Re[h(z)] = Re[1 + Σ∞n=1bnz
n] ≥ 1− Σ∞n=1 | bn |,

And

α | zh′
(z) |= α | Σ∞n=1nbnz

n |≤ αΣ∞n=1n | bn | .

Therefore if

1− Σ∞n=1 | bn |≥ αΣ∞n=1n | bn | orΣ∞n=1(αn+ 1) | bn |≤ 1.

Hence we get our result. 2

Let ΛE+(α) denote the subset of ΛE(α) such that all functions
h ∈ ΛE(α) having the following form:

h(z) = 1− Σ∞n=1bnz
n , bn > 0.

Corollary 2.1 A function h of the form h(z) = 1−Σ∞n=1bnz
n , bn > 0

is in ΛE+(α) if and only if Σ∞n=1(αn + 1)bn 6 1. The result is sharp for
the function h(z) given by

h(z) = 1− 1

αn+ 1
zn.

Corollary 2.2 The extreme points of ΛE+(α) are h0(z) = 1, hn(z) =
1 − 1

αn+1
zn, n ∈ N. And h ∈ ΛE+(α) if and only if h can be written in

the form

h(z) = Σ∞n=1cnhn(z) , cn > 0 , Σ∞n=1cn = 1.

Corollary 2.3 If h(z) = 1− Σ∞n=1bnz
n , bn > 0 is in ΛE+(α), then

1− r

1 + α
6| h(z) |6 1 +

r

1 + α
,

with equality for h(z) = 1− 1
1+α

z , z = r, ir.
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Theorem 2.3 Let h ∈ Λ be given by (1.1). Then h ∈ ΛE(α) if and only
if

Re[h(z) ∗ 1 + z(αeiθ − 1)

(1− z)2
] > 0, (For z ∈ U, θ ∈ (−π, π]).

Proof. We get

h(z) + αeiθzh
′
(z) = h(z) ∗ [

1

1− z
+ αeiθ

z

(1− z)2
] = h(z) ∗ 1 + z(αeiθ − 1)

(1− z)2
,

And

h ∈ ΛE(α)⇔ Re[h(z)] > α | zh′
(z) |> −αRe[eiθzh′

(z)].

Hence we get our result. 2

References

[1] Mohammad and M. Darus, (2011), On the class of starlike meromorphic
function of complex order, Rendiconti di Matematica, Serie VII Vol 31,
Roma, 53 61.

[2] H. Orhan, N. Magesh and V. K. Balaji, (2014), Initial coefficient bounds
for certain classes of meromorphic bi-univalent functions, Asian European
J. Math., 7(1), 19.

[3] Liu, J.-L. and H.M. Srivastava, (2003), Convolution conditions for
starlikeness and convexity of meromorphically multivalent functions,
Applied Mathematics Letters. 16: 13-16.

[4] P.L. Duren, (2000), Theory of Hp Spaces, Second Edition, Dover
Publications.

[5] P.L. Duren, (1983), Univalent Functions, SpringerVerlag, New York.

[6] R. Aghalary, A. Ebadian and M. Eshaghi Gordji, (2009), Subclasses
of Meromorphic Starlike Functions Connected to Multiplier Family,
Australian Journal of Basic and Applied Sciences, 3(4): 4416-4421.

86


