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Abstract

In this work, we present a computational method for solving second kind
nonlinear Fredholm Volterra integral equations which is based on the use of
Haar wavelets. These functions together with the collocation method are then
utilized to reduce the Fredholm Volterra integral equations to the solution of
algebraic equations. Finally, we also give some numerical examples that shows
validity and applicability of the technique.
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1 Introduction

Beginning from 1991 the wavelet method has been applied for solv-
ing integral equations, a short survey on this papers can be found in
[5]. The solutions are often quite complicated and the advantages
of the wavelet method get lost, therefore any kind of simplifica-
tions are welcome. One possibility for it is to make use of the Haar
wavelets. In fact, Haar wavelets have a number of advantages, in-
cluding: simplicity, orthogonality and very compact support. The
main benefits of the Haar wavelets method are sparse representa-
tion, fast transformation and possibility of implementation of fast
algorithm in matrix representation. The Haar basis is simplest in-
stance of spline wavelets, resulting when the polynomial degree is
set to zero, so computational costs with Haar wavelets is lesser. Dif-
ferent kind of basis functions have been used to solve and reduce
integral equations to a system of algebraic equations [1-15]. The
aim of this work is to present a numerical method for approximat-
ing the solution of nonlinear Fredholm Volterra integral equation
of the second kind

f(x) = g(x)+λ1

∫ x

0
k1(x, t)[f(t)]mdt+λ2

∫ 1

0
k2(x, t)[f(t)]ndt, (1.1)

where 0 ≤ x, t ≤ 1, m,n ≥ 1, g(x), k1(x, t) and k2(x, t) are
assumed to be in L2(R) on the interval 0 ≤ x, t < 1. We assume
that Eq. (1.1) has a unique solution f to be determined.
Definition 1. The Haar wavelet is the function defined on the real
line R as:

H(t) =


1, 0 ≤ t < 1

2
,

−1, 1
2
≤ t < 1,

0, elsewhere.

Now for n = 1, 2, . . . , write n = 2j + k with j = 0, 1, . . . and

k = 0, 1, . . . , 2j − 1 and define hn(t) = 2
j
2H(2jt − k)|[0,1]. Also,

define h0(t) = 1 for all t. Here the integer 2j, j = 0, 1, . . . , in-
dicates the level of the wavelet and k = 0, 1, . . . , 2j − 1 is the
translation parameter. It can be shown that the sequence {hn}∞n=0

is a complete orthonormal system in L2[0, 1] and for f ∈ C[0, 1],
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the series
∑

n < f, hn > hn converges uniformly to f [17], where
< f, hn >=

∫ 1
0 f(x)hn(x)dx.

2 Materials and Methods

A function f(x) defined over the interval [0, 1) may be expanded
as:

f(x) =
∞∑
n=0

fnhn(x), (2.1)

with fn =< f(x), hn(x) >, that it is an inner product on the unit
interval. In practice, only the first k-term of (2.1) are considered,
where k is a power of 2, that is,

f(x) ' fk(x) =
k−1∑
n=0

fnhn(x), (2.2)

with matrix form:

f(x) ' fk(x) = f th(x),

where, f = [f0, f1, . . . , fk−1]
t and h(x) = [h0(x), h1(x), . . . , hk−1(x)]t.

For a positive integer m, [f(x)]m may be approximated as:

[f(x)]m '
k−1∑
n=0

f̃nhn(x) = f̃ th(x),

where f̃ is a column vector whose elements are nonlinear combina-
tions of the elements of the vector f . In the next section, we consider
evaluation of f̃ in terms of f .
Similarly, k(x, t) ∈ L2[0, 1)2 may be approximated in the matrix
form as

k(x, t) ' ht(x)kh(t),

where, k = [kij]0≤i,j≤k−1 and kij =< hi(x), < k(x, t), hj(t) >>,
approximation of the kernel k(x, t) by wavelets is known as standard
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representation. It is a wavelet image of the kernel and is usually a
sparse matrix.

3 Evaluating f̃

For numerical implementation of the proposed method, we need
to calculate vector f̃ whose elements are nonlinear combination of
the elements of the vector f . For this purpose, we present the Haar
coefficient matrix H; it is a k × k matrix with the elements

H = [hn(tj)]0≤n≤k−1,1≤j≤k,

where the points tj are the collocation points

tj =
j − 1

2

k
, j = 1, 2, . . . , k.

Also, we define a k-set of Block-Pulse Function (BPF) as:

Bi(t) =

1, i−1
k
≤ t < i

k
, for all i = 1, 2, . . . , k,

0, elsewhere.
(3.1)

The functions Br(t) are disjoint and orthogonal. That is,

Bj(t)Bi(t) =

0, i 6= j,

Bi(t), i = j,
(3.2)

< Bi(t), Bj(t) > =

0, i 6= j,
1
k
, i = j.

(3.3)

It can be shown that h(t) = HB(t) [16], vector h(t) and matrix
H are already introduced and B(t) = [B1(t), . . . , Bk(t)]t. Using the
subject already discussed in section 2,

f(x) = f th(x) and [f(x)]m = f̃ th(x).

So,
f̃ th(x) = [f th(x)]m (3.4)
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orthonormality of the sequence {hn} on [0, 1), implies that

∫ 1

0
h(x)ht(x)dx = Ik×k,

where, Ik×k is the identity matrix of order k, so, from (3.4) we have

f̃ t =
∫ 1

0
f̃ th(x)ht(x)dx =

∫ 1

0
[f th(x)]mht(x)dx.

Hence,

f̃ t =
∫ 1

0
[f th(x)]mht(x)dx

=
∫ 1

0
[f th(x)]m−1f th(x)ht(x)dx

=
∫ 1

0
[f tHB(x)]m−1f tHB(x)Bt(x)Htdx. (3.5)

From (3.1) we have
0 ≤ t < 1

k
implies that B1(t) = 1 and Bi(t) = 0 for i = 2, . . . , k.

1
k
≤ t < 2

k
implies that B2(t) = 1 and Bi(t) = 0 for i = 1, . . . , k and

i 6= 2.
...
k−1
k
≤ t < 1 implies that Bk(t) = 1 and Bi(t) = 0 for i = 1, . . . , k−

1.
Also, disjoint property of BPFs leads to

B(t)Bt(t) =



B1(t) O

B2(t)
. . .

O Bk(t)


.
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Now, x ∈ [ i−1
k
, i
k
) implies that B(x) = ei where ei is i-th column of

the identity matrix of order k so

HB(x)Bt(x)Ht =



H0,1 . . . H0,k

H1,1 . . . H1,k

...
. . .

...

Hk−1,1 . . . Hk−1,k





0 Ø
. . .

1
. . .

Ø 0




H0,1 . . . Hk−1,1

H0,2 . . . Hk−1,2
...

. . .
...

H0,k . . . Hk−1,k



=



H0,iH0,i H0,iH1,i . . . H0,iHk−1,i

H1,iH0,i H1,iH1,i . . . H1,iHk−1,i
...

...
. . .

...

Hk−1,iH0,i Hk−1,iH1,i . . . Hk−1,iHk−1,i


,

hence,

f tHB(x)Bt(x)Ht =
[
H0,i

∑k−1
r=0 frHr,i, H1,i

∑k−1
r=0 frHr,i, ..., Hk−1,i∑k−1

r=0 frHr,i,
]
.

(3.6)
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Again for x ∈ [ i−1
k
, i
k
) we can write

f tHB(x) = [f0, f1, . . . , fk−1]



H0,1 H0,2 . . . H0,k

H1,1 H1,2 . . . H1,k

...
...

. . .
...

Hk−1,1 Hk−1,2 . . . Hk−1,k





0
...

0

1

0
...

0


=

k−1∑
r=0

frHr,i. (3.7)

Therefore, for evaluating f̃ and by substituting (3.6)-(3.7) into (3.5)
we can proceed as follows

f̃ t =
∫ 1
0 [f tHB(x)]m−1f tHB(x)Bt(x)Htdx

=
∑k

i=1

∫ i
k
i−1
k

(∑k−1
r=0 frHr,i

)m−1[
H0,i

∑k−1
r=0 frHr,i, H1,i

∑k−1
r=0 frHr,i, ..., Hk−1,i∑k−1

r=0 frHr,i,
]
dx

= 1
k

∑k
i=1

(∑k−1
r=0 frHr,i

)m−1[
H0,i

∑k−1
r=0 frHr,i, H1,i

∑k−1
r=0 frHr,i, ...,

Hk−1,i
∑k−1

r=0 frHr,i,
]
dx

= 1
k

[∑k
i=1H0,i

(∑k−1
r=0 frHr,i

)m
, ...,

∑k
i=1Hk−1,i(∑k−1

r=0 frHr,i

)m]
,

if we apply the definition H = [hn(tj)]0≤n≤k−1,1≤j≤k, we obtain

f̃ =
1

k

 k∑
i=1

h0(ti)

(
k−1∑
r=0

frhr(ti)

)m

, ...,
k∑

i=1

hk−1(ti)

(
k−1∑
r=0

frhr(ti)

)m
t .

(3.8)
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4 Second kind nonlinear Volterra Fredholm integral equa-
tion

Now consider the nonlinear Fredholm Volterra integral equation of
the second kind with nonlinear regular part:

f(x) = g(x)+λ1

∫ x

0
k1(x, t)[f(t)]mdt+λ2

∫ 1

0
k2(x, t)[f(t)]ndt, (4.1)

where 0 ≤ x, t ≤ 1 and m,n ≥ 1 as before, in the matrix form
we have:

f(x) ' ht(x)f , (4.2)

g(x) ' ht(x)g, (4.3)

k1(x, t) ' ht(x)k1h(t), (4.4)

k2(x, t) ' ht(x)k2h(t), (4.5)

[f(x)]m ' ht(x)f̃m, (4.6)

[f(x)]n ' ht(x)f̃n, (4.7)

by substituting the approximations (4.2)-(4.7) into (4.1) we obtain

ht(x)f = ht(x)g + λ1

∫ x

0
ht(x)k1h(t)ht(t)f̃mdt (4.8)

+ λ2

∫ 1

0
ht(x)k2h(t)ht(t)f̃ndt

= ht(x)g + λ1h
t(x)k1

(∫ x

0
h(t)ht(t)dt

)
f̃m (4.9)

+ λ2h
t(x)k2

(∫ 1

0
h(t)ht(t)dt

)
f̃n

= ht(x)g + λ1h
t(x)k1s(x)f̃m (4.10)

+ λ2h
t(x)k2f̃

n, (4.11)
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where, s(x) =
∫ x
0 h(t)ht(t)dt. Now for evaluating s(x) at the collo-

cation points tj we may proceed as follows

B(x)Bt(x) =


B1(x) ∅

. . .

∅ Bk(x)



= B1(x)



1 ∅

0
. . .

∅ 0


+B2(x)



0 ∅

1

0
. . .

∅ 0


+ · · ·+Bk(x)



0 ∅

0
. . .

0

∅ 1


=

k∑
i=1

Bi(x)d(i),

where, d(i) is a k × k matrix with the elements

d(i)
mn =

1, m = n = i,

0, m 6= i or n 6= i,

therefore we have

h(x)ht(x) = HB(x)Bt(x)Ht

= H(
k∑

i=1

Bi(x)d(i))Ht

=
k∑

i=1

Bi(x)Hd(i)Ht. (4.12)
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By integrating (4.9) we obtain:

s(t) =
∫ t

0
h(x)ht(x)dx

=
k∑

i=1

∫ t

0
Bi(x)dxHd(i)Ht

=
k∑

i=1

ni(t)Hd(i)Ht, (4.13)

where, ni(t) =
∫ t
0 Bi(x)dx, t ∈ [0, 1]. Now by using (3.1) and simple

calculation we obtain,
n1(t1) =

∫ t1
0 B1(x)dx = 1

2k
and ni(t1) = 0 for i = 2, . . . , k.

n1(t2) =
∫ t2
0 B1(x)dx = 1

k
, n2(t2) =

∫ t2
0 B2(x)dx = 1

2k
and ni(t2) = 0

for i = 3, . . . , k.
...
n1(tk) =

∫ tk
0 B1(x)dx = 1

k
, . . . , nk−1(tk) =

∫ tk
0 Bk−1(x)dx = 1

k
and

nk(tk) =
∫ tk
0 Bk(x)dx = 1

2k
.

So by evaluating (4.10) at the collocation points tj we obtain

s(t1) =
1

2k
Hd(1)Ht,

s(t2) =
1

k
Hd(1)Ht +

1

2k
Hd(2)Ht,

...

s(tk) =
1

k
Hd(1)Ht + · · ·+ 1

k
Hd(k−1)Ht +

1

2k
Hd(k)Ht,

or in abstract form

s(t1) =
1

2k
Hd(1)Ht,

s(tj) =
1

k

j−1∑
i=1

Hd(i)Ht +
1

2k
Hd(j)Ht, for j = 2, . . . , k.

Collocating (4.8) at the points tj, j = 1, 2, ..., k gives

ht(tj)f = ht(tj)g + λ1h
t(tj)k1s(tj)f̃

m + λ2h
t(tj)k2f̃

n, (4.14)

88



which is a nonlinear system of algebraic equations, and can be
solved for elements f0, f1, ..., fk−1 by Newton’s iterative method and
desired approximation for f(x) can be obtained by fk(x) as

fk(x) =
k−1∑
n=0

fnhn(x).

5 Error Analysis

Theorem 1. If a differentiable function f(x) with bounded first
derivative on (0,1) is represented in a series of Haar wavelets we have
‖fk(x)− f(x)‖ ≤ M√

3
1
k
, which implies that limk→∞ fk(x) = f(x).

In [1] it is established that if xi ∈ [0, 1), i = 1, . . . , l be l equidistance
points and calculate f ′(xi) for i = 1, 2, . . . , l, then ε+max1≤i≤l |f ′(xi)|
may be considered as an estimation of M . Clearly, the estimation
would become more precise if l increases and ε can be chosen by
user(say, ε = 1).
Proof. See [1].

6 Numerical Examples

Now for numerical implementing of presented method, we choose 2
examples with exact solution for comparing with the approximate
solution. Results have shown in table 1 and table 2 for example 1
and example 2 respectively for k=8.
Example 1. Consider the following nonlinear Volterra-Fredholm
integral equation

f(x) = ex − 1

2
(e2x − 1) +

∫ x

0
[f(t)]2dt, 0 ≤ x < 1,

with exact solution f(x) = ex.

Table 1: Numerical result for example 1 with k=8
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t Exact Approximate for k=8

0.1 1.1051 1.0684

0.2 1.2214 1.2121

0.3 1.3498 1.3758

0.4 1.4918 1.5529

0.5 1.6487 1.7080

0.6 1.8221 1.7780

0.7 2.0137 2.0278

0.8 2.2255 2.2744

0.9 2.4596 2.5322

Example 2. Consider the following nonlinear Volterra-Fredholm
integral equation

f(x) = ex − 1

9
(1 + 2e3)x+

∫ 1

0
xt[f(t)]3dt, 0 ≤ x < 1,

with exact solution f(x) = ex.

Table 2: Numerical result for example 2 with k=8
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t Exact Approximate for k=8

0.1 1.1051 1.0658

0.2 1.2214 1.2091

0.3 1.3498 1.3712

0.4 1.4918 1.5547

0.5 1.6487 1.7225

0.6 1.8221 1.7625

0.7 2.0137 1.9978

0.8 2.2255 2.2641

0.9 2.4596 2.5258

7 Conclusion

In presented work we introduced a method to solve the nonlin-
ear Volterra Fredholm integral equations. Haar wavelets together
with the collocation method were used to reduce the problem to
the solution of nonlinear algebraic equations. For other orthogonal
polynomials such as Legendre and Chebyshev polynomials the cal-
culation procedures are usually too tedious, although some recur-
sive formula are available. These polynomials are in no way able to
compare with Haar wavelets expansion with respect to computation
time and data storage requirements. So the fast, local and multi-
plicative properties of Haar wavelets were used for solving second
kind nonlinear Fredholm Volterra integral equations. Error analysis
states more accurate of the approximated solution may be obtained
by using larger k.
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