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Abstract

The main attempt of this article is extension the method so that it generally
would be able to consider the classical solution of the systems and moreover,
produces the optimal trajectory and control directly at the same time. There-
fore we consider a control system governed by a bone marrow cancer equation.
Next, by extending the underlying space, the existence of the solution is con-
sidered and pair of the solution are identified simultaneously. In this manner
a numerical example is also given.
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Introduction

Bone marrow is the soft, spongy tissue in the center of most bones. It
contains blood-forming immature cells called stem cells. Stem cells can
develop into red blood cells (which carry oxygen through your body),
white blood cells (which fight infection) and platelets (which help with
blood clotting). When cancer forms in the blood-forming cells of the bone
marrow, it is called bone marrow cancer.
Since the bone marrow produces the blood cells, clinicians typically will
take a blood cell count from a patient prior to giving further doses of
chemotherapy to see if the blood cell count is above some minimum level.
If it is too low, clinicians will either delay the treatment or give a reduced
dose. Thus the blood count becomes a deciding factor in designing the
treatment.
The purpose of this article is to find optimal strategies for chemotherapy
treatments of the cancer, where the blood cell count and then indirectly
the bone marrow are kept above a minimum level.

1 Control Model

In the model of the bone marrow proliferating cells P and quiescent cells
Q are distinguished. The growth rate of the proliferating cells is denoted
by γ and the transition rates from proliferating to quiescent cells and
vice versa are denoted by α and β respectively. The rate at which bone
marrow enters the blood stream is denoted by ρ and the natural death
rate of the proliferating cells is called δ. Drug treatment is modeled by
a bounded measurable function u which takes values in the compact
interval [0, 1] and represents the drug dosage with u = 1 corresponding
to a full dose and u = 0 stands for no control being applied. While the
drugs are given to kill cancer cells, they also kill normal tissue which is
considered as bone marrow in this model. If a parameter s > 0 is added
to model the effectiveness of the drug as in [5],then the overall dynamics
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can be described as

dP

dt
= (γ − δ − α− su(t))P (t) + βQ(t) (1.1)

dQ

dt
= αP (t)− (λ+ β)Q(t) (1.2)

1.1 Objective

The objective of any treatment is to kill the cancer, but to keep the tox-
icity to the normal tissue acceptable. Since bone marrow produces blood
cells, clinically this is realized by taking a blood cell count of the patient
before a treatment session and a full treatment is only administered if the
blood cell count is above a certain minimum and usually fixed level. The
objective therefore becomes to give as much of the drug as possible since
this will kill the cancer cells, but at the same time keep the bone marrow
high.Then the objective function that to be maximized id defined as

J(P,Q, u) =
∫ T

0
[a(P (t) +Q(t))− b

2
(1− u(t))2]dt (1.3)

over the class U of all Lebesgue measurable functions which take values
in the control set U = [0, 1] a.e, a and b are positive constants.
In (1.3) we are maximizing the benefit on P cells count, and minimiz-
ing the systemic cost which is based on the percentage effects of the
chemotherapy given.

2 Transformation by Measure Theory Technique

we consider the following optimal control problem:
Maximize

∫ T
0 [a(P (t) +Q(t)− b

2
(1− u(t))2)]dt

Subject to : Ṗ (t) = (γ − δ − α− su(t))P (t) + βQ(t) (2.4)
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Q̇(t) = αP (t)− (λ+ β)Q(t)

P (0) = P0, Q(0) = Q0.

We define the function f0 : J × P ×Q× U → R as following where P,Q
and U are compact subsets of R.

f0(t, p(t), q(t), u(t)) = a(p(t) + q(t))− b

2
(1− u(t))2 (2.5)

then we write the problem (2.4) in the following form:

Maximize Ξ[p(.), q(.), u(.)] =
∫ T

0 f0(t, p(t), q(t), u(t))dt

Subject to : ṗ(t) = f1(t, p(t), q(t), u(t)),

q̇(t) = f2(t, p(t), q(t), u(t)),

p(0) = p0, q(0) = q0,
where

f1(t, p(t), q(t), u(t)) = (γ − δ − α− su(t))p(t) + βq(t) (2.6)

f2(t, p(t), q(t), u(t)) = αp(t)− (λ+ β)q(t). (2.7)

Now, Let Ω = J×P ×Q×U and f1 : Ω→ R and f2 : Ω→ R continuous
functions, where the trajectory function p(t) is absolutely continuous and
the control function u(t) is Lebesgue-measurable.

Definition. Let Υ(t) = [p(t), q(t)] and A = P ×Q, pair W = [Υ(.), u(.)]
is said to be admissible(The set of admissible pairs is denoted by W) if

(1) the trajectory function Υ(.) is absolutely continuous, and Υ(t) ∈ A.
(2) the pair W satisfies (2.6)-(2.7) a.e. on J0([4],[5]).

Now, one seek to find an optimal trajectory-control pairW ∗ = [Υ∗(.), u∗(.)]
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such that maximization J(Υ, u) in (1.3). In general the maximization
of the functional (2.6)-(2.7) over W is not possible. The set W may be
empty, even if W is not empty, the functional measuring the performance
of the system may not achieve its maximum in this set. It appears that
the situation may become more promising if the set W could somehow
be made larger. In the following we use a transformation to enlarge the
set W .
Let W = [Υ(.), u(.)] be an admissible pair, and B an open ball in R3

containing J × A, and Ć(B) be the space of all real-valued continu-
ously differentiable functions on B such that the first derivation is also
bounded.
Let φ ∈ Ć(B), and define function φf1and φf2 as follows:

φ
(1)
f1

(t,Υ(t), u(t)) = φΥ(t,Υ(t)).f1(t,Υ(t), u(t)) + φt(t,Υ(t)) (2.8)

φ
(2)
f2

(t,Υ(t), u(t)) = φΥ(t,Υ(t)).f2(t,Υ(t), u(t)) + φt(t,Υ(t)) (2.9)

with (t,Υ(t), u(t)) ∈ Ω for all t ∈ J .
Since W = [Υ(.), u(.)] is an admissible pair, we have;

∫ T
0 φ

(1)
f1

(t,Υ(t), u(t))dt =

=
∫ T

0 φΥ(t,Υ(t)).f1(t,Υ(t), u(t)) + φt(t,Υ(t)) =
∫ T

0 φ́(t,Υ(t))dt

= φ(T, Ύ(T ))− φ(0, Ύ(0)) = ∆φ1

Similar to:

∫ T
0 φ

(2)
f2

(t,Υ(t), u(t))dt =

=
∫ T

0 φΥ(t,Υ(t)).f2(t,Υ(t), u(t)) + φt(t,Υ(t)) =
∫ T

0 φ́(t,Υ(t))dt
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= φ(T, Ύ(T ))− φ(0, Ύ(0)) = ∆φ2

for all φ ∈ Ć(B).Let D(J0) be the space of infinitely differentiable real-
valued functions with compact support in J0 ([7],[2],[1]). Define

ψ1(t,Υ(t), u(t)) = p(t)ψ́(t) + f1(t,Υ(t), u(t)).ψ(t) (2.10)

ψ2(t,Υ(t), u(t)) = q(t)ψ́(t) + f2(t,Υ(t), u(t)).ψ(t) (2.11)

for all ψ ∈ D(J0), then for ψ ∈ D(J0) we have:

∫ T
0 ψ1(t,Υ(t), u(t))dt =

∫ T
0 p(t)ψ́(t)dt+

∫ T
0 f1(t,Υ(t), u(t)).ψ(t)dt

= p(t)ψ(t)|J −
∫ T

0 (ṕ(t)− f1(t,Υ(t), u(t))ψ(t) = 0

also

∫ T
0 ψ2(t,Υ(t), u(t))dt =

∫ T
0 q(t)ψ́(t)dt+

∫ T
0 f2(t,Υ(t), u(t)).ψ(t)dt

= q(t)ψ(t)|J −
∫ T
0 (q́(t)− f2(t,Υ(t), u(t))ψ(t) = 0

since the trajectory and control function are an admissible pair satisfying
(2.10)-(2.11) a.e. on J0, and since the function ψ has compact support
in J0,ψ(0) = ψ(T ) = 0, also by choosing a variable t, we have

∫ T

0
g(t,Υ(t), u(t))dt = ag, g ∈ C1(Ω)

where C1(Ω) is subspace of the space C(Ω) of all continuous function on
Ω depending only on the variable t.
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Now, The mapping

ΛW : F →
∫
J
F (t,Υ(t), u(t))dt, F ∈ C(Ω)

defines a positive linear functional on C(Ω). By the Riesz representation
theorem ([5]) there exist a unique positive Radon measure µ on Ω such
that

∫
J F (t,Υ(t), u(t))dt =

∫
Ω F dµ = µ(F ), F ∈ C(Ω)

Thus, the maximization of the functional Ξ in (1.3) over W is equivalent
to the minimization of

Ξ(µ) =
∫

Ω
f0dµ = µ(f0) ∈ R (2.12)

over the set of positive measures µ corresponding to admissible pairs w,
which satisfy

µ(φ
(i)
f ) = ∆φ, i = 1, 2 φ ∈ Ć(B) (2.13)

µ(ψi) = 0, i = 1, 2 ψ ∈ D(J0) (2.14)

µ(g) = ag g ∈ C1(Ω). (2.15)

(where C1(Ω) is subspace of the space C(Ω) of all continuous function
on Ω depending only on the variable t.)
Define the set of all positive Radon measures on Ω satisfying (2.13),(2.14)
and (2.15) as Σ. Also we assume M+(Ω) be the set of all positive Radon
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measures on Ω. Now if we topologize the space M+(Ω) by the weak∗-
topology, it can be shown that Σis compact([4]). In the sense of this
toplogy,the functional Ξ : Σ → R define by (2.12) is a linear continuous
functional on a compact set Σ, thus it attains its minimum on Σ, and so
the measure theoretical problem, which consist of finding the minimum of
the functional (2.12), over the subset of M+(Ω), possesses a minimizing
solution, µ∗, in Σ,([4]).

3 Metamorphosis

We first consider the maximization of the functional (2.12)(still infinite
dimensional) over a subset of M+(Ω) which is defined by requiring only
a finite number of the constrains in (2.13-2.15) to be satisfied. This will
be achieved by choosing countable sets of function whose linear combi-
nations are dense in the appropriate spaces, and then selecting a finite
number of them. In the first step, we obtain an approximation to the
optimal measure µ∗ by a finite combination of the atomic measure, that
is , from the Theorem A.5 in [4], µ∗ has the form

µ∗ =
N∑
k=1

α∗
i δ(z

∗
i )

where α∗
i ≥ 0 and z∗i ∈ Ω for i = 1, 2, ..., N(here δ(z) is a unitary atomic

measure, characterized by δ(z)(F ) = F (z) where F ∈ C(Ω)).Then ,
we construct a piecewise confore in the infinite dimensional linear pro-
gramming problem (2.12) with restriction defined by (2.13-2.15), we shall
consider only a finite number M1 of functions φ as

φ(1) = p, φ(2) = q (3.16)

φ(3) = p2, φ(4) = q2 (3.17)

...
...
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Also, we choose M2 functions with compact support in the following form:

ψr(t) =

 sin[2πr
(

t−0
T−0

)
] r = 1, 2, ...,M21,

1− cos[2πr
(

t−0
T−0

)
] r = M21 + 1,M21 + 2, ..., 2M21.

(3.18)

where, M2 = 2M21.
Finally, it is necessary to choose L number of functions of time only, as
follows:

gs(t) =

 1 t ∈ Js,

0 otherwise,
(3.19)

where Js =
(

0+(s−1)(T−0)
L

, 0+s(T−0)
L

)
, s = 1, 2, ..., L

The set Ω = J × A × U will be covered with a grid, where the grid
will be defined by taking all points in Ω as zj = (tj, pj, qj, uj); the points
in the grid will be numbered sequentially from 1 to N , which can be es-
timated numerically. Instead of the infinite-dimensional linear program-
ming problem (2.13-2.15), we consider the following finite dimensional
linear programming problem,

Maximize
∑N

j=1 αjf0(zj)

subject to :
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

∑N
j=1 αjφ

(i)
f (zj) = ∆φi i = 1, 2, ...,M1,

∑N
j=1 αjψr(zj) = 0 r = 1, 2, ...,M2,

∑N
j=1 αjgs(zj) = ags s = 1, 2, ..., L.

(3.20)

4 Numerical Example

In medical control problem (2.4), we assumed the parameters as :

Mean, (Range) Units=day−1

γ 1.47

α 5.643

λ 0.164

δ 0.0

β 0.48

s 1..0

a = b 1.0
we assume
t ∈ J = [0, 2], p(t) ∈ P = [0, 2], q(t) ∈ Q = [0, 2], u(t) ∈ U = [0, 1],

and P (0) = Q(0) = 1.
let the set J = [0, 2] divided into 10 subinterval,the sets P,Q, and U are
divided respectively into 10 subintervals, so that Ω = J × P ×Q× U is
divided into 10,000 equal subsets. we assume Zm = (tm, pm, qm, um)
, m = 1, 2, ...., 10, 000,and

m = i+ 10(j − 1) + 100(k − 1) + 1000(l − 1)
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i = 1, . . . , 10, j = 1, . . . , 10, k = 1, . . . , 10, l = 1, . . . , 10,
and M1 = 4,M2 = 16, L = 10. The function gs, s = 1, . . . , L were chosen
as before.

the following linear programming problem established with 10000 vari-
able and 30 constraints.

Maximize
∑10,000

j=1 αj{a(pj + qj)− b
2
(1− uj)2}

Subject to :

∑10,000
m=1 αm{Am} = −0.8

∑10,000
m=1 αm{Bm} = 0.69

∑10,000
m=1 αm{2pmAm} = −0.96

∑10,000
m=1 αm{2qmBm} = 1.8561

∑10,000
m=1 αm{πhpm cosπh tm + Am sinπh tm} = 0

∑10,000
m=1 αm{πhqm cosπh tm +Bm sinπh tm} = 0

∑10,000
m=1 αm{πhpm sinπh tm + Am (1− cosπh tm)} = 0

∑10,000
m=1 αm{πhqm cosπh tm +Bm (1− cosπh tm)} = 0

α1 + α2 + . . .+ α1000 = 0.2

α1001 + α1002 + . . .+ α2000 = 0.2

...
...

α9001 + α9002 + . . .+ α10,000 = 0.2

m = 1, . . . , 10000 αm ≥ 0
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where
h = 1, 2, 3, 4 Am = (γ− δ−α− sum)pm + βqm, Bm = αpm− (λ+ β)qm

Therefore we applied the subroutine DLPRS from IMLS library of
Compaq Visual Fortran to solve the above linear programming prob-
lem by Revised Simplex Method.The optimal valued of objective function
was obtained as 0.0187549258021.

Fig1:P cells population in absence of treatment

Fig2:P cells population during treatment time

Fig3: Control
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5 Conclusion

In this example, a full dose is applied more than just at the final time
and partial doses are not optimal. This would agree with experimental
and clinical data on the model, but only to some extent. The control we
obtained in our example have only one switching which means that in
one therapy interval there is only one full-dose session rather than short
drug pulses at appropriate intervals as clinical data indicate. However,
it is our belief that combining several short therapy intervals one should
be able to achieve the desired effect.
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