

Mathematics Scientific Journal Vol. 7, No. 1, (2011), 63-67



## Random fixed point of Meir-Keeler contraction mappings and its application

H. Dibachi $^{a,1}$ 

<sup>a</sup> Department of Mathematics, Islamic Azad University, Arak-Branch, Arak, Iran. Received 18 April 2011; Accepted 12 July 2011

#### Abstract

In this paper we introduce a generalization of Meir-Keeler contraction for random mapping  $T: \Omega \times C \to C$ , where C be a nonempty subset of a Banach space X and  $(\Omega, \Sigma)$  be a measurable space with  $\Sigma$  being a sigma-algebra of subsets of  $\Omega$ . Also, we apply such type of random fixed point results to prove the existence and unicity of a solution for an special random integral equation.

Keywords: Random fixed point, Meir-Keeler contraction, measurable space, *L*-function. 2000 AMS Subject Classification:47H10

## 1 Introduction

It is well known that in 1969, Meir and Keeler [1] proved a theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point as follows:

**Theorem 1.1.** Let (X, d) be a complete metric space and let  $T : X \to X$  be a mapping such that for each  $\varepsilon > 0$  there exists  $\delta > 0$  such that

$$d(x,y) < \varepsilon + \delta \quad implies \quad d(Tx,Ty) < \varepsilon \tag{1.1}$$

for all  $x, y \in X$ . Then T has a unique fixed point.

 $<sup>^{1}{\</sup>rm E}\text{-mail:h-dibachi@iau-arak.ac.ir}$ 

After that, many authors have extended, generalized and improved Banach's fixed point theorem in several ways (see for example [2]).

In this paper we proved random type of Meir-Keeler's theorem in separable Banach space. Also, we proved a new corollary to prove the existence and uniqueness of a solution for a new random integral equation.

## 2 Preliminaries

The following preliminaries chosen from [3, 4].

Let  $(\Omega, \Sigma)$  be a measurable space with  $\Sigma$  being a sigma-algebra of subsets of  $\Omega$  and let C be a nonempty subset of a Banach space X. A mapping  $\xi : \Omega \to X$  is measurable if  $\xi^{-1}(U) \in \Sigma$  for each open subset U of X. The mapping  $T : \Omega \times C \to C$  is a random map if and only if for each fixed  $x \in C$  the mapping  $T(.,x) : \Omega \to C$  is measurable, and it is continuous if for each  $\omega \in \Omega$ , the mapping  $T(\omega,.) : C \to X$  is continuous. A measurable mapping  $\xi : \Omega \to X$  is a random fixed point of the random map  $T : \Omega \times C \to X$  if and only if  $T(\omega, \xi(\omega)) = \xi(\omega)$  for each  $\omega \in \Omega$ . We denote by RF(T) the set of all random fixed points of a random map T and  $T_n(\omega, x)$  the n-th iteration  $T(\omega, T(\omega, T(..., T(\omega, x))))$  of T. The letter I denotes the random mapping  $I : \Omega \times C \to C$  defined by  $I(\omega, x) = x$  and  $T^0 = I$ . We denote by  $M(\Omega, X)$  the set of all measurable functions from  $\Omega$  into a Banach space X.

### 3 Main result

**Theorem 3.1.** Let X be a separable Banach space and let  $T : \Omega \times X \to X$  be a mapping such that for each  $\varepsilon > 0$  there exists  $\delta > 0$  such that

$$||\xi(\omega) - \eta(\omega)|| < \varepsilon + \delta \quad implies \quad ||T(\omega, \xi(\omega)) - T(\omega, \eta(\omega))|| < \varepsilon \tag{3.1}$$

for all  $\eta, \xi \in M(\Omega, X)$ . Then T has a unique random fixed point.

*Proof.* One can see easily that  $||T(\omega,\xi(\omega)) - T(\omega,\eta(\omega))|| < ||\xi(\omega) - \eta(\omega)||$ , for all  $\eta,\xi \in M(\Omega,X)$ .

Let  $\xi_0 \in M(\Omega, X)$  be arbitrary and put  $\xi_{n+1} = T(., \xi_n(.))$ , for each  $n \in \mathbb{N}$ . We can show that

$$||\xi_{n+1}(\omega) - \xi_n(\omega)|| \le ||\xi_n(\omega) - \xi_{n-1}(\omega)||.$$
(3.2)

For each  $\omega \in \Omega$  and  $n \in \mathbb{N}$ . Suppose that (3.2) does not holds. Then, there exists  $n_0 \in \mathbb{N}$  such that

$$||\xi_{n_0+1}(\omega) - \xi_{n_0}(\omega)|| > ||\xi_{n_0}(\omega) - \xi_{n_0-1}(\omega)||.$$
(3.3)

Thus for each  $\delta > 0$  we have

$$||\xi_{n_0}(\omega) - \xi_{n_0-1}(\omega)|| < ||\xi_{n_0}(\omega) - \xi_{n_0+1}(\omega)|| + \delta.$$
(3.4)

It means that,

$$||T(\omega,\xi_{n_0}(\omega)) - T(\omega,\xi_{n_0-1}(\omega))|| < ||\xi_{n_0}(\omega) - \xi_{n_0+1}(\omega)||$$
(3.5)

and this is a contradiction. Therefore, (3.2) holds. Thus,  $\{\xi_n\}$  is a nondecreasing and bounded below so is convergent to  $\nu$ . One can show that  $\nu = 0$ . Suppose that  $\nu > 0$ then there exists  $\delta > 0$  such that

$$||\xi_{n+1}(\omega) - \xi_n(\omega)|| < \nu + \delta \tag{3.6}$$

Thus, (3.11) shows that

$$||\xi_{n+1}(\omega) - \xi_{n+2}(\omega)|| < \nu$$
 (3.7)

and this is a contradiction. Hence,  $\nu = 0$ . Now we show that  $\{\xi_n\}$  is a Cauchy sequence.

If this is not, then there is a  $\varepsilon > 0$  such that for all natural number k, there are  $m_k, n_k > k$  so that the relation  $||\xi_{m_k}(\omega) - \xi_{n_k}(\omega)|| \ge \varepsilon$ . Choose a natural number M such that  $||\xi_{i+1}(\omega) - \xi_i(\omega)|| < \frac{\varepsilon}{2}$  for all  $i \ge M$ . Also, take  $m_M \ge n_M > M$  so that the relation  $||\xi_{m_M}(\omega) - \xi_{n_M}(\omega)|| \ge \varepsilon$ . Then,

$$\begin{aligned} ||\xi_{n_M-1}(\omega) - \xi_{n_M+1}(\omega)|| &\leq ||\xi_{n_M-1}(\omega) - \xi_{n_M}(\omega)|| + ||\xi_{n_M}(\omega) - \xi_{n_M+1}(\omega)|| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \end{aligned}$$
(3.8)

Hence,  $||\xi_{n_M}(\omega) - \xi_{n_M+2}(\omega)|| < \frac{\varepsilon}{2}$ . Similarly,  $||\xi_{n_M}(\omega) - \xi_{n_M+3}(\omega)|| < \frac{\varepsilon}{2}$ . Thus,

$$||\xi_{n_M}(\omega) - \xi_{m_M}(\omega)|| < \frac{\varepsilon}{2}$$
(3.9)

which is a contradiction. Therefore  $\{\xi_n(\omega)\}_{n=1}^{\infty}$  is a Cauchy sequence. Since X is a Banach space, there is  $u(\omega) \in X$  such that  $\xi_n(\omega) \to u(\omega)$ . Since  $||T(\omega, \xi(\omega)) - T(\omega, \eta(\omega))|| < ||\xi(\omega) - \eta(\omega)||$ , for all  $\xi, \eta \in X$  with  $\xi \neq \eta$ , thus, for each  $\varepsilon \gg 0$ , there is a natural number N > 0 such that for all n > N,  $||\xi_n(\omega) - u(\omega)|| < \varepsilon$ . Since  $||T(\omega, \xi_n(\omega)) - T(\omega, u(\omega))|| < ||\xi_n(\omega) - u(\omega)||$  thus  $||T(\omega, \xi_n(\omega)) - T(\omega, u(\omega))|| < \varepsilon$ , for all n > N. It means that  $T(\omega, \xi_n(\omega)) \to T(\omega, u(\omega))$ . In the other side,  $T(\omega, \xi_n(\omega)) =$  $\xi_{n+1}(\omega) \to u(\omega)$  and the limit point is unique thus,  $T(\omega, u(\omega)) = u(\omega)$ . Now if u, vbe two distinct random fixed points for T then,

$$||u(\omega) - v(\omega)|| = ||T(\omega, v(\omega)) - T(\omega, u(\omega))|| < ||u(\omega) - v(\omega)||$$
(3.10)

which is a contradiction. Therefore, T has a unique random fixed point.

**Definition 3.1.** A mapping  $\varphi : [0, +\infty) \to [0, +\infty)$  is called an *L*-function, if and only if,  $\varphi(0) = 0$ ,  $\varphi(t) > 0$  for each t > 0 and for each  $\varepsilon > 0$  there exists  $\delta > 0$  such that for each  $t \in [\varepsilon, \varepsilon + \delta]$ ,  $\varphi(t) \leq \varepsilon$ .

**Theorem 3.2.** Let X be a separable Banach space and let  $T : \Omega \times X \to X$  be a mapping such that

$$||T(\omega,\xi(\omega)) - T(\omega,\eta(\omega))|| \le \varphi(||\xi(\omega) - \eta(\omega)||)$$
(3.11)

for all  $\eta, \xi \in M(\Omega, X)$  where,  $\varphi : [0, +\infty) \to [0, +\infty)$  be an *L*-function. Then, *T* has a unique random fixed point.

*Proof.* For each  $\xi, \eta \in M(\Omega, X)$  and for each  $\varepsilon > 0$ , there exists  $\delta > 0$  such that

$$\varepsilon \le ||\xi(\omega) - \eta(\omega)|| < \varepsilon + \delta.$$
(3.12)

Since  $\varphi$  be an *L*-function thus

$$\varphi(||\xi(\omega) - \eta(\omega)||) \le \varepsilon \tag{3.13}$$

By using (3.11) we conclude that

$$||T(\omega,\xi(\omega)) - T(\omega,\eta(\omega))|| < \varepsilon$$
(3.14)

It means that, T satisfies in Meir-Keeler contraction and so T has a unique random fixed point.  $\hfill \Box$ 

# 4 Random Integral Equation

**Example 4.1.** Consider now the space  $X = \{x \in C([0,1]) : ||x||_{\infty} < \infty\}$  and let  $(\Omega, \Sigma, p)$  be a given probability space. Let  $K : \Omega \times \mathbb{R} \to \mathbb{R}$  be a mapping such that

$$|K(\omega, z_1) - K(\omega, z_2)| \le \varphi(|z_1 - z_2|)$$
(4.1)

where  $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$  be an *L*-function. Given a measurable function  $\xi_0$  we are looking for solutions of the random integral equation  $\xi(\omega) = T(\omega, \xi(\omega))$  where

$$T(\omega,\xi(\omega)) = \xi_0(\omega) + \int_0^t K(s,[\xi(\omega)](s)) \, ds.$$

$$(4.2)$$

This can be considered as an extension of classical Picard operator for DEs with noise on the initial condition.

It is trivial to see that  $T(.,\xi)$  is measurable and  $T: \Omega \times X \to X$ . It means that, T is a random operator.

$$\begin{aligned} |T(\omega, [\xi(\omega)](s)) - T(\omega, [\eta(\omega)](s))| &\leq \int_0^t |K(s, [\xi(\omega))](s) - K(s, [\eta(\omega))](s)| \ ds \\ &\leq \int_0^t \varphi(|[\xi(\omega)](s) - [\eta(\omega)](s)|) \ ds \\ &\leq \int_0^t \varphi(||\xi(\omega) - \eta(\omega)||_{\infty}) \ ds \\ &\leq \varphi(||\xi(\omega) - \eta(\omega)||_{\infty}). \end{aligned}$$

$$(4.3)$$

Thus,

$$||T(\omega,\xi(\omega)) - T(\omega,\eta(\omega))||_{\infty} \le \varphi(||\xi(\omega) - \eta(\omega)||_{\infty})$$
(4.4)

and this means that T satisfies in Theorem 3.2. Therefore, T has a random fixed point as a unique solution for integral equation (4.2).

## References

- A. Meir, E. Keeler. A theorem on contraction mapping, J. Math. Anal. Appl. 28 (1969), 326-329.
- [2] A. Branciari. A fixed point theorem for mapping satisfying a general contractive condition of integral type, *Int. J. Math. Math. Sci.* **29** (2002), 531-536.
- [3] I. Beg, Minimal displacement of random variables under lipschitz random maps, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 19(2002), 391397
- [4] S. Plubtieng, P. Kumam, R. Wangkeeree, Approximation of a common random fixed point for a finite family of random operators, *Inter. J. Math. Math. Sci.* Volume 2007, Article ID 69626, 12 pages