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Abstract

In this paper, we prove some common fixed point results for two self mappings
f and g on S -metric space such that f is a g.w.c.m with respect to g.
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1 Introduction

During recent years, the fixed point theorems have become a main part
of pure and applied sciences. Actually, it has become the basic tools
in nonlinear functional analysis, optimization and economy. Gahler [4,5]
introduced the notion of 2-metric spaces. Furthermore, Mustafa and Sims
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[11] introduced the notion of generalized metric space, and called it G-
metric space. After then, many authors studied fixed and common fixed
points in generalized metric spaces see ([1,2,12,13]). In [14], S. Sedghi,
N. Shobe and A. Aliouche have introduced the notion of an S-metric
space. Moreover, in [9,10] some new properties of S-metric spaces were
represented. In present paper, we are going to prove some common fixed
point theorems for two self-mappings f and g on S-metric space such
that f is a g.w.c.m with respect to g.

2 Basic Concepts

First time the concept of S-metric spaces introduced by [14] as follows:

Definition 2.1 (See[14]). Let X be nonempty set. An S-metric on X is
a function S : X3 → [0,∞) which satisfies the following conditions, for
each x, y, z, a ∈ X,
(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The pair (X, S) is called an S-metric space.

Example 2.2 For any metric space (X, d),
S(x, y, z) = d(x, y) + d(x, z) + d(y, z) is an S-metric on X.

Example 2.3 Let R be a real line. Then S(x, y, z) = |x − z| + |y − z|
for all x, y, z ∈ R is a S-metric on R. This S-metric is called the usual
S-metric on R.

Lemma 2.4 (See[14]) In a S-metric space, we have S(x, x, y) = S(y, y, x).

There exists a natural topology on a S-metric spaces, for more details we
refer to [9].

Lemma 2.5 (See[9]) Any S-metric space is a Hausdorff space.

Lemma 2.6 Let (X,S) be a S-metric space. If there exist sequences
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{xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then
limn→∞ S(xn, xn, yn) = S(x, x, y).

Lemma 2.7 (See[14]). Let (X,S) be an S-metric space. If the sequence
{xn} in X converges to x, then x is unique.

Definition 2.8 (See[6]). A pair of maps f and g is called weakly compat-
ible pair if they commute at coincidence points.

Example 2.9 Let X = [0, 3] be equipped with the usual metric space
d(x, y) =| x− y |. Define f, g : [0, 3]→ [0, 3] by

f(x) =

x if x ∈ [0, 1)

3 if x ∈ [1, 3]
g(x) =

 3− x if x ∈ [0, 1)

3 if x ∈ [1, 3]

Then for any x ∈ [1, 3], fg(x) = gf(x), showing that f, g are weakly
compatible maps on [0, 3].

Example 2.10 Let X = R and define f, g : R→ R by f(x) = x
3
, x ∈ R

and g(x) = x2 ,x ∈ R. Here 0 and 1
3

are two coincidence points for the
maps f and g. Note that f and g commute at 0, i.e. fg(0) = gf(0) = 0,
but fg(1

3
) = f(1

9
) = 1

27
and gf(1

3
) = g(1

9
) = 1

81
and so f and g are not

weakly compatible maps on R.

Choudhury [3] introduced the concept of weakly C-contractive mapping
as follows:

Definition 2.11 ([3]). A mapping T : X → X where (X, d) is a metric
space is said to be weakly C-contractive if for all x, y ∈ X, the following
inequality holds:

d(Tx, Ty) ≤ 1

2
(d(x, Ty) + d(y, Tx))− φ(d(x, Ty), d(y, Tx))

where φ : [0,+∞)2 → [0,+∞) is a continuous function such that φ(x, y) =
0 if and only if x = y = 0.

For more details on weakly C-contraction we refer the reader to [3,7,16].
Next part referral to definition of weakly S-contractive for mapping
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f : X → X, that was exploited from [15], but for S-metric spaces.

Definition 2.12 Let (X,S) be a S-metric space. A mapping f : X → X
is said to be weakly S-contractive type mapping if for all x, y, z ∈ X, the
following inequality holds:

S(fx, fy, fz) ≤ 1

4
(S(x, x, fy) + S(y, y, fz) + S(z, z, fx))

− φ(S(x, x, fy), S(y, y, fz), S(z, z, fx)),

where φ : [0,+∞)3 → [0,+∞) is a continuous function with φ(t, s, u) = 0
if and only if t = s = u = 0.

Khan et al. [8] introduced the concept of altering distance function. Here,
we attention to the following definition:

Definition 2.13 The function ψ : [0,+∞) → [0,+∞) is called an al-
tering distance function if the following properties are satisfied:
(a1) ψ is continuous and increasing;
(a2) ψ(t) = 0 if and only if t = 0.

3 Main Result

Let (X,S) be an S-metric space and f, g : X → X be two mappings. We
say that f is a generalized weakly contraction mapping (g.w.c.m) with
respect to g if for all x, y ∈ X, the following inequality holds:

ψ(S(fx, fx, fy)) ≤ ψ

(
1

4
(S(gx, gx, fx) + S(gx, gx, fy) + S(gy, gy, fx))

)
− φ(S(gx, gx, fx), S(gx, gx, fy), S(gy, gy, fx)), (3.1)

where
(b1) ψ is an altering distance function;
(b2) φ : [0,+∞)3 → [0,+∞) is a continuous function with φ(t, s, u) = 0
if and only if t = s = u = 0.
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Theorem 3.1 Let (X,S) be an S-metric space and f, g : X → X be two
mappings such that f is a g.w.c.m with respect to g. Assume that
(c1) f(X) ⊆ g(X),
(c2) g(X) is a complete subset of (X,S),
(c3) f and g are weakly compatible maps.
Then f and g have a unique common fixed point.

Proof. Since f(X) ⊆ g(X), we can construct a sequence xn in X such
that gxn+1 = fxn for any n ∈ N. If for some n, gxn+1 = gxn, then
gxn = fxn, that is, f and g have a common fixed point. Thus, we may
assume that gxn+1 6= gxn for any n ∈ N. For n ∈ N, then by (3.1) and
(iii), we get

ψ(S(gxn, gxn, gxn+1)) = ψ(S(fxn−1, fxn−1, fxn))

≤ ψ

(
1
4
(S(gxn−1, gxn−1, fxn−1)

+S(gxn−1, gxn−1, fxn) + S(gxn, gxn, fxn−1))

)
−φ(S(gxn−1, gxn−1, fxn−1), S(gxn−1, gxn−1, fxn)

, S(gxn, gxn, fxn−1))

= ψ

(
1
4
(S(gxn−1, gxn−1, gxn)

+S(gxn−1, gxn−1, gxn+1) + S(gxn, gxn, gxn))

− φ(S(gxn−1, gxn−1, gxn), S(gxn−1, gxn−1, gxn+1)

, S(gxn, gxn, gxn))

≤ ψ

(
1
4
(S(gxn−1, gxn−1, gxn)

+S(gxn−1, gxn−1, gxn+1))

)

≤ ψ

(
1
4
(3S(gxn−1, gxn−1, gxn) + S(gxn+1

, gxn+1, gxn))

)
.

(3.2)
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Since ψ is increasing, by (3.2) and Lemma 2.4 , we have

S(gxn, gxn, gxn+1) ≤
1

4
(S(gxn−1, gxn−1, gxn) + S(gxn−1, gxn−1, gxn+1))

≤ 1

4
(3S(gxn−1, gxn−1, gxn) + S(gxn, gxn, gxn+1))

(3.3)

Then, we have S(gxn, gxn, gxn+1) ≤ S(gxn−1, gxn−1, gxn) for any n ≥
1. Therefore {S(gxn, gxn, gxn+1), n ∈ N} is a non-increasing sequence.
Hence there exists r ≥ 0 such that

lim
n→+∞

S(gxn, gxn, gxn+1) = r. (3.4)

Letting n→ +∞ in (3.3), we get

r ≤ 1

4
r +

1

4
lim

n→+∞
S(gxn−1, gxn−1, gxn+1) ≤

3

4
r +

1

4
r = r

which implies that

lim
n→+∞

S(gxn−1, gxn−1, gxn+1) = 3r. (3.5)

Again, from (3.2) we have

ψ(S(gxn, gxn, gxn+1)) ≤ ψ

(
1

4
(S(gxn−1, gxn−1, gxn) + S(gxn−1, gxn−1, gxn+1))

)
− φ(S(gxn−1, gxn−1, gxn), S(gxn−1, gxn−1, gxn+1),

S(gxn, gxn, gxn)).

Letting n→ +∞ and using (3.4), (3.5) and the continuities of ψ and φ,
we get

ψ(r) ≤ ψ(r)− φ(r, 3r, 0),

and hence φ(r, 3r, 0) = 0. By a property of φ, we deduce that r = 0, that
is,

lim
n→+∞

S(gxn, gxn, gxn+1) = 0 (3.6)
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Now, we show that {gxn} is a Cauchy sequence. Suppose, {gxn} is not a
Cauchy sequence, that is, limm,n→+∞ S(gxm, gxm, gxn) 6= 0. Then, there
exists ε > 0 for which we can find two subsequences {gxm(i)} and {gxn(i)}
of {xn} such that n(i) is the smallest index for which

n(i) > m(i) > i, S(gxm(i), gxm(i), gxn(i)) ≥ ε. (3.7)

This means that
S(gxm(i), gxm(i), gxn(i)−1) < ε. (3.8)

Now, from (3.7),(3.8) and (iii), we have that

ε ≤ S(gxm(i), gxm(i), gxn(i))

≤ 2S(gxm(i), gxm(i), gxm(i)−1) + S(gxn(i), gxn(i), gxm(i)−1)

≤ 2S(gxm(i), gxm(i), gxm(i)−1) + 2S(gxn(i), gxn(i), gxn(i)−1) + S(gxm(i)−1, gxm(i)−1, gxn(i)−1)

≤ 2S(gxm(i), gxm(i), gxm(i)−1) + 2S(gxn(i), gxn(i), gxn(i)−1) + 2S(gxm(i)−1, gxm(i)−1, gxm(i))

+ S(gxn(i)−1, gxn(i)−1, gxm(i))

< 2S(gxm(i), gxm(i), gxm(i)−1) + 2S(gxn(i), gxn(i), gxn(i)−1) + 2S(gxm(i)−1, gxm(i)−1, gxm(i)) + ε

Letting i→ +∞ in the top inequalities and using (3.6), we get that

lim
n→∞

S(gxm(i), gxm(i), gxn(i)) = lim
n→∞

S(gxn(i), gxn(i), gxm(i)−1)

= lim
n→∞

S(gxm(i)−1, gxm(i)−1, gxn(i)−1)

= ε (3.9)

By (3.1), we have

ψ(S(gxn(i), gxn(i), gxm(i))) = ψ(S(fxn(i)−1, fxn(i)−1, fxm(i)−1))

≤ ψ
(1

4
(S(gxn(i)−1, gxn(i)−1, fxn(i)−1) + S(gxn(i)−1, gxn(i)−1, fxm(i)−1) + S(gxm(i)−1, gxm(i)−1, fxn(i)−1))

)
− φ(S(gxn(i)−1, gxn(i)−1, fxn(i)−1) + S(gxn(i)−1, gxn(i)−1, fxm(i)−1) + S(gxm(i)−1, gxm(i)−1, fxn(i)−1))

= ψ
(1

4
(S(gxn(i)−1, gxn(i)−1, gxn(i)) + S(gxn(i)−1, gxn(i)−1, gxm(i)) + S(gxm(i)−1, gxm(i)−1, gxn(i)))

)
− φ(S(gxn(i)−1, gxn(i)−1, gxn(i)) + S(gxn(i)−1, gxn(i)−1, gxm(i)) + S(gxm(i)−1, gxm(i)−1, gxn(i)))

≤ ψ
(1

4
(S(gxn(i)−1, gxn(i)−1, gxn(i)) + S(gxn(i)−1, gxn(i)−1, gxm(i)) + S(gxm(i)−1, gxm(i)−1, gxn(i)))

)
(3.10)
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since ψ is increasing and by (iii), we get

S(gxn(i), gxn(i), gxm(i))

≤ 1

4
(S(gxn(i)−1, gxn(i)−1, gxn(i)) + S(gxn(i)−1, gxn(i)−1, gxm(i)) + S(gxm(i)−1, gxm(i)−1, gxn(i)))

≤ 1

4
(S(gxn(i)−1, gxn(i)−1, gxn(i)) + 2S(gxn(i)−1, gxn(i)−1, gxm(i)−1) + S(gxm(i), gxm(i), gxm(i)−1)

+ 2S(gxm(i)−1, gxm(i)−1, gxn(i)−1) + S(gxn(i)−1, gxn(i)−1, gxn(i))

Letting i → +∞ in the top inequalities, and using (3.6) and (3.9), we
get that

lim
n→∞

S(gxn(i)−1, gxn(i)−1, gxm(i)) = 3ε (3.11)

Now, letting i → +∞ in (3.10) and using (3.6), (3.9), (3.11) and the
continuities of ψ and φ, we have

ψ(ε) ≤ ψ
(1

4
(0, 3ε, ε)

)
+ φ(0, 3ε, ε)

Hence, we get φ(0, 3ε, ε) = 0 and hence, by a property of φ, we de-
duce ε = 0, a contradiction. Thus {gxn} is a Cauchy sequence in g(X).
Since(g(X), S) is complete, then there exist t, u ∈ X such that {gxn}
converges to t = gu, that is,

lim
n→∞

S(gxn, gxn, gu) = 0. (3.12)

By Lemma 2.6 we have

lim
n→∞

S(gxn, gxn, fu) = S(gu, gu, fu). (3.13)

Let us show that fu = t. By (3.1), we get

ψ(S(gxn+1, gxn+1, fu) = ψ(S(fxn, fxn, fu))

≤ ψ
(1

4
(S(gxn, gxn, fxn) + S(gxn, gxn, fu) + (gu, gu, fxn))

)
− φ(S(gxn, gxn, fxn), S(gxn, gxn, fu), (gu, gu, fxn))

= ψ
(1

4
(S(gxn, gxn, gxn+1) + S(gxn, gxn, fu) + (gu, gu, gxn+1))

)
− φ(S(gxn, gxn, gxn+1), S(gxn, gxn, fu), (gu, gu, gxn+1))
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Letting n→ +∞ and using (3.6), (3.12),(3.13) and the continuities of ψ
and φ and using the fact that ψ is increasing, we get

ψ(S(gu, gu, fu)) ≤ ψ
(1

4
(S(gu, gu, fu)

)
− φ

(
0, S(gu, gu, fu), 0)

)
(3.14)

Therefore, S(gu, gu, fu) = 0 and hence fu = gu = t. Then, u is a
coincidence point of f and g, and since the pair f, g is weakly compatible,
we have ft = gt. Now we prove that ft = gt = t. By (3.1), we have

ψ(S(gt, gt, gxn+1) = ψ(S(ft, ft, fxn))

≤ ψ
(1

4
(S(gt, gt, ft) + S(gt, gt, fxn) + (gxn, gxn, ft))

)
− φ(S(gt, gt, ft), S(gt, gt, fxn), (gxn, gxn, ft))

= ψ
(1

4
(S(gt, gt, gt) + S(gt, gt, gxn+1) + (gxn, gxn, gt))

)
− φ(S(gt, gt, gt), S(gt, gt, gxn+1), (gxn, gxn, gt))

Letting n → +∞ and using the fact that ψ is increasing and (2.4), we
get

ψ(S(gt, gt, gu)

≤ ψ
(1

4
(0 + S(gt, gt, fu) + (gu, gu, ft))

)
− φ(0, S(gt, gt, fu), (gu, gu, ft))

= ψ
(1

4
(2S(gt, gt, gu))

)
− φ(0, S(gt, gt, gu), (gu, gu, gt))

≤ ψ
(
S(gt, gt, gu)

)
− φ(0, S(gt, gt, gu), (gt, gt, gu))

which is true if φ(0, S(gt, gt, gu), S(gt, gt, gu)) = 0, that is, gt = gu = t.
We deduce that t = gt = ft, and so t is a common fixed point of f and
g.
To prove the uniqueness, let v be another common fixed point of f and

65



g. By (3.1), we have

ψ(S(t, t, v)) = ψ(S(ft, ft, fv)

ψ
(1

4
(S(ft, ft, ft) + S(ft, ft, fv) + S(fv, fv, ft))

)
− φ(S(ft, ft, ft), S(ft, ft, fv), S(fv, fv, ft))

≤ ψ
(1

4
(0 + S(t, t, v) + S(v, v, t)

)
− φ(0, S(t, t, v), S(v, v, t))

≤ ψ
(
S(t, t, v)

)
− φ(0, S(t, t, v), S(t, t, v))

Therefore, φ(0, S(t, t, v), S(t, t, v)) = 0 and hence S(t, t, v) = 0. Thus
t = v . 2

Example 3.2 Let X = [0, 2], and S be the usual S-metric on X. More-
over ψ(t) = t/2, φ(t, s, u) = t+s+u

k
with k ≥ 8, fx = 1 and gx = 2 − x.

It is easy to show that f is a g.w.c.m with respect to g. In fact, we have
ψ(S(fx, fx, fy)) = 0 ,

ψ

(
1

4
(S(gx, gx, fx)+S(gx, gx, fy)+S(gy, gy, fx))

)
=

1

2

(
1

4
(4|1−x|+2|1−y|)

)

and

φ(S(gx, gx, fx), S(gx, gx, fy), S(gy, gy, fx)) =
4|1− x|+ 2|1− y|)

k

Condition (3.1) is trivially hold. Obviously, f(X) ⊆ g(X), g(X) is a
complete subset of (X,S) and the pair {f, g} is weakly compatible. Then,
all the hypotheses of Theorem 3.1 are satisfied, and so f and g have a
unique common fixed point, that is x = 1.

Corollary 3.3 Let (X,S) be a S-metric space and f , g be two self-
mappings on X such that:

S(fx, fx, fy) ≤ β(S(gx, gx, fx) + S(gx, gx, fy) + S(gy, gy, fx)) (3.15)

where β ∈ [0, 1
4
). Suppose that g(X) is a complete subspace of (X,S),

f(X) ⊆ g(X) and the pair {f, g} is weakly compatible. Then f and g
have a unique common fixed point.
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Proof. It’s enough to put ψ(t) = t and φ(t, s, u) = (1
4
− β)(t + s + u)

in Theorem 3.1. 2

Corollary 3.4 Let (X,S) be a S-metric space and f , g be two self-
mappings on X such that:

ψ(S(fx, fx, fy)) ≤ ψ

(
1

4
(S(x, x, fx) + S(x, x, fy) + S(y, y, fx))

)
− φ(S(x, x, fx), S(x, x, fy), S(y, y, fx))

where (b1) and (b2) hold. Then f has a unique fixed point.

Proof. It suffices to put g = IdX , the identity mapping on X in The-
orem 3.1. 2
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