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1 Introduction

Fuzzy differential equations are a suitable tool to model problem in sci-
ence and engineering. There are many idea to define a fuzzy derivative
and in consequence, to study fuzzy differential equations. The first and
most popular approach is using the Hukuhara differentiability for fuzzy
valued function. Hukuhara differentiability has the drawback that the so-
lution of fuzzy differential equations need to have increasing length of its
support, so in order to overcome this weakness, Bede and Gal [12], intro-
duced the strongly generalized differentiability of fuzzy valued function.
This concept allows us to solve the above-mentioned shortcoming, also
the strongly generalized derivative is defined for a larger class of fuzzy
valued functions than the Hukuhara derivatives.

Higher-order fuzzy differential equations under generalized differentiabil-
ity is presented by Khastan in [23]. Khastan proposed a analytic method
to solve higher-order fuzzy differential equations based on the selection
different type of derivatives, they obtained several solution to fuzzy initial
value problem. In this paper a numerical method for forth order fuzzy
differential equations is presented. The idea of this method is based on
interpolating the solution by polynomial of degree 8 in the range of solu-
tion, the step size used is of length H = 4h. Also existence and uniqueness
of the solutions are proved.

The paper is organized as follows: In section 2, some basic definitions are
brought. A new method for solving forth order fuzzy differential equa-
tions, also the existence and uniqueness are introduced in section 3 and
4 . A numerical example is presented in section 5 and finally conclusion
is drawn.

2 Notation and definitions

First notations which shall be used in this paper are introduced.
We denote by RF , the set of fuzzy numbers, that is, normal, fuzzy con-
vex, upper semi-continuous and compactly supported fuzzy sets which
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are defined over the real line.

For 0 < r ≤ 1, set [u]r =
{
t ∈ R

∣∣∣∣u(t) ≥ r
}

, and [u]0 = cl
{
t ∈ R

∣∣∣∣u(t) > 0
}

.

We represent [u]r = [u−(r), u+(r)], so if u ∈ RF , the r-level set [u]r

is a closed interval for all r ∈ [0, 1]. For arbitrary u, v ∈ RF and
k ∈ R, the addition and scalar multiplication are defined by [u + v]r =
[u]r + [v]r , [ku]r = k[u]r respectively.

A triangular fuzzy number is defined as a fuzzy set in RF , that is specified
by an ordered triple u = (a, b, c) ∈ R3 with a ≤ b ≤ c such that u−(r) =
a+ (b− a)r and u+(r) = c− (c− b)r are the endpoints of r-level sets for
all r ∈ [0, 1].

Definition 2.1 ([19]) The Hausdorff distance between fuzzy numbers is
given by D : RF×,RF −→ R+ ∪ {0},

D(u, v) = sup
r∈[0, 1]

max
{
|u−(r)− v−(r)|, |u+(r)− v+(r)|

}
. (2.1)

Consider u, v, w, z ∈ RF and λ ∈ R, then the following properties are
well-known for metric D,

1. D(u⊕ w, v ⊕ w) = D(u, v), for all u, v, w ∈ RF ,
2. D(λu, λv) = |λ|D(u, v), for all u, v ∈ RF , λ ∈ R
3. D(u⊕ v, w ⊕ z) ≤ D(u, w) +D(v, z), for all u, v, w, z ∈ RF ,
4. D(u 	 v, w 	 z) ≤ D(u, w) + D(v, z), as long as u 	 v and w 	 z

exist, where u, v, w, z ∈ RF .

where, 	 is the Hukuhara difference(H-difference), it means that w	v =
u if and only if u⊕ v = w.

Definition 2.2 ([12]) Let u, v ∈ RF . If there exists w ∈ RF such that

u	gH v = w ⇔


(i) u = v + w,

or

(ii) v = u+ (−1)w,
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Then w is called the generalized Hukuhara difference of u and v.

Remark 2.1 Throughout the rest of this paper, we assume that u�gHv ∈
RF .

Note that a function f : [a, b] ⊆ R → RF is called fuzzy-valued func-
tion. The r-level representation of this function is given by f(t; r) =
[f−(t; r) , f+(t; r)], for all t ∈ [a, b] and r ∈ [0, 1].

Definition 2.3 ([15]) A fuzzy valued function f : [a, b] → RF is said
to be continuous at t0 ∈ [a, b] if for each ε > 0 there is δ > 0 such that
D(f(t), f(t0)) < ε, whenever t ∈ [a, b] and |t− t0| < δ. We say that f is
fuzzy continuous on [a, b] if f is continuous at each t0 ∈ [a, b].

Definition 2.4 ([15]) The generalized Hukuhara derivative of the fuzzy-
valued function f : (a, b)→ RF at t0 ∈ (a, b) is defined as

f ′gH(t0) = lim
h→0

f(t0 + h) �gH f(t0)

h
. (2.2)

If f ′gH(t0) ∈ RF satisfying (2.2) exists, we say that f is generalized
Hukuhara differentiable (gH-differentiable for short) at t0.

Definition 2.5 ([15]) Let f : [a, b] → RF and t0 ∈ (a, b), with f−(t; r)
and f+(t; r) both differentiable at t0 for all r ∈ [0, 1]. We say that

• f is [(i)− gH]-differentiable at t0 if

f ′i.gH(t0; r) = [(f−)′(t0; r) , (f+)′(t0; r)], (2.3)

• f is [(ii)− gH]-differentiable at t0 if

f ′ii.gH(t0; r) = [(f+)′(t0; r) , (f−)′(t0; r)]. (2.4)

Definition 2.6 ([15]) We say that a point t0 ∈ (a, b), is a switching
point for the differentiability of f , if in any neighborhood V of t0 there
exist points t1 < t0 < t2 such that

type(I) at t1 (2.3) holds while (2.4) does not hold and at t2 (2.4) holds
and (2.3) does not hold, or
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type(II) at t1 (2.4) holds while (2.3) does not hold and at t2 (2.3) holds
and (2.4) does not hold.

Theorem 2.1 [9] Let T = [a, a+β] ⊂ R, with β > 0 and f ∈ CngH([a, b], RF).
For s ∈ T

(i) If f (i), i = 0, 1, . . . , n− 1 are [(i)− gH]-differentiable, provided that
type of gH-differentiability has no change. Then

f(s) = f(a)⊕ f ′i.gH(a)� (s− a)⊕ f ′′i.gH(a)� (s− a)2

2!

⊕ . . .⊕ f (n−1)
i.gH (a)� (s− a)n−1

(n− 1)!
⊕Rn(a, s),

where

Rn(a, s) :=
∫ s

a

(∫ s1

a
. . .

(∫ sn−1

a
f
(n)
i.gH(sn)dsn

)
dsn−1 . . .

)
ds1.

(ii) If f (i), i = 0, 1, . . . , n− 1 is [(ii)− gH]-differentiable, provided that
type of gH-differentiability has no change. Then

f(s) = f(a)	 (−1)f ′ii.gH(a)� (s− a)	 (−1)f ′′ii.gH(a)

� (a− s)2

2!
	 (−1) . . .	 (−1)f

(n−1)
ii.gH (a)

� (a− s)n−1

(n− 1)!
	 (−1)Rn(a, s),

where

Rn(a, s) :=
∫ s

a

(∫ s1

a
. . .

(∫ sn−1

a
f
(n)
ii.gH(sn)dsn

)
dsn−1 . . .

)
ds1.

(iii) If f (i) are [(i)− gH]-differentiable for i = 2k − 1, k ∈ N, and f (i)

are [(ii)− gH]-differentiable for i = 2k, k ∈ N ∪ {0}. Then
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f(s) = f(a)	 (−1)f ′ii.gH(a)� (s− a)⊕ f ′′i.gH(a)

� (a− s)2

2!
	 (−1) . . .	 (−1)f

( i−1
2

)

ii.gH (a)� (a− s) i
2
−1

( i
2
− 1)!

⊕ f ( i
2
)

i.gH(a)� (a− s) i
2

( i
2
)!
	 (−1) . . .	 (−1)Rn(a, s),

where

Rn(a, s) :=∫ s

a

(∫ s1

a
. . .

(∫ sn−1

a
f
(n)
i.gH(sn)dsn

)
dsn−1 . . .

)
ds1.

(iv) Suppose that f ∈ CngH([a, b], RF) , n ≥ 3.

Furthermore let f in [a, ξ] is [(i) − gH]-differentiable and in [ξ, b] is
[(ii)−gH]-differentiable, in fact ξ is switching point type I for first order
derivative of f and t0 ∈ [a, ξ] in a neighborhood of ξ. Moreover sup-
pose that second order derivative of f in ζ1 of [t0, ξ] have switching point
type II. Moreover type of differentiability for f (i), i ≤ n on [ξ, b] don’t
change. So

f(s) = f(t0)⊕ f ′i.gH(t0)� (ξ − t0)	 f ′′ii.gH(t0)

� (t0 − ζ1)� (ξ − t0)⊕ f ′′i.gH(ζ1)

�
(

(ξ − ζ1)2

2
− (t0 − ζ1)2

2

)
	 (−1)f ′ii.gH(ξ)

� (s− ξ)	 (−1)f ′′ii.gH(ξ)� (s− ξ)2

2!

	 (−1)
∫ ξ

t0

(∫ ζ1

t0

(∫ s2

t0
f ′′′ii.gH(s4)ds4

)
ds2

)
ds1

⊕
∫ ξ

t0

(∫ s1

ζ1

(∫ s3

ζ1
f ′′′i.gH(s5)ds5

)
ds3

)
ds1

	 (−1)
∫ s

ξ

(∫ t1

ξ

( ∫ t2

t0
f ′′′ii.gH(t3)dt3

)
dt2

)
dt1.
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3 Proposed Method

Consider the following forth order fuzzy differential equation y
(4)(t) = f(t, y(t)), t ∈ I = [0, T ],

y(0) = y0, y
′(0) = y′0, y

′′(0) = y′′0 , y
(3)(0) = y

(3)
0 ,

(3.1)

where the derivative y(i), i = 1, 2, 3, 4, is considered in the sense of gH-
differentiability. The interval I may be [0, T ] for some T > 0 or I = [0,∞).
We assume that f : I × RF → RF is sufficiently smooth function, and
there exists k > 0 such that

D(f(t, x), f(t, z)) ≤ kD(x, z) ∀t ∈ I, x, z ∈ RF . (3.2)

Our construction of the fuzzy approximate solution s(t) is as follows:
let y(t) be the fuzzy solution of (3.1), we divided the range of solution
[0, T ] into sub-intervals of equal length H = 4h = T

n
, and let Ik =

[kH, (k + 1)H], where k = 0, · · · , n − 1. In this paper we approximate
fuzzy solution of (3.1) by fuzzy piecewise polynomial of order 8. Piecewise
approximation solution s(t) on Ik = [kH, (k + 1)H], is construct step by
step as follows:

Step One: We define the first component of s(t) by s0(t), in two cases:
Case(i): Let us suppose that the unique solution of problem (3.1),
y(i)(t) are [(i)−gH]-differentiable, therefore s0(t), where in this cases
is called s0,1(t) for 0 ≤ t ≤ H is as following

s0,1(t) =
4∑
i=0

y
(i)
i.gH(0)� ti

i!
⊕

8∑
i=5

αi,0 �
ti

i!
, 0 ≤ t ≤ H, (3.3)

Case(ii): Now, consider y(i)(t) are [(ii)−gH]-differentiable, then s0(t)
that is called s0,2(t) obtained for 0 ≤ t ≤ H as follows:

s0,2(t) = y(0)	 (−1)
4∑
i=1

y
(i)
ii.gH(0)� ti

i!
⊕

8∑
i=5

αi,0 �
ti

i!
, (3.4)
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Case(iii): Now, consider y(i)(t) are [(ii) − gH]-differentiable for i =
0, 2, and y(i)(t) are [(i)− gH]-differentiable for i = 1, 3, then in this
case s0(t), that is called s0,3(t) is obtained for 0 ≤ t ≤ H as follows:

s0,3(t) = y(0)	 (−1)y′ii.gH(0)� t⊕ y′′i.gH(0)� t2

2
(3.5)

	 (−1)y
(3)
ii.gH(0)� t3

3!
⊕ y(4)i.gH(0)� t4

4!

⊕
8∑
i=5

αi,0 �
ti

i!
,

In Eqs (3.3),(3.4) and (3.5), the coefficients αi,0 for i = 5, 6, 7, 8 as yet
undetermined and to be obtained where s0(t) satisfy the relations:

s
(4)
0 (jh) = f(jh, s0(jh)), (3.6)

for j = 1, 2, 3, 4. By using Hausdorff distance(2.1), for j = 1, 2, 3, we
obtain:

(s−0 )(4)(jh, r) = f−(jh, s0(jh, r)), (3.7)

(s+0 )(4)(jh, r) = f+(jh, s0(jh, r))

by solving system(3.7), the value of αi,0 for i = 5, 6, 7, 8 are obtained
and s0(t) is constructed.

Step Two: The approximate solution s(t) in interval [kH, (k+ 1)H] for
k = 1, · · · , n− 1 is obtained as follows:

s(t) =
4∑
i=0

s
(i)
4k(t)� (t− 4kh)i

i!
⊕

8∑
i=5

αi,k �
(t− 4kh)i

i!
, (3.8)

where s0(t) is obtained by step 1. The value of αi,k are to be determined
so that s(t) satisfy the relations:

s(4)(jh) = f(jh, s(jh)). (3.9)

This means for j = 4k + 1, 4k + 2, 4k + 3, 4k + 4; k = 1, · · · , n− 1,
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(s−)(4)(jh, r) = f−(jh, s(jh, r)), (3.10)

(s+)(4)(jh, r) = f+(jh, s(jh, r)),

by solving system (3.10), the values of αi,k are obtained.

Therefore the approximate solution is obtained as follows

s(t) =

 s0,1(t) 0 ≤ t ≤ H,∑4
i=0 s

(i)
4k(t)� (t−4kh)i

i!
⊕∑8

i=5 αi,k �
(t−4kh)i

i!
, kH ≤ t ≤ (k + 1)H

(3.11)
if y(t) is [(i)− gH]-differentiable and

s(t) =

 s0,2(t) 0 ≤ t ≤ H,∑4
i=0 s

(i)
4k(t)� (t−4kh)i

i!
⊕∑8

i=5 αi,k �
(t−4kh)i

i!
, kH ≤ t ≤ (k + 1)H

(3.12)
if y(t) is [(ii)− gH]-differentiable, and

s(t) =

 s0,3(t) 0 ≤ t ≤ H,∑4
i=0 s

(i)
4k(t)� (t−4kh)i

i!
⊕∑8

i=5 αi,k �
(t−4kh)i

i!
, kH ≤ t ≤ (k + 1)H

(3.13)
if y(i)(t) are [(ii)−gH]-differentiable for i = 0, 2, and y(i)(t) are [(i)−gH]-
differentiable for i = 1, 3.

4 Existence and uniqueness

In this section we prove that there exist a unique piecewise approxima-
tion solution s(t) where approximating the solution of forth order fuzzy
differential equation (3.1), provided that the size of the subinterval h
satisfies some constraints.

Theorem 4.1 If h = min{h1, h2, h3, h4}, where
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h1 <
4

√
5

L
, h2 <

4

√
0.756

L
, h3 <

4

√
0.467

L
, h4 <

4

√
0.988

L
(4.1)

then the approximate solution defined by (3.11) or (3.12), exists and
unique.

Proof : Let t = jh and j = 3k + η for η = 1, 2, 3, therefore

s(4)((4k + η)h) = s
(4)
4k+η = s

(4)
4k +

8∑
i=5

αi,k
(ηh)i−4

(i− 4)!
(4.2)

where η = 1, · · · , 4. By solving system (4.2) we obtain:

α+
5,k =

1

12h
(48(s+4k+1)

(4) − 36(s+4k+2)
(4) (4.3)

+ 16(s+4k+3)
(4) − 3(s+4k+4)

(4) − 25(s+4k)
(4)),

α−5,k =
1

12h
(48(s−4k+1)

(4) − 36(s−4k+2)
(4) (4.4)

+ 16(s−4k+3)
(4) − 3(s−4k+4)

(4) − 25(s−4k)
(4)),

α+
6,k =

−1

12h2
(104(s+4k+1)

(4) − 114(s+4k+2)
(4) (4.5)

+ 56(s+4k+3)
(4) − 11(s+4k+4)

(4) − 35(s+4k)
(4)),

α−6,k =
−1

12h2
(104(s−4k+1)

(4) − 114(s−4k+2)
(4) (4.6)

+ 56(s−4k+3)
(4) − 11(s−4k+4)

(4) − 35(s−4k)
(4)),
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α+
7,k =

1

2h3
(18(s+4k+1)

(4) − 24(s+4k+2)
(4) (4.7)

+ 14(s+4k+3)
(4) − 3(s+4k+4)

(4) − 5(s+4k)
(4)),

α−7,k =
1

2h3
(18(s−4k+1)

(4) − 24(s−4k+2)
(4) (4.8)

+ 14(s−4k+3)
(4) − 3(s−4k+4)

(4) − 5(s−4k)
(4)),

α+
8,k =

−1

h4
(4(s+4k+1)

(4) − 6(s+4k+2)
(4) (4.9)

+ 4(s+4k+3)
(4) − (s+4k+4)

(4) − (s+4k)
(4)),

α−8,k =
−1

h4
(4(s−4k+1)

(4) − 6(s−4k+2)
(4) (4.10)

+ 4(s−4k+3)
(4) − (s−4k+4)

(4) − (s−4k)
(4)),

To prove the existence and uniqueness of s(t), let us define the operator
Gk : RF → RF by αj,k = Gv(αj,k) for j = 5, 6, 7, 8 and v = 1, 2, 3, 4.
According to condition (3.2) and equations (4.3),(4.5),(4.7), (4.9) and
(4.4),(4.6),(4.8), (4.10) we conclude that

D(G1(α5,k) , G1(α
∗
5,k)) (4.11)

≤L h4

12.5!
|48− 36(25) + 16(35)− 3(45)|D(α5,k, α

∗
5,k),

D(G2(α6,k) , G2(α
∗
6,k)) (4.12)

≤L h4

12.6!
|104− 114(26) + 56(36)− 11(46)|D(α6,k, α

∗
6,k),
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D(G3(α7,k) , G3(α
∗
7,k)) (4.13)

≤L h4

2.7!
|18− 24(27) + 14(37)− 3(47)|D(α7,k, α

∗
7,k),

D(G4(α8,k) , G4(α
∗
8,k)) (4.14)

≤Lh
8

8!
|4− 6(28) + 4(38)− 48|D(α8,k, α

∗
8,k),

From Equations (4.11), (4.12),(4.13), (4.14), and

h1 <
4

√
5

L
, h2 <

4

√
0.756

L
, h3 <

4

√
0.467

L
, h4 <

4

√
0.988

L

it follows that Gv, v = 1, 2, 3, 4 are contraction operators. This implies
the existence and uniqueness of approximate method under the stated
conditions of theorem.

5 Numerical Example

Example 5.1 Consider the fuzzy initial value problem

y(4)(t) = y(t), t ∈ [0, 1],

y(0) = y′(0) = y′′′(0) = y(3)(0) = (r − 1, 1− r),

y(t) is [(i)− gH]-differentiable and the real solution is:

y−(t, r) = (r − 1)et,

y+(t, r) = (1− r)et.

We consider Ik = [kH, (k + 1)H], for k = 0, 1, H = 4h and h = 0.125.
s0(t), s4(t) are obtained as follows:
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s−0 (t) = (r − 1) + t(r − 1) +
t2

2
(r − 1) +

t3

3!
(r − 1) +

t4

4!
(r − 1)

+
t5

5!
(−.9999397099 + .9999397099r) +

t6

6!
(−1.001990135 + 1.001990135r)

+
t7

7!
(−.9672052893 + .9672052893r) +

t8

8!
(−1.287374418 + 1.287374418r),

s+0 (t) = (1− r) + t(1− r) +
t2

2
(1− r) +

t3

3!
(1− r) +

t4

4!
(1− r)

+
t5

5!
(.9999397099− .9999397099r) +

t6

6!
(1.001990135− 1.001990135r))

+
t7

7!
(.9672052893− .9672052893r) +

t8

8!
(1.287374418− 1.287374418r),

s−4 (t) = 1.648721270r − 1.648721270

+ (k − 0.5)(1.648721270r − 1.648721270)

+
(k − 0.5)2

2
(1.648721270r − 1.648721270)

+
(k − 0.5)3

3!
(1.648721270r − 1.648721270)

+
(k − 0.5)4

4!
(1.648721270r − 1.648721270))

+
(k − 0.5)5

5!
(−1.648621871 + 1.648621871r)

+
(k − 0.5)6

6!
(−1.652002422 + 1.652002422r)

+
(k − 0.5)7

7!
(−1.594651978 + 1.594651978r)

+
(k − 0.5)8

8!
(−2.122522161 + 2.122522161r),
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s+4 (t) = 1.648721270− 1.648721270r

+ (k − 0.5)(1.648721270− 1.648721270r)

+
(k − 0.5)2

2
(1.648721270− 1.648721270r)

+
(k − 0.5)3

3!
(1.648721270− 1.648721270r)

+
(k − 0.5)4

4!
(1.648721270− 1.648721270r)

+
(k − 0.5)5

5!
(1.648621871− 1.648621871r)

+
(k − 0.5)6

6!
(1.652002422− 1.652002422r)

+
(k − 0.5)7

7!
(1.594651978− 1.594651978r)

+
(k − 0.5)8

8!
(2.122522161− 2.122522161r),

Table 1
Error of proposed method by Hausdorff distance in example 5.1

t Error of Proposed method

0 0

0.1 0

0.2 0

0.3 0

0.4 0.1× 10−8

0.5 0.1× 10−8

0.6 0.1× 10−8

0.7 0.1× 10−8

0.8 0.1× 10−8

0.9 0.3× 10−8
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Fig. 1. Approximate solution for example 5.1. Red points: s0(t); green
points:s4(t).

The approximated solution s(t), for i = 0, 1, is plotted in Fig 1.

6 Conclusion

In this paper a new numerical method for solving forth order fuzzy differ-
ential equations under generalized differentiability was proposed. We used
piecewise fuzzy polynomial of degree 8 based on the taylor expansion for
approximating solutions of forth order fuzzy differential equations. Also,
we can extend this method for N−th order fuzzy differential equations
under generalized differentiability.
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