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Abstract

An efficient method, based on the Legendre wavelets, is proposed to solve the
second kind Fredholm and Volterra integral equations of Hammerstein type.
The properties of Legendre wavelet family are utilized to reduce a nonlinear
integral equation to a system of nonlinear algebraic equations, which is easily
handled with the well-known Newton’s method. Examples assuring efficiency
of the method and its superiority are presented.
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1 Introduction

The Hammerstein equation is a general model to study semi-linear bound-
ary value problems (BVPs). Actually two-point boundary value problems
are reduced to a Hammerstein integral equation through defining a suit-
able Green’s function. The general form of this equation is stated as
follows:

y(s) = x(s) +
∫

Ω
k(s, t)g(t, y(t))dt, (1.1)

where the kernel k(s, t) typically arises as the Green’s function of a differ-
ential operator. As well as reformulation of BVPs, it appears in nonlinear
physical phenomena such as electro-magnetic fluid dynamics [1], model-
ing inhibitory networks in biology [2] and many other scientific fields
[3]. There is a wide literature dealing with the Hammerstein equations,
including solution existence and solution strategies both numerical and
analytic. The equation (1) was first considered by Hemmerstein in early
1930’s [4]. Existence of the solution is studied in many papers from dif-
ferent points of view [2,5–9].

A good survey of classic numerical methods has been collected by Atkin-
son [10]. The interested reader can refer to [3] for a brief introduction and
useful references on the subject. Different approaches have also been ap-
plied to handle these family of equation for more information see [11,12].
However, here, we focus on methods which are related, to some extend,
to our work.

Kumar and Sloans [13] used an equivalent representation of equation (1)
and applied collocation techniques to approximate the solution. Using
this new representation some (pseudo-)spectral techniques based on or-
thogonal polynomials have been used to solve Hammerstein equations
[14,15]. Wavelet approaches which are efficient techniques to handle inte-
gral equations, have also been applied to solve the Hammerstein equation
(1). A Petrov-Galerkin approach is discussed in [16]. Different families
of wavelets including Daubechies [17], Legendre [18], Chebyshev [19] and
rationalized Haar [20] have been successfully applied to Hammerstein
equations.
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Here we are concerned with the second kind Hammerstein integral equa-
tions, both Fredholm and Volterra, which are respectively represented as
follows:

Fredholm-Hammerstein:

y(s) = x(s) +
∫ 1

0
k(s, t)g(t, y(t)) dt, s ∈ [0, 1), (1.2)

Volterra-Hammerstein:

y(s) = x(s) +
∫ s

0
k(s, t)g(t, y(t)) dt, s ∈ [0, 1), (1.3)

where x, k and g are knows functions, with g(t, y(t)) nonlinear in y.

The paper is outlined as follows:
To make the paper self-contained, second section reviews some features
of Legendre family of wavelets including definitions, function approxi-
mation with this family and also operational matrix of integration is ad-
dressed to ease referencing in subsequent sections. In sections 3 and 4, the
method is respectively applied to Fredholm-Hammerstein and Volterra-
Hammerstein integral equations of the second kind, i.e. equations (2) and
(3), here the basic ideas are presented. Finally, section 5 is devoted to
examples to assure applicability of the method, some comparisons are
addressed here to show superiority of the method.

2 The family of Legendre wavelets

This section is devoted to review basic concepts of the Legendre family
of wavelets.

2.1 Definitions

In recent years, wavelets have found their way into many different fields
of science and engineering. Wavelets are a class of functions constructed
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from dilation and translation of a single function called the mother wavelet
ψ(t), we have the following family of continuous wavelets as [21]:

ψa,b(t) =
1√
| a |

ψ(
t− b
a

), a, b ∈ R, a 6= 0 (2.1)

Legendre wavelets ψn,m(t) = ψ(k, n̂,m, t), have four arguments, n̂ =
2n− 1, n = 1, 2, . . . , 2k−1, k can assume any positive integer, m is degree
of the Legendre polynomials and t denotes the variable, which is defined
on [0, 1) as follows:

ψn,m(t) =


√
m+ 1

2
2

k
2Lm(2kt− n̂), n̂−1

2k
≤ t < n̂+1

2k
,

0, otherwise,
(2.2)

where n = 1, 2, . . . , 2k−1, m = 0, 1, . . . ,M − 1.

Here Lm(t), are Legendre polynomials of degree m which are orthogonal
with respect to the weight function ω(t) = 1 on [−1, 1].

2.2 Function approximation

Any function x(s) ∈ L2[0, 1) can be expanded into Legendre wavelet
series as [22]:

x(s) =
∞∑
n=1

∞∑
m=0

cn,mψn,m(s), (2.3)

where the coefficients cn,m are given by

cn,m = (x(s), ψn,m(s)). (2.4)

In (2.4), (·, ·) denotes the inner product of the function space L2[0, 1).
If the infinite series in (2.3) is truncated, then (2.3) can be written as

x(s) =
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(s) = CTΨ(t), (2.5)
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where C and Ψ(t) are square matrices of size 2k−1M , given by

C = [c10, c11, . . . , c1,M−1, c20, . . . , c2,M−1, . . . , c2k−10, . . . , c2k−1,M−1]T ·
(2.6)

Ψ = [ψ10, ψ11, . . . , ψ1,M−1, ψ20, . . . , ψ2,M−1, . . . , ψ2k−10, . . . , ψ2k−1,M−1]T ·
(2.7)

Similarly, a function of two variables k(s, t) ∈ L2([0, 1) × [0, 1)) can be
expanded into Legendre wavelet series as

k(s, t) ' k∗(s, t) = ΨT (s)KΨ(t) (2.8)

where K is an 2k−1M × 2k−1M matrix with entries
Kij =

(
Ψi(t), (k(t, s),Ψj(s))

)
for i, j = 1, 2, · · · , 2k−1M [23].

2.3 The operational matrices

Let Ψ(t) be the Legendre wavelets vector defined in (2.7). The integration
of vector Ψ(t) is given by

∫ t

0
Ψ(τ) dτ ' PΨ(t), t ∈ [0, 1), (2.9)

where P is a 2k−1M × 2k−1M operational matrix for integration and is
obtained as

P =
1

2k



L F F . . . F

0 L F . . . F

0 0 L . . . F
...

...
...

. . .
...

0 0 0 . . . L


, (2.10)
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where F and L are M ×M matrices given by [22]

F =



2 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


, (2.11)

and

L =



1
√

3
3

0 0 . . . 0 0

−
√

3
3

0
√

3
3
√

5
0 . . . 0 0

0 −
√

5
5
√

3
0

√
5

5
√

7
. . . 0 0

0 0 −
√

7
7
√

5
0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 . . . −
√

2M−1
(2M−1)

√
2M−3

0



. (2.12)

The family ψn,m(t) forms an orthonormal basis for L2[0, 1], that is,

∫ 1

0
ψn,m(t)ψn′,m′(t) dt = δn,n′δm,m′ , (2.13)

where δ is the Kronecker δ-function, then the integration of the product
of two Legendre wavelets vector functions is obtained as:∫ 1

0
Ψ(s)ΨT (s) ds = I, (2.14)

where I is 2k−1M × 2k−1M -dimensional identity matrix.

The 2k−1M -square Legendre wavelets matrix is defined as:

H =
[
Ψ( 1

2kM
) Ψ( 3

2kM
) . . . Ψ(2kM−1

2kM
)

]
. (2.15)
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The following property of the product of two Legendre wavelet vector
functions will also be used:

Ψ(t)ΨT (t)C = C̃Ψ(t), (2.16)

where C is defined in (9) and C̃ is called the coefficient matrix and is
given in [24] as

C̃ =



C̃1 0 . . . 0

0 C̃2 . . . 0
...

...
. . .

...

0 0 . . . C̃n


, (2.17)

where C̃i, (i = 1, 2, . . . n) are m×m matrices.

3 Solution of nonlinear Fredholm equations of the second kind

Consider the following nonlinear Fredholm integral equation of the second
kind:

y(s) = x(s) +
∫ 1

0
k(s, t)g(t, y(t)) dt, s ∈ [0, 1), (3.1)

where x(s) ∈ L2[0, 1), k(s, t) ∈ L2[0, 1)×[0, 1) and g(t, y(t)) is a nonlinear
function of the unknown function y(s).
We have defined the function z(t) as

z(t) = g(t, y(t))

= g(t, x(t) +
∫ 1

0
k(t, u)g(u, y(u)) du),

= g(t, x(t) +
∫ 1

0
k(t, u)z(u) du), (3.2)
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According to Eqs.(2.8) and (2.5), expand functions z, x and k in terms
of Legendre wavelets as

z(t) ' ZTΨ(t), (3.3)

and

k(s, t) ' ΨT (s)KΨ(t), x(s) ' XTΨ(s). (3.4)

Substituting Eqs.(3.4) and (3.3) into Eq.(3.2) and applying Eq.(2.14) one
has

ZTΨ(t) =g(t,XTΨ(t) +
∫ 1

0
ΨT (t)KΨ(u)ΨT (u)Z du)

'g(t,XTΨ(t) + ΨT (t)KZ).

(3.5)

In order to construct the approximations for z(t) we collocate Eq.(3.5)
with Newton-Cotes points ti = 2i−1

2kM
, i = 1, 2, . . . 2k−1M , and by using

Eq. (2.15) we obtain

ZTHei ' g(ti, X
THei + eTi H

TKZ), i = 1, 2, . . . 2k−1M.

(3.6)

After replacing ' with =, we have a nonlinear system that can be solved
with Newton′s method for the unknown vector Z.

Considering (3.6), the required approximation to the solution y of Eq.(3.1)
in Legendre wavelets is given by

y(s) =x(s) +
∫ 1

0
k(s, t)z(t) ds

'XTΨ(s) +
∫ 1

0
ΨT (s)KΨ(t)ΨT (t)Z dt

'(XT + ZTKT )Ψ(s) ' Y TΨ(s)

(3.7)

where Y = XT + ZTKT .
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4 Solution of nonlinear Volterra equations of the second kind

Consider the following integral equation:

y(s) = x(s) +
∫ s

0
k(s, t)g(t, y(t)) dt, s ∈ [0, 1), (4.1)

where x(s) ∈ L2[0, 1), k(s, t) ∈ L2[0, 1)×[0, 1) and g(t, y(t)) is a nonlinear
function of unknown function y(s).
Here, also, we define z(t) as

z(t) = g(t, y(t))

= g(t, x(t) +
∫ t

0
k(t, u)g(u, y(u)) du)

= g(t, x(t) +
∫ t

0
k(t, u)z(u) du). (4.2)

According to Eqs.(2.8) and (2.5) we expand the functions z, x and k in
terms of Legendre wavelets as

z(t) ' ZTΨ(t), (4.3)

and

k(s, t) ' ΨT (s)KΨ(t), x(s) ' XTΨ(s). (4.4)

Substituting Eqs.(4.4) and (4.3) into Eq.(4.2) and applying Eq.(2.16) one
has

ZTΨ(t) =g(t,XTΨ(t) +
∫ t

0
ΨT (t)KΨ(u)ΨT (u)Z du)

'g(t,XTΨ(t) + ΨT (t)K
∫ t

0
Ψ(u)ΨT (u)Z du)

'g(t,XTΨ(t) + ΨT (t)K
∫ t

0
Z̃Ψ(u) du). (4.5)

The integrals of (4.5) can be obtained by multiplying the operational
matrix of integration of (2.9) as follows:

ZTΨ(t) 'g(t,XTΨ(t) + ΨT (t)KZ̃PΨ(t)). (4.6)
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By approximating ΨT (t)KZ̃PΨ(t) in Eq.(4.6) in terms of Legendre wavelets
we achieve

ΨT (t)KZ̃PΨ(t) = ẐΨ(t). (4.7)

We can achieve Ẑ by a way like C̃ and we see that each element Ẑ
is obtained by the sum of column elements of KZ̃P with respect to
coefficient C̃ in Eq.(2.16). So

ZTΨ(t) 'g(t,XTΨ(t) + ẐΨ(t)). (4.8)

Just like the Fredholm case, we construct the approximations for z(t)
collocating Eq.(4.8) with the 2k−1M collocation points, ti = 2i−1

2kM
, i =

1, 2, . . . 2k−1M ,

ZTHei ' g(ti, X
THei + ẐHei), i = 1, 2, . . . 2k−1M.

After replacing ' with =, we have a nonlinear system that can be solved
with Newton′s method for the unknown vector Z.

Considering (3.6), the required approximation to the solution y of Eq.(4.1)
in Legendre wavelets is given by

y(s) =x(s) +
∫ s

0
k(s, t)z(t) ds

'XTΨ(s) +
∫ s

0
ΨT (s)KΨ(t)ΨT (t)Z dt

'(XT + Ẑ)Ψ(s) = Y TΨ(s),

where Y = XT + Ẑ.

46



5 Numerical examples

Example 1: Consider the nonlinear Fredholm integral equation of the
second kind as follows:

y(s) = x(s) +
∫ 1

0
(s− t)y2(t) dt, 0 ≤ s ≤ 1, (5.1)

where

x(s) = ln(s+ 1) + 2ln(2)(1− sln(2) + 2s)− 2s− 5

4
, (5.2)

and the exact solution is y(s) = ln(s+ 1) [25].

In Table 1, we have reported the absolute errors of our method, with
k = 2,M = 15, and the homotopy analysis method (HAM) [25]. It is
easily concluded that it is efficient and superior to HAM.

Table 1. Errors in Example 1

s Our method HAM [25]

0.0 0.8733291867e-12 2.56186467595e-08

0.1 0.6161599009e-12 2.53309949127e-08

0.2 0.2554345624e-12 2.19432191028e-08

0.3 0.4911071549e-12 1.45529119865e-08

0.4 0.9847678228e-13 1.06476171213e-08

0.5 0.8460454559e-12 1.84023705163e-08

0.6 0.1638689184e-11 6.84976264597e-09

0.7 0.1591504706e-11 6.08723849100e-10

0.8 0.2009281630e-11 3.55107188090e-09

0.9 0.2072231275e-11 2.81965084610e-09

1.0 0.2941535904e-11 4.16376155700e-10

Example 2: Consider the nonlinear Fredholm integral equation of the
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second kind as follows:

y(s) = 1 + se− es +
∫ 1

0
k(s, t)ey(t) dt, 0 ≤ s ≤ 1, (5.3)

where

k(s, t) =

−t(1− s), s ≤ t,

−s(1− t), t ≤ s,
t, s ∈ [0, 1]. (5.4)

Its exact solution is y(s) = s. We applied the Legendre method according
to section 3, with k = 2 and M = 11. Table 2 illustrates the errors and
it is seen that the approximate solution coincides with the exact solution
for its (almost) 14 significant digits.

Example 3: Consider the following Fredholm integral equation of the
second kind

y(s) = es − (1 + 2e3)s

9
+
∫ 1

0
sty(t)3 dt, 0 ≤ s ≤ 1, (5.5)

where the exact solution is y(s) = es. It has been handled by a Wavelet-
Galerkin approach in [26]. Table 3. reports the errors of the Wavelet-
Galerkin method and the method proposed in section 3 and it confirms
that our method competes well with other approaches.

Example 4: Consider the following Fredholm integral equation of the
second kind

y(s) = es+1 −
∫ 1

0
es−2ty(t)3 dt, 0 ≤ s ≤ 1, (5.6)

with the exact solution y(s) = es. We have solved this equation with the
Legendre method described in section 3 by choosing k = 1 and M = 16.
Comparing the errors of our method and the Haar wavelet approach [27],
which is illustrated in Table 4. shows that our method is superior to Haar
family.

Example 5: Consider the following equation

y(s) = sin(πs) +
1

5

∫ 1

0
cos(πs) sin(πt)y(t)3 dt, 0 ≤ s ≤ 1, (5.7)
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Table 2. Errors in Example 2

s Error of approximation

0 0.3762958374e-15

0.0625 0.06249999999999995

0.1250 0.1249999999999997

0.1875 0.1874999999999999

0.2500 0.2499999999999996

0.3125 0.3124999999999997

0.3750 0.3749999999999995

0.4375 0.4374999999999998

0.5000 0.4999999999999959

0.5625 0.5624999999999985

0.6250 0.6250000000000000

0.6875 0.6874999999999988

0.7500 0.7500000000000004

0.8125 0.8124999999999990

0.8750 0.8750000000000004

0.9375 0.9374999999999989

1.0000 0.9999999999999965

where

y(s) = sin(πs) +
1

3
(20−

√
391) cos(πs), (5.8)

is the exact solution. The Legendre based method of section 3 is applied
to this equation with k = 2 and M = 15 and Table 5. shows the absolute
error of SE and DE-Sinc methods [28] and the results of Legendre wavelet
method. It is seen that the used method is more convenient than the Sinc
methods.

Example 6: Consider the nonlinear Volterra integral equation of the
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Table 3. Error comparisons for Example 3

s Error of approximation

0.0 1.000000 0.9999538 0.999956

0.2 1.221403 1.221467 1.221391

0.4 1.491825 1.491994 1.491845

0.6 1.822119 1.822376 1.822157

0.8 2.225541 2.225821 2.225517

1.0 2.718282 2.718574 2.718217

Table 4. Error comparisons for Example 4

s Errors of our method Errors of method [27]

0.1 6e-06 8e-03

0.2 7e-06 9e-03

0.3 8e-06 1e-02

0.4 9e-06 1e-02

0.5 1e-05 2e-02

0.6 1e-05 1e-02

0.7 1e-05 1e-02

0.8 1e-05 1e-02

0.9 1e-05 1e-02

second kind as follows:

y(s) = e−s +
∫ s

0
e−s+t(y(t) + e−y(t)) dt, 0 ≤ s ≤ 1, (5.9)

with the exact solution y(s) = ln(s+ e).
Example 7: Consider the following Volterra type integral equation of
the second kind

y(s) = es − 1

2
(e2s − 1) +

∫ t

0
y(t)2 dt, 0 ≤ s ≤ 1, (5.10)

where y(s) = es is the exact solution [27]. Here the Legendre wavelets
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Table 5. Error comparisons for Example 5

s Legendre wavelet method SE-Sinc method DE-Sinc method

0.0 3.39e-10 4.15e-07 1.4e-10

0.1 2.98e-10 1.33e-05 1.29e-08

0.2 3.80e-10 6.85e-06 2.05e-08

0.3 3.84e-10 6.22e-06 1.25e-08

0.4 4.80e-10 2.19e-06 2.41e-09

0.5 5.38e-10 2.15e-07 0.00e-00

0.6 5.45e-10 5.85e-06 9.54e-09

0.7 4.68e-10 1.02e-05 2.31e-08

0.8 7.64e-10 8.25e-06 2.33e-08

0.9 2.99e-11 1.66e-05 1.61e-08

1.0 2.43e-10 4.14e-07 1.4e-010

method is applied according to section 4 with k = 2 and M = 8, and
again it is seen that the Legendre method is superior to Haar wavelet
approach [27], see Table 7.

6 Conclusion

The Legendre wavelet family have proved its efficiency in handling dif-
ferent families of functional equations, here this family is used for solving
Hammerstein equations. The Legendre matrix of integration is applied to
the equation after rewriting the equation according to Kumar and Sloan
[13]. Then the nonlinear equation is reduced to a system of nonlinear
equations which is easily handled by Newton’s method. The results show
that the method is superior to some other methods like Haar wavelet and
rationalized Haar and Sinc methods. Also, when equal number of terms
is used to expand the solution the method competes well enough with
methods like homotopy analysis method.
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Table 6. Error comparisons for Example 6

s Legendre wavelet method SE-Sinc method DE-Sinc method

0 1.012410 1.002718 1.000630 1

0.0625 1.027253 1.022463 1.022406 1.022732

0.1250 1.044094 1.043699 1.044988 1.044959

0.1875 1.062735 1.066242 1.068789 1.066703

0.2500 1.082990 1.088767 1.086951 1.087983

0.3125 1.104695 1.117714 1.109553 1.108821

0.3750 1.127692 1.140411 1.126028 1.129233

0.4375 1.151843 1.157493 1.147332 1.149236

0.5000 1.173849 1.169304 1.162342 1.168848

0.5625 1.216191 1.197647 1.182438 1.188082

0.6250 1.250489 1.218966 1.196168 1.206953

0.6875 1.277540 1.233995 1.215157 1.225475

0.7500 1.298073 1.243355 1.227795 1.243659

0.8125 1.312754 1.270816 1.245856 1.261519

0.8750 1.322193 1.290882 1.257384 1.279066

0.9375 1.326946 1.304338 1.274662 1.296310

1.0000 1.327525 1.311900 1.285329 1.313262

Acknowledgement The authors would like to thank the anonymous
referees for their fruitful suggestions which has improved the results of
the paper.
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