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Abstract

We consider the concept of -distance on a complete partially ordered G-
metric space and prove some common fixed point theorems.
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1 Introduction

The Banach fixed point theorem for contraction mapping has been
generalized and extended in many direction [1-15]. Nieto and Rodriguez-
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Lopez [16], Ran and Reurings [17] and Petrusel and Rus [18] pre-
sented some new results for contractions in partially ordered metric
spaces. The main idea in [12,16,17] involves combining the ideas of
an iterative technique in the contraction mapping principle with
those in the monotone technique. Also, Mustafa and sims [19] in-
troduced the concept of G-metric. Some authors [20-24] have proved
some fixed point theorems in these spaces. In [25] Gajié proved a
common fixed point theorem for a sequence of mappings on this
space. Recently, Saadati et al. [26], using the concept of G-metric,
defined an €)-distance on complete G-metric space and generalized
the concept of w-distance due to Kada et al. [27].

In [28,29] some fixed pointtheorems proved and generalized under
this concept.

In this paper, we extend some fixed point theorems by using this
concept in partially ordered G-metric spaces.

At first we recall some definitions and lemmas. For more informa-
tion see [19,26].

Definition 1.1 [19] Let X be a non-empty set. A function G :
XXX xX — [0,00) is called a G-metric if the following conditions
are satisfied:

(i)
(i)
(i)
(iv)

(z,y,2z) =0 if 2 = y = 2z (coincidence),

(x,z,y) >0 for all z,y € X, where x # y,

(x,z,2) < G(z,y,2) for all z,y,z € X, with z # y,

(z,y,2) = G(p{x,y, z}), where p is a permutation of x,y, z
ymmetry),

z,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X (rect-
angle inequality).

1v

QAR

(v)
A G-metric is said to be symmetric if G(z,y,y) = G(y, z, x) for all
z,y € X.

Definition 1.2 [19] Let (X, G) be a G-metric space,
(1) a sequence {z,} in X is said to be G-Cauchy sequence if, for

each
e > 0, there exists a positive integer ng such that for all
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m,n,l > ng, G(xp, Tm,x;) < €.

(2) a sequence {x,} in X is said to be G-convergent to a point
x € X if, for each £ > 0, there exists a positive integer ny such
that for all m,n > ng, G(zm, T,, ) < €.

Definition 1.3 [19] Let (X, G) be a G-metric space. Then a func-
tion

Q: X xX xX — [0,00) is called an Q-distance on X if the
following conditions are satisfied:

(a) Uz,y,z) < Qz,a,a) + QUa,y, 2) forall x,y,z,a € X,

(b) for any z,y € X,Q(z,y,.), 2z, .,y) : X — [0,00) are lower
semi-continuous,

(c) for each € > 0, there exists a & > 0 such that Q(z,a,a) < 0
and
Qa,y,z) <6 mmply G(x,y,z) < e.

Example 1.1 [26] Let (X,d) be a metric space and G : X? —»
[0, 00) defined by

G(x,y, 2) = max{d(z,y),d(y, 2),d(z, 2)},
forall z,y,z € X. Then Q) = G is an Q-distance on X.

Example 1.2 [26] In X = R we consider the G-metric G defined
by

1
Gla,y,z)=g(lv—yl+ly—z]+]z—2z]),
for all z,y,z € R. Then Q:R> — [0,00) defined by

1
Q(;U,y,Z) - g(l r—y |)+ | r—z |7
for all x,y,z € R is an Q-distance on R.

For more example see [26].

Lemma 1.1 [26] Let X be a metric space with metric G- and 2 be
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an Q-distance on X. Let {x,},{yn} be sequences in X, {a,},{fn}
be sequences in [0,00) converging to zero and let x,y,z,a € X.
Then we have the following:

(1) If Qy,xp,xn) < an and Uz, y,z) < B for n € N, then
G(y,y,z) < e and hence y = z.

(2) If Uyn, Tn, xn) < ap and Q(xp, Ym, 2) < By for m > n, then
G (Yn, Ym, z) — 0 and hence y,, — z.

(3) If Uzpn, Tm, ;) < oy, for any l,m,n € N withn <m <1, then
{z,} is a G-Cauchy sequence.

(4) If Qzp,a,a) < oy for any n € N, then {x,} is a G-Cauchy
sequence.

Definition 1.4 [26] G-metric space X is said to be Q-bounded if
there is a constant M > 0 such that Q(z,y,z) < M for all x,y, z €
X.

2 Conclusion

In this section, we obtain common fixed point theorems for se-
quence of mappings satisfying contractiv and expansive conditions
on partially ordered complete G-metric spaces.

Definition 2.1 Suppose (X, <) is a partially ordered space and
T : X — X is a mapping of X into itself. We say that T is non-
decreasing if for v,y € X,

r<y=T(r) <T(y).

Theorem 2.1 Let (X, <) and (Y, <) be a partially ordered space.
Suppose that there ezists a G-metric on X and 'Y such that (X, G)
and (Y, G) are complete G-metric space and )y is an Q-distance
on X, Qy is Q-distance on'Y such that X be Q1-bounded and Y be
Qo-bounded. Let'T,, : X — Y, ne€ Nand S, : Y — X, n €
N U {0} be a non-decreasing and continuous sequence of mappings
with following properties:
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(a) for all z,y,z € X, ',y,2 € Y and i,j,k € N such that
0<r<1,

W (ST, S;T;y, SkTkz) < rmax {(y, S;T;y, SkTkz), i (z,y, 2),
Q2(ﬂ$7 ]jjyu TkZ)},

Qo(T3Si—12", T3S, 1y, TeSk—12") < rmax{Qa(y’, T;S;-1y', T Sk-17"),
Qz(iﬁ/, y/, Z/), 91(51'7190/, ijlyla Skflz/)}S
(b) for every x,y,z € X with y # S, Ty, n € N,
inf{Q(z,y,z) + Uz,y,2) + Uz, z,y) 1 x < z} > 0;
(c) for every 2y, 2 € Y withy # T,,S,-1y, n € N,
inf{Q(z', ¢/, 2") + Q2. ¢, ") + Qa', 2, y) : 2/ <2} > 0;

(d) Qu(Tix, Ty, T;z) =0 for each x,y,z € X and Oy (S;2’, S;y, S;2') =
0 for each x',y, 2 € Y.

Then {S,T,} has a unique common fized point u in X and {T,S,_1}
has a unique common fixed point w in'Y . Furthermore, lim,, ., T,u =
w and lim,,_,.c Spyw = u.

Proof: Let zy € X such that S, T,,(x,_1) = z, and T, (x,_1) = Yn
and x, < x,.1 for any n € N. For all n € N and ¢t > 0,

Q1 (T, o1y Togt) = N (SnTn(Tn-1), Sni1Tnr1(2n), Snt Dot (Tnge—1))
<rmax{Q(z,_1,Tn, Tnrt-1), 0 (Tn, Tni1, Tnit),
Qo (To(wn-1), Trg1 (), Tt (Tnse-1))}
=rmax{Q(x,_1, Tn, Tnit-1), 0 (Tn, Tni1, Tntt),
QQ(yn7yn+1>yn+t)}'

Then,

Q1 (T, Trt1, Tne) < rmax{Qy(Tn-1, Tn, Tnit—1), L2 (Yns Ynt1s Yntt) -
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Similarly,

QQ (y’m Yn+1, yn-‘,-t) S r maX{QQ<yn—1a Yn, yn+t—1)7 Ql(‘rn—ly Ln, xn—i—t—l)}'

So,
Ql(xna Tn+1, xn—‘rt) S Tn max{Ql(xo, X, ajt)v Q2 (yla Y2, yt+l)}7

and

92(%, Yn+1, yn+t) <r" maX{Q1($07 X1, SUt), Q2(ZJ07 Y1, Z/t>}~

Now, for any I > m >n withm =n+kand l =m +1t (k,t € N),
we have

lim  Q(zp, Tm, ;) = 0.
n,m,l—o0

Since X is 21-bounded and,

Q1 (T, Ty 1) QT Tty Trga) + Q(Tngt, Ty 1)
S Ql(xna Tn+1, anrl) + Ql (xn+17 Tn+2, 'rnJrZ)
+---+ Ql(l‘m—la L, J/'l)
ST”M+TR+1M+"'+Tm_1M
n—m+1 )

< Z r" M

j=0

n

< M.
“1-—r

So, by 0 < r < 1 and Part (3) of Lemma (1.6), {z,} is a G-Cauchy
sequence. Since X is G-complete, {z,} converges to a point u € X.
Similarly, {y,} is a G-Cauchy sequence such that has a limit w in
Y. Fixed n € N and by the lower semi-continuity of €2, we have

n
Q1 (2, Ty, w) < lminf Qy (2, T, ) < LM, m>n

P00 1—r

n

M, [ >n.

.. r
Ql(xn7u7xl) < 111£I—I>10101f Ql(xnaxpvxl) < 1

Assume that u # S, T,u. Since x,, < x,.1, we have
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0 <inf{Qy(zp, u,2,) + QU (Tn, U, Tpi1) + QU (Th, Tpar,u)}

<3inf{ ! M :n e N}

1—17r
=0,

which is a contraction. Therefor, u = S, T,,u and consequently u is
a common fixed point {5, 7}, }. Similarly, w is a common fixed point
{TSn-1}-

To prove the uniqueness, suppose {S,7,,} has another fixed point
u’. Then,

Q1 (u, v, u") = (S, Thu, S, Tou', S, Tou')
<rmax{Q (u, v, u'), %, S, T, S, Tu'),
Qo (Tu, Tou', T )}
=rmax{Q (u,u,u), %, v u),
Qo (Tu, Tou', Tyu') }

By (d) either Qy(u,u,u') =0 or Q(u, v, u’) < rQy(u, v o).
Since,

O (' u') = (S, T, S, T, S Thu)
<rmax{Q (v, v, u"), Q' S, T, S, Thu'),
Qo (T, Ty, Tou') },

then, O (v, v/, u') = 0 and consequently Q4 (u, v/, u') = 0. By Part

(c) of Definition (1.3) fixed point of {S,7},} is unique. Similarly, w

is a unique fixed point of {7,,5,,—1}. By continuity of {7}, we have
lim T,u= lim T, (z,_1) = li_>m Yp = W.

n—o0 n—oo

Similarly, lim,,_so S,w = u. O

Corollary 2.1 Let (X, <) be a partially ordered space. Suppose
that there ezists a G-metric on X such that (X, G) is a complete
G-metric space and € is an Q-distance on X such that X is Q-
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bounded. Let T, : X — X, n € N be a non-decreasing sequence of
mappings with property that for any t, 7,k € N, we have:

(a) for allz,y,z € X and 0 <r <1,

ATz, Tyy, Trz) < rmax{Q(z,y, 2), Wy, Ty, Tr2) };
(b) for every x,y,z € X withy # T,y,n € N,

inf{Q(z,y, ) + Uz,y,2) + Uz, z,y) : v < z} > 0.

Then {T,} has a unique common fized point u in X and Q(u,u,u) =

0.

Proof: It is sufficient that put 2 =Q; =Qy , X =Y and S, = I,
that I,, is identity mapping on X in Theorem (2.2). O

Theorem 2.2 Let (X, <) be a partially ordered space. Suppose
that there ezists a G-metric on X such that (X, G) is a complete
G-metric space and € is an Q-distance on X such that X is §2-
bounded. Let T,, : X — X, n € N be a non-decreasing sequence of
mappings with property that for any v, 7,k € N, we have:

(a) forallz,y,z € X and0 <r <1, QTx, Ty, Trz) < rz,y, 2);
(b) for every x,y,z € X withy # T,y,n € N,
inf{Q(z,y,z) + Qz,y,2) + Uz, z,y) s x < 2z} > 0.

Then {T,} has a unique common fized point u in X and Q(u, u,u) =
0.

Proof: Theorem is proved by similar proof of Theorem 2.1. O

Corollary 2.2 Let (X, <) be a partially ordered space. Suppose
that there exists a G-metric on X such that (X, G) is a complete
G-metric space and €2 is an Q-distance on X such that X is §2-
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bounded. Let T, : X — X, n € N be a non-decreasing sequence of
mappings with property that for some m € N and each i,j,k € N,
we have:

(a) for all z,y,z € X and 0 < r < 1, Q(I"z, Ty, Ti"2) <
rQ(z,y, 2);

(b) for every x,y,z € X withy # T,y,n € N,
inf{Q(z,y,z) + Uzx,y,2) + Az, z,y) :x < z} > 0.

Then {T,} has a unique common fized point u in X and Q(u,u,u) =
0.

Proof: By Theorem 2.2, the sequence {7} has the unique com-
mon fixed point u. But,
Tou = T,(TMu) = Ty = T (T,u).

So, T,u is the fixed point {T""}. Now, by uniqueness of the fixed
point, T,,u = u. O

Definition 2.2 Let (X, G) be a G-metric space,  be an Q-distance
on X and T be a selfmapping on X. Then T 1is called expansive
mapping with respect § if there exists a constant a > 1 such that
for all z,y, z € X, we have:

Q(Tx, Ty, Tz) > afd(z,y, 2).

Theorem 2.3 Let (X, <) be a partially ordered space. Suppose
that there exists a G-metric on X such that (X, G) is a complete
G-metric space and €2 is an §2-distance on X such that X s )-
bounded. Let T, : X — X, n € N be a non-decreasing sequence of
surjective mappings and S, : X — X, n € N be a non-decreasing
sequence of injective mappings with property that for any i, j, k € N,
we have:

(a) forallz,y,z € X anda > 1, ULz, Ty, Tpz) > aQ(S;x, S;y, Skz);
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(b) foralln € N, T,, and S,, commute;
(c) for every x,y,z € X withy # T,y,n € N,
inf{Q(z,y,z) + Qz,y,2) + QUz,2z,y) :x <z} >0
Then {T,} and {S,} have a unique common fized point u in X and
Qu,u,u) =0.
Proof: If T,z = T,y for any i € N and z,y € X, then,

UTix, Ty, Tyy) > aQd(Siz, Siy, Sjy);
thus,

—_

Q(SZZL’, Sjy, SﬂJ) < *QCsza ,-T]y7 fij)a

—

Now, since a > 1 and X is {2-bounded then, for any £ > 0, we choose
0= éM, which implies, Q(S;z, S;y, S;y) < § and Q(S;y, Siz, S;y) <
d. By Part (¢) of Definition (1.3), G(S;z, S;x, S;y) < €. Since € is
arbitrary, hence S;z = S;y. Now, by injectivity .S; for every ¢ € N,
we imply that x = y. So, T}, is injective and consequently invertible.
Let H, be the inverse mapping of 7T,, for any n € N. Then,

Qz,y,2) = UTi(Hx), T;(Hyy), Ti(Hy2))
> aQ)(Si(Hiz), S;(Hjy), Sk(Hez)).
So, for each z,y,z € X and any i, j, k € N, we obtain

Q(SiOHi.CC, SjOij, SkOHkZ) < TQ(:E7 Y, Z)a

where r = % Then Q(Giz, Gy, Grz) < rQ(z,y, z), where G, =
SnoH,,. By Theorem 2.1, GG,, or S,,0H,, have a unique common fixed
point u in X ji.e. G,u = u = S,oH,u. It follows that 75, (.S, (H,u) =
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T,u,. Since, T}, and 5,, commute, we obtain
Sp(Th(Hyu) = Thyu = S,u = Thu,
for any n € N. If we put x = u, y = Hju and z = Hyu, we have
Q(Tiu, T;(Hjuw), T (Hgu)) > a2(Siu, Sj(Hju), Sk(Hiuw)).

So,

QTiu, u,u) > aQd(Siu, u,uw) = aQ(Tyu, u, u).
Since a > 1, then Q(T;u,u,u) = 0. By putting z = Hyu,y =
Hju,z = Hyu and similar proof Q(u,u,u) = 0. Now by Part (3) of
Definition (1.3), T;u = u. Hence T,,u = S,u = u and u is a unique
common fixed point of 7}, and S,,. O
The following corollary is a generalization of [18, theorem 2.1].

Corollary 2.3 Let (X, <) be a partially ordered space. Suppose
that there exists a G-metric on X such that (X, G) is a complete
G-metric space and € is an Q-distance on X such that X s -
bounded. Let T, : X — X, n € N be a non-decreasing sequence of
surjective mappings with property that for any i, 5,k € N, we have:

(a) for all x,y,z € X and a > 1, Q(Tix, Ty, Tyz) > aSd(z,y, 2);
(b) for every x,y,z € X with y # T,y,n € N,
inf{Q(z,y,z) + Qx,y,2) + Az, 2,y) 1 2 < 2} > 0.

Then {T,} has a unique common fized point u in X and Q(u,u,u) =

0.

Proof: Follows from Theorem 2.3, by taking S,, = [, for any n € N
such that I, is identity mapping on X. O

Corollary 2.4 Let (X, <) be a partially ordered space. Suppose
that there exists a G-metric on X such that (X, G) is a complete
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G-metric space and €2 1s an Q-distance on X such that X is §2-
bounded. Let T, : X — X, n € N be a non-decreasing sequence of
surjective mappings with property that for each i, 7,k € N, we have:

(a) for all z,y,z € X anda > 1,

UTiz, Ty, Tirz) > amax{Q(z,y,y) + 2y, y, 2), Az, 2, 2)
+ Q(2,9,2)},

(b) for every x,y,z € X withy # T,y,n € N,
inf{Q(z,y,z) + Qz,y,2) + Uz, z,y) s x < 2z} > 0.

Then {T,} has a unique common fixed point u in X and Q(u,u,u) =

0.

Proof: Since by Part (a) of Definition (1.3),

amax{Q(z,y,y) + Uy, y, 2), Uz, z,2) + Qz,y,2)} = aQ(z,y, 2).
So, Theorem 2.3 implies that {7}, } has a unique common fixed point
win X and Q(u,u,u) =0. O
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