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Abstract

The aim of this paper is a) if
∑∞

k=1 a
2
k <∞ then

∑∞
k=1 akrk(x) ∈ BMO that

{rk(x)} is Rademacher system. b)
∑∞

k=1 akωnk (x) ∈ BMO, 2k ≤ nk < 2k+1

that {ωn(x)} is Walsh system. c) If |ak| < 1
k
then

∑∞
k=1 akωk(x) ∈ BMO.

Keywords: BMO space, wavelets, Orthonormal system, Rademacher system, Walsh

system, Haar system.

1 Introduction

1.1 The space of bounded mean oscillation functions

Definition 1.1. ([3],[5],[6],[7],[8])A locally integrable function f will be said to belong
to BMO if the inequality

1

|B|

∫
B

|f(x)− fB |dx ≤ A (1.1)

holds for all balls B; here |B| is volume of B and fB = |B|−1
∫
B
fdx denotes the

mean value of f over the ball B. The inequality (1) asserts that over any ball B, the
average oscillation of f is bounded.

The smallest bound A in (1) is called the norm of f in this space, and is denoted
by ||f ||BMO.
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Theorem 1.1. ([5],[6])Suppose that f is in BMO. Then
(a) For any p <∞, f is locally in Lp, and

1

|B|

∫
B

|f − fB |pdx ≤ cp‖f‖pBMO, (1.2)

for all balls B.
(b) There exist positive constants c1 and c2 so that, for every α > 0 and every ball B,

|{x ∈ B : |f(x)− fB | > α}| ≤ c1e−c2α/‖f‖BMO .|B|. (1.3)

Definition 1.2. ([5])For n=1,2,3,..., the nth Rademacher function is defined by

rn(x) =

{
1, if i odd and x ∈ ((i− 1)/2n, i/2n) = ∆i

n;
−1, if i even and x ∈ ((i− 1)/2n, i/2n) = ∆i

n.
(1.4)

In addition, it will be convenient to suppose that r0(x) = 1 for x ∈ (0, 1) and that
rn(i/2n) = 0 for i = 0, 1, ..., 2n; n=0,1,....Then we can give a more intensive definition
of the Rademacher functions by the formula

rn(x) = sgnsin2nπx, x ∈ [0, 1], n = 0, 1, .... (1.5)

If n is a positive integer,

n =
∞∑
k=0

θk2k =

k(n)∑
k=0

θk2k, k(n) = [log2 n], θk(n)(n) = 1.

Definition 1.3. ([5])The Walsh system is the system W = {ωn(x)}∞n=0, x ∈ [0, 1],
where ω0(x) = 1 and, for n ≥ 1,

ωn(x) =

∞∏
k=0

[rk+1(x)]θk = rk(n)+1(x)

k(n)−1∏
k=0

[rk+1(x)]θk ,

where rk(x), k=1,2,..., are the Rademacher functions.

1.2 Quasi-orthogonal expansions

Definition 1.4. ([6])A binary interval or dyadic interval is an interval of the form
((i− 1)/2k, i/2k), where i = 1, . . . , 2k, k = 0, 1, ....

Our orthogonal decompositions (more precisely, ”quasi-orthogonal” decomposi-
tions) will be given in terms of a family of ”bump” functions; each such function will
be associated to a dyadic cube. We fix our notation as follows: the letter Q will be
reserved for a dyadic cube, and B = BQ will be the ball with the same center and
twice the diameter (thus BQ ⊃ Q); similarly the ball Bj will be associated to Qj , etc.
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For each dyadic cube Q, we will be given a function φj , supported in BQ, that satisfies
certain natural size, regularity, and moment conditions. We shall assume that

|DαφQ| ≤
l(Q)−|α|

|Q|1/2
,

∫
xαφQ(x)dx = 0, 0 ≤ |α| ≤ n (1.6)

with l(Q) denoting the length of a side of the cube Q ⊂ Rn.
We shall be dealing with functions f that can be represented in the form

f =
∑
Q

aQφQ, (1.7)

where aQ is a suitable collection of constants, and the summation in (7) is carried
over all dyadic cubes.
Various extensions of the same ideas are possible, giving also characterizations of
many other function spaces besides BMO, leading in addition to what are now known
as ”wavelet” decompositions.

Theorem 1.2. ([6])(a) Suppose the coefficients aQ satisfy the inequalities∑
Q⊂Q0

|aQ|2 ≤ A|Q0| (1.8)

for all dyadic cubes Q0, where the summation in (8) is taken over all dyadic subcubes
of Q0. Then the series (7) gives an f ∈ BMO in the sense that

lim
ρ1→0,ρ2→∞

∑
ρ1≤l(Q)≤ρ2

aQφQ = f

exists in the weak topology of BMO.
(b) Conversely, suppose f ∈ BMO. Then there is a collection of functions φQ and
a collection of coefficients aQ that satisfy (6) and (8) respectively, so that f is repre-
sentable as the sum (7), in the sense asserted in part (a).

The smallest A for which (8) holds is comparable with ||f ||2BMO.
Remark. A simplified version of the system aQ occurs in the dyadic context, and is
given by the Haar basis. We describe the situation in one dimension. Suppose h is
the function supported in the unit interval [0, 1] that equals 1 in the left half and −1
in the right half. For any dyadic interval Q, set

hQ = 2j/2h(2jx− k), Q = [k2−j , (k + 1)2J ].

While the hQ satisfy only the size condition |hQ| ≤ |Q|−1/2 and the moment condition∫
hQdx = 0 (and not the full conditions (6)), they have the compensating merit of

forming a complete orthonormal basis for L2(R1). For f =
∑
aQhQ, the property∑

Q⊆Q0

|aQ|2 ≤ c|Q0|
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is then equivalent with f being in BMO in the dyadic sense.
Corollary 1.1. Let f is a function on [0, 1], then f ∈ BMO if and only if for every
dyadic interval J ⊆ [0, 1] the inequality∑

I⊆J

|fI |2 ≤ A|J |

be satisfied, that I is dyadic.
Proof. If χI(x) be the Haar function associated with the dyadic interval I and the
Haar coefficient over I of f is

fI = (f, χI) :=

∫
I

f(x)χI(x)dx,

then from Theorem 1.2. the corollary is immediate.

2 Main results

Theorem 2.1. If
∑∞
k=1 a

2
k <∞ then

∞∑
k=1

akrk(x) ∈ BMO

that {rk(x)} is Rademacher system.

Proof. Let f(x) =
∑∞
k=1 akrk(x) then for every dyadic I with |I| = 1

2n :

fI =

∫ 1

0

f.χIdx =

∫ 1

0

(

∞∑
k=1

akrk(x)).χI(x)dx =

∞∑
k=1

ak

∫ 1

0

rk(x).χI(x)dx = an2
n
2 .|I| = an

1

2
n
2

therefore if |J | = 1
2m then

∑
I⊆J

|fI |2 = |fJ |2 + |f
J

(1)
1
|2 + |f

J
(2)
1
|2 + . . .+

2k∑
i=1

|f
J

(i)
k

|2 + . . .

⇒
∑
I⊆J

|fI |2 = |am|2.
1

2m
+2|am+1|2.

1

2m+1
+. . .+2k|am+k|2.

1

2m+k
+. . . ≤ ‖{an}‖22|J | = A|J |

Now corollary 1.1 implies that f ∈ BMO.

Theorem 2.2. If
∑∞
k=1 a

2
k <∞ then

∞∑
k=1

akωnk
(x) ∈ BMO

that {ωn(x)} is Walsh system and 2k ≤ nk < 2k+1.
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Proof. Let f(x) =
∑∞
k=1 akωnk

(x) then for every dyadic I with |I| = 1
2n :

fI =

∫ 1

0

f.χIdx =

∫ 1

0

(
∞∑
k=1

akωnk
(x)).χI(x)dx =

∞∑
k=1

ak

∫ 1

0

rα1
1 (x).rα2

2 (x). · · · .rαk

k (x).rk+1(x).χIdx

where α1, α2, . . . , αk ∈ {0, 1}. Now rα1
1 (x).rα2

2 (x). . . . .rαk

k (x).rk+1(x).χI is equal 1√
|I|

if x ∈ I and elsewhere is equal zero, then |fI | = |an|.2
n
2 .|I| = |an|

2
n
2
.

Therefore if |J | = 1
2m the following equality is satisfied:

∑
I⊆J

|fI |2 = |fJ |2+|f
J

(1)
1
|2+

2k∑
i=1

|f
J

(i)
k

|2+. . . = |am|2.
1

2m
+2|am+1|2.

1

2m+1
+. . .+2k|am+k|2.

1

2m+k
+. . .

and finally

∑
I⊆J

|fI |2 =
1

2m
(|am|2 + |am+1|2 + . . .) ≤ ‖{an}‖22|J | = A|J |.

Now corollary 1.1 implies that f ∈ BMO.

Theorem 2.3. If |ak| < 1
k then

∞∑
k=1

akωk(x) ∈ BMO

that {ωn(x)} is Walsh system.

Proof. Let f(x) =
∑∞
k=1 akωk(x) then for every dyadic I with |I| = 1

2k0
:

fI =

∫ 1

0

f.χIdx =

∫ 1

0

(
∞∑
n=0

2n+1−1∑
k=2n

akωk(x)).χI(x)dx =

∫ 1

0

(
2k0+1−1∑
k=2k0

akωk(x)).χI(x)dx

then

|fI | ≤
1

2k0

2k0+1−1∑
k=2k0

|
∫ 1

0

ωk(x).χI(x)dx| ≤ 1

2k0
= |I|

⇒
∑
I⊆J

|fI |2 ≤
∑
I⊆J

|I|2 = |J |2+2.(
|J |
2

)2+· · ·+2n.(
|J |
2n

)2+· · · = |J |2(1+
1

2
+

1

4
+· · · ) = A|J |.

Now corollary 1.1 implies that f ∈ BMO.



28 M. Ghanbari

References

[1] L. Grafakos, Modern Fourier Analysis, Second Edition, Graduate Texts in Math.,
No. 250, Springer, New York, 2008.

[2] L. Grafakos, L. Liu, D. Yang, Maximal function characterizations of Hardy spaces
on RD-spaces and their applications, Sci. China Ser. A 51 (2008), 2253-2284.

[3] Dziubanski, G. Garrigos, T. Martnez, J. L. Torrea, J. Zienkiewicz, BMO spaces
related to Schrodinger operators with potentials satisfying a reverse Holder in-
equality, Math. Z. 249 (2005), 329-356.

[4] E. Hernftndez, G. Weiss, A First Course on wavelet, University Autonoma of
Madrid, Washington University in St. Louis, 1996

[5] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Transl. Mth. Monographs, vol
75, AMS, Providence, 1989

[6] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and
Oscillatory Integrals, Princeton University Press, Princeton, New Jersey 1993

[7] M. T. Lacey, E. Terwilleger, B. D. Wick, Remarks on product VMO, Proc. Amer.
Math. Soc. 134 (2006), 465-474.

[8] O. Blasco, S. Pott, Dyadic BMO on the bidisk, Rev. Mat. Iberoamericana 21
(2005), , 483-510.




