

Mathematics Scientific Journal

Vol. 8, No. 1, (2012), 23-33

Some fixed points for *J*-type multi-valued maps in CAT(0) spaces

S. J. Hosseini Ghoncheh $^{\mathrm{a},*}$ H. Salahifard $^{\mathrm{b}}$

^aDepartment of Mathematics, Takestan Branch, Islamic Azad University, Takestan, Iran.

^bDepartment of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.

Received 18 February 2012; accepted 19 September 2012

Abstract

In this paper, we prove the existence of fixed point for J-type multi-valued map T in CAT(0) spaces and also we prove the strong convergence theorems for Ishikawa iteration scheme without using the fixed point of involving map.

Key words: Ishikawa iteration scheme; CAT(0) spaces; J-type mapping.

 $2010 \ AMS \ Mathematics \ Subject \ Classification: \ \ 47 \mathrm{H10}.$

 $[\]label{eq:corresponding} * \ Corresponding author's E-mail:sjhghoncheh@gmail.com; sjhghoncheh@tiau.ac.ir(S.$

J. Hosseini Ghoncheh), Tel: +989125824896; Fax:+982825270165

1 Introduction

Let D be a nonempty subset of metric space X := (X, d). The set D is called proximinal if for each $x \in X$, there exists an element $y \in D$ such that d(x, y) = d(x, D), where $d(x, D) = \inf\{d(x, z) : z \in D\}$. Let CB(D), P(D) denote the family of nonempty closed bounded and nonempty proximinal bounded subsets of D, respectively. The Hausdorff metric on CB(D) is defined by

$$H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\}$$

for $A, B \in CB(D)$. A single-valued map $T : D \to D$ is called nonexpansive if $d(T(x), T(y)) \leq d(x, y)$ for $x, y \in D$. A multi-valued map $T : D \to CB(D)$ is said to be nonexpansive, if $H(T(x), T(y)) \leq d(x, y)$ for $x, y \in D$. An element $p \in D$ is called a fixed point of $T : D \to D$ (respectively, $T : D \to CB(D)$) if p = T(p) (respectively, $p \in T(p)$). The set of fixed points of T is represented by F(T). The mapping $T : D \to CB(D)$ is called quasi-nonexpansive if $F(T) \neq \emptyset$ and $H(T(x), T(p)) \leq d(x, p)$ for all $x \in D$ and all $p \in F(T)$. It is clear that every nonexpansive multi-valued map T with $F(T) \neq \emptyset$ is quasi-nonexpansive. But there exist quasi-nonexpansive mappings that are not nonexpansive (see [8]) The following definition is from [5]:

Definition 1.1 Let (X, d) be a metric space. $y_0 \in X$ is called a center for the mapping $T : D \to X$ if, for each $x \in D$,

$$d(y_0, T(x)) \le d(y_0, x).$$

 $T: D \to X$ is called a J-type mapping, whenever it is continuous and it has some center $y_0 \in X$. In this case, Z(T), denote the set of all centers of the mapping T.

Of course, if a mapping $T: D \to X$ has a center $y_0 \in D$, then trivially $T(y_0) = y_0$. Thus, fixed point results for J-type mappings are only non-trivial provided they have a center $y_0 \notin D$. It turns out that this class contains all contractions defined in closed sets of Banach spaces and even all the so called quasi-nonexpansive mappings (i.e. those for which every

fixed point is a center).

Definition 1.2 Let D be a bounded closed convex subset of a metric space (X, d). We say that $y_0 \in X$ is a center for a mapping $T : D \to CB(X)$ if, for each $x \in D$,

$$H(T(x), \{y_0\}) \le d(y_0, x),$$

we will say that $T: D \to CB(X)$ is a J-type mapping whenever it is upper semicontinuous and has some center $y_0 \in X$.

Of course, if a mapping $T : D \to CB(X)$ has a center $y_0 \in D$, then trivially $H(T(y_0), \{y_0\}) = 0$, that is, $T(y_0) = \{y_0\}$, which means that y_0 is a stationary point for T.

 $T: D \to CB(D)$ is called hemicompact if, for any $\{x_n\}$ in D such that $d(x_n, T(x_n)) \to 0$ as $n \to \infty$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to p \in D$.

 $T: D \to CB(D)$ is said to satisfy condition (I) if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0, f(r) > 0 for $r \in (0, \infty)$ such that

$$d(x, T(x)) \ge f(d(x, F(T)))$$

for all $x \in D$.

 $T: D \to CB(X)$ is said to satisfy condition (II) if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0, f(r) > 0 for $r \in (0, \infty)$ such that

$$d(x, T(x)) \ge f(d(x, Z(T)))$$

for all $x \in D$.

(A)Let $T: D \to D$ be a single - valued mapping. The Ishikawa iteration scheme, starting from $x_0 \in D$, is the sequence $\{x_n\}$ defined by

$$y_n = \beta_n T(x_n) + (1 - \beta_n) x_n, \quad \beta_n \in [0, 1], \quad n \ge 0$$

$$x_{n+1} = \alpha_n T(y_n) + (1 - \alpha_n) x_n, \quad \alpha_n \in [0, 1], \quad n \ge 0$$

(B)Let $T: D \to P(D)$ be a multi-valued mapping and fix $p \in F(T)$. Sastry and Babu [6] defined the Ishikawa iteration scheme for this multi-valued mapping as below by $x_0 \in D$

$$y_n = \beta_n z_n + (1 - \beta_n) x_n, \ \beta_n \in [0, 1], \ n \ge 0$$

where $z_n \in T(x_n)$, and

$$x_{n+1} = \alpha_n \acute{z}_n + (1 - \alpha_n) x_n, \quad \alpha_n \in [0, 1], \quad n \ge 0$$

where $\dot{z}_n \in T(y_n)$ such that $d(\dot{z}_n, p) = d(p, T(y_n))$.

They proved the Ishikawa iteration scheme for a multi-valued map T with a fixed point p converge to a fixed point q of T under certain conditions. They also claimed that the fixed point q may be different from p. More precisely, they proved the following results for nonexpansive multi-valued map with compact domain.

Theorem 1.1 Let E be a Hilbert space, K a nonempty compact convex subset of E, and $T: K \longrightarrow P(K)$ a nonexpansive map with a fixed point p. Assume (i) $0 \le \alpha_n, \beta_n < 1$; (ii) $\beta_n \to 0$ and (iii) $\sum \alpha_n \beta_n = \infty$. Then the Ishkawa iterates $\{x_n\}$ defined by (B) convergence to a fixed point of T.

Song and Wang[9] following Ishikawa iteration scheme: (C)Let K be a nonempty convex subset of $X, \alpha_n, \beta_n \in [0, 1]$ and $\gamma_n \in (0, \infty)$ such that $\lim_{n\to\infty} \gamma_n = 0$. Choose $x_0 \in K$. Then

$$y_n = \beta_n z_n + (1 - \beta_n) x_n,$$

$$x_{n+1} = \alpha_n \dot{z}_n + (1 - \alpha_n) x_n,$$

where $||z_n - \acute{z}_n|| \le H(T(x_n), T(y_n)) + \gamma_n$ and

 $||z_{n+1} - \dot{z}_n|| \le H(T(x_{n+1}), T(y_n)) + \gamma_n$

for $z_n \in T(x_n)$ and $\dot{z}_n \in T(y_n)$. Song and Wang[9] proved the following results. In the results, the domain of T is still compact.

Theorem 1.2 Let E be a uniformly convex Banach space, K a nonempty compact convex subset of E, and $T : K \longrightarrow CB(K)$ a nonexpansive map with $F(T) \neq \emptyset$. Assume that (i) $0 \le \alpha_n, \beta_n < 1$; (ii) $\beta_n \to 0$ and (iii) $\sum \alpha_n \beta_n = \infty$. Then the Ishkawa iterates $\{x_n\}$ defined by (C) convergence to a fixed point of T.

Recently Shahzad and Zegeye [8] introduced the modified Ishikawa iteration scheme as follows: (D)Let K be a nonempty convex subset of Banach

spaces X. The Ishikawa iteration scheme is defined by $x_0 \in K$

$$y_n = \beta_n z_n + (1 - \beta_n) x_n, \ \beta_n \in [0, 1], \ n \ge 0$$

where $z_n \in T(x_n)$, and

$$x_{n+1} = \alpha_n \dot{z}_n + (1 - \alpha_n) x_n, \quad \alpha_n \in [0, 1], \quad n \ge 0$$

where $\dot{z}_n \in T(y_n)$.

(E)Let $T : K \to P(K)$ be a multi-valued map, $P_T(x) = \{y \in T(x) : ||x - y|| = d(x, T(x))\}$. The Ishikawa iteration scheme for this multi-valued mapping as below by $x_0 \in K$

$$y_n = \beta_n z_n + (1 - \beta_n) x_n, \ \beta_n \in [0, 1], \ n \ge 0$$

where $z_n \in P_T(x_n)$, and

$$x_{n+1} = \alpha_n \acute{z}_n + (1 - \alpha_n) x_n, \ \alpha_n \in [0, 1], \ n \ge 0$$

where $\dot{z}_n \in P_T(y_n)$. They also proved some results on the strong convergence of the sequence defined by (D) and(E).

2 CAT(0) spaces

Recently, CAT(0) spaces has been rapidly developed, and many papers have appeared (see [1], [7]). In this section introduce some definition and properties of CAT(0) spaces.

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subset R$ to X such that c(0) = x, c(l) = y, and d(c(t), c(t)) = |t - t| for all $t, t \in [0, l]$. In particular, c is an isometry and d(x, y) = l.

The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x to y for each $x, y \in X$. A subset $Y \subseteq X$ is said

to convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A comparison triangle for geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3) := \triangle(\bar{x_1}, \bar{x_2}, \bar{x_3})$ in the Euclidean plane E^2 such that $d_{E^2}(\bar{x_i}, \bar{x_j}) = d(x_i, x_j)$ for $i, j \in$ $\{1, 2, 3\}$. A geodesic metric space is said to be a CAT(0) space [2] if all geodesic triangles of appropriate size satisfy the following comparison axiom. Let \triangle be a geodesic triangle in X and let $\overline{\triangle}$ be a comparison triangle for \triangle . Then \triangle is said to satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\bar{x}, \bar{y} \in \overline{\triangle}$: $d(x, y) \leq d_{E^2}(\bar{x}, \bar{y})$.

It is known that in a CAT(0) space, the distance function is convex [2]. Complete CAT(0) spaces are often called Hadamard spaces. Finally we observe that if x, y_1, y_2 are points of a CAT(0) space and if y_0 is the midpoint of the segment $[y_1, y_2]$, which we will denote by $\frac{y_1 \oplus y_2}{2}$, then the CAT(0) inequality implies

$$d(x, \frac{y_1 \oplus y_2}{2})^2 \le \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2 \qquad (2.1)$$

because equality holds in the Euclidean metric. In fact (see [2], p. 163), a geodesic metric space is a CAT(0) space if and only if it satisfies inequality 2.1 (which is known as the CN inequality of Bruhat and Tits [3]).

The following lemma is a generalization of (CN) inequality which can be found in [4].

Lemma 2.1 Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2$$

for all $t \in [0, 1]$ and $x, y, z \in X$.

It is worth mentioning that the results in CAT(0) spaces can be applied to any $CAT(\kappa)$ space with $\kappa \leq 0$, since any $CAT(\kappa)$ space is a $CAT(\kappa)$ space for every $\kappa \geq \kappa$ (see [2] p165).

3 Ishikawa iteration schemes

We use the following iteration scheme.

(F) Let D be a nonempty convex subset of a CAT(0) space X and $\alpha_n, \beta_n \in [0, 1]$. The sequence of Ishikawa iterates is defined by $x_0 \in D$,

$$y_n = \beta_n z_n \oplus (1 - \beta_n) x_n, \quad n \ge 0,$$

where $z_n \in T(x_n)$, and

$$x_{n+1} = \alpha_n \dot{z}_n \oplus (1 - \alpha_n) x_n, \quad n \ge 0,$$

where $\dot{z}_n \in T(y_n)$.

Lemma 3.1 Let X be a Complete CAT(0) space, D a nonempty closed convex subset of X and $T: D \to CB(X)$ be J-type multi-valued map. Let $\{x_n\}$ be the Ishkawa iterates (F). Then $\lim_{n\to\infty} d(x_n, p)$ exists for each $p \in Z(T)$.

Proof. Let $p \in Z(T)$. Then, using (H), we have

$$d(y_n, p) = d(\beta_n z_n \oplus (1 - \beta_n) x_n, p)$$

$$\leq \beta_n d(z_n, p) + (1 - \beta_n) d(x_n, p)$$

$$\leq \beta_n d(z_n, \{p\}) + (1 - \beta_n) d(x_n, p)$$

$$\leq \beta_n H(T(x_n), \{p\}) + (1 - \beta_n) d(x_n, p)$$

$$\leq \beta_n d(x_n, p) + (1 - \beta_n) d(x_n, p)$$

$$\leq d(x_n, p)$$

$$d(x_{n+1}, p) = d(\alpha_n \dot{z}_n + (1 - \alpha_n) x_n, p)$$

$$\leq \alpha_n d(\dot{z}_n, p) \oplus (1 - \alpha_n) d(x_n, p)$$

$$\leq \alpha_n d(\dot{z}_n, \{p\}) + (1 - \alpha_n) d(x_n, p)$$

$$\leq \alpha_n H(T(y_n), \{p\}) + (1 - \alpha_n) d(x_n, p)$$

$$\leq \alpha_n d(y_n, p) + (1 - \alpha_n) d(x_n, p)$$

$$\leq \alpha_n d(x_n, p) + (1 - \alpha_n) d(x_n, p)$$

$$\leq d(x_n, p).$$

Consequently, the sequence $\{d(x_n, p)\}$ is decreasing and bounded below and thus

 $\lim_{n\to\infty} d(x_n, p)$ exists for any $p \in Z(T)$. Also $\{x_n\}$ is bounded.

Theorem 3.1 Let X be a Complete CAT(0) space, D a nonempty closed convex subset of X and $T: D \to CB(X)$ be J-type multi-valued map. Let $\{x_n\}$ be the Ishikawa iterates (F). Assume that T satisfies condition (II) and $\alpha_n, \beta_n \in [a, b] \subset (0, 1)$. Then T has a fixed point and also $\{x_n\}$ converges strongly to a fixed point of T.

Proof. Let $p \in Z(T)$. Then, as in the proof of lemma 3.1, $\{x_n\}$ is bounded and so $\{y_n\}$ is bounded, therefore, there exists R > 0 such that $x_n - p, y_n - p \in \mathbf{B}_R(0)$ for all $n \ge 0$. Applying Lemma 2.1, we have

$$d(x_{n+1}, p)^{2} = d(\alpha_{n} \acute{z}_{n} \oplus (1 - \alpha_{n}) x_{n}, p)^{2}$$

$$\leq \alpha_{n} d(\acute{z}_{n}, p)^{2} + (1 - \alpha_{n}) d(x_{n}, p)^{2} - \alpha_{n} (1 - \alpha_{n}) d(x_{n}, \acute{z}_{n})$$

$$\leq \alpha_{n} H(T(y_{n}), \{p\})^{2} + (1 - \alpha_{n}) d(x_{n}, p)^{2} - \alpha_{n} (1 - \alpha_{n}) d(x_{n}, \acute{z}_{n})$$

$$\leq \alpha_{n} d(y_{n}, p)^{2} + (1 - \alpha_{n}) d(x_{n}, p)^{2}.$$

and

it follows that

$$\begin{aligned} d(y_n, p)^2 &= d(\beta_n z_n \oplus (1 - \beta_n) x_n, p)^2 \\ &\leq \beta_n d(z_n, p)^2 + (1 - \beta_n) d(x_n, p)^2 - \beta_n (1 - \beta_n) d(x_n, z_n) \\ &\leq \beta_n H(T(x_n), \{p\})^2 + (1 - \beta_n) d(x_n, p)^2 - \beta_n (1 - \beta_n) d(x_n, z_n) \\ &\leq \beta_n d(x_n, p)^2 + (1 - \beta_n) d(x_n, p)^2 - \beta_n (1 - \beta_n) d(x_n, z_n) \\ &\leq d(x_n, p)^2 - \beta_n (1 - \beta_n) g(d(x_n, z_n)) \beta_n) d(x_n, z_n). \end{aligned}$$

 So

$$d(x_{n+1},p)^2 \le \alpha_n d(x_n,p)^2 \oplus (1-\alpha_n)d(x_n,p)^2 - \alpha_n\beta_n(1-\beta_n)d(x_n,z_n).$$

This implies that

$$a^{2}(1-b)d(x_{n},z_{n}) \leq \alpha_{n}\beta_{n}(1-\beta_{n})d(x_{n},z_{n}) \leq d(x_{n},p)^{2} - d(x_{n+1},p)^{2}$$

and so

$$\sum_{n=1}^{\infty} a^2 (1-b) d(x_n, z_n) < \infty.$$

Thus, $\lim_{n\to\infty} d(x_n,z_n)=0$. Also $d(x_n,T(x_n))\leq d(x_n,z_n)\to 0$ as $n\to\infty$. Since T satisfies condition (II) , we have $\lim_{n\to\infty} d(x_n,Z(T))=0$. Thus there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $d(x_{n_k},p_k)<\frac{1}{2^k}$ for some $\{p_k\}\subset Z(T)$ and all k. Note that by Lemma 3.1 we obtain

$$d(x_{n_{k+1}}, p_k) \le (x_{n_k}, p_k) < \frac{1}{2^k}.$$

We now show that $\{p_k\}$ is a Cauchy sequence in D. Notice that

$$d(p_{k+1}, p_k) \le d(p_{k+1}, x_{n_{k+1}}) + d(x_{n_{k+1}}, p_k)$$

$$< \frac{1}{2^{k+1}} + \frac{1}{2^k}$$

$$< \frac{1}{2^{k-1}}.$$

This shows that $\{p_k\}$ is a Cauchy sequence in D (because of closedness of D) and converges to $q \in D$. Since

$$d(p_k, T(q)) \le H(T(q), \{p_k\})$$
$$\le d(q, p_k)$$

and $p_k \to q$ as $k \to \infty$, it follows that d(q, T(q)) = 0 and thus $q \in F(T)$ and $\{x_{n_k}\}$ converges strongly to q. Since Z(T) is closed, $q \in Z(T)$ and $\lim_{n\to\infty} d(x_n, q)$ exists, it follows that $\{x_n\}$ converges strongly to q. As we see in [8] the author proved Theorem 2.5 with replacing condition (I) by the hemicompactness of T, so one can replace condition (II) in Theorem 3.1 by the hemicompactness of T in the same way and show that $\{x_n\}$ converges to a fixed point of T.

Acknowledgment

The authors would like to thank the referees for careful reading and giving valuable comments. This work was supported by the Islamic Azad University, Takestan Branch.

References

- M. Asadia, S. Mansour Vaezpour and H. Soleimani, Some Results for CAT(0) Spaces, Mathematics Scientific Journal, 7 (2011) 11–19.
- [2] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, Heidelberg, (1999).
- [3] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. I. Donnés radicielles valués, Inst. Hautes Études Sci. Publ. Math., 41 (1972) 5-251.
- [4] S. Dhompongsa and B. Panyanak, On Δ -convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008) 2572-2579.

- [5] J. Gacia-Falset, E. Llorenes-Fuster and S. Prus, The fixed point property for mappings admitting a center, Nonlinear Anal., 66 (2007) 1257-1274.
- [6] K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for multivalued mappings with a fixed point, Czechoslovak Math. J., 55 (2005) 817-826.
- [7] Saeed Shabani and S. J. Hoseini Ghoncheh, Approximating fixed points of generalized non-expansive non-self mappings in CAT(0) spaces, Mathematics Scientific Journal, 7 (2011) 89–95.
- [8] N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal., 71 (2009) 838-844.
- [9] Y. Song and H. Wang, Erratum to" Mann and Ishikawa iteration processes for multivalued mappings in Banach spaces", Comput. Math. Appl., 52 (2008) 2999-3002.