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Abstract 

        This paper presented methods to determine the aerodynamic forces that act 
on an aircraft wing during flight. These methods are initially proposed for a 
simplified two degree-of-freedoms airfoil model and then are extensively 
applied for a multi-degree-of-freedom airfoil system. Different airspeed 
conditions are considered in establishing such methods. The accuracy of the 
presented methods is verified by comparing the estimated aerodynamic forces 
with the actual values. A good agreement is achieved through the comparisons 
and it is verified that the present methods can be used to correctly identify the 
aerodynamic forces acting on the aircraft wing models.  

Keywords: Freedom system, Force Determination Methods, Aircraft wing 
model 
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1. Introduction 

During flight, aircraft wings always subject to varying aerodynamic loadings 
and as a consequence, generate varying structural responses. The varying 
aerodynamic loadings and structural responses are coupled to create a 
complicated vibration effect known as structural coupling dynamics. This effect 
can significantly reduce the aircraft’s service life. Even worse, sometimes the 
sustained vibration at natural frequencies of airfoils may lead to catastrophic 
structural failure. 

Recently, a number of researchers have dedicated tremendous effort to 
developing and choosing light material for the aircraft in order to obtain 
effective loading capacity. However, as the aircraft speed continues to increase, 
its structural flexibility is becoming a dominant concern in aircraft design and 
causing serious flutter in the airfoil and other components.  

Considering a typical cross-sectional plane of an airfoil, the gravity center G is 
usually located at 42% ~ 45% of the chord line, and the elasticity center is 
located at 38% ~ 40% of the chord line (Fig. 1). The gravity center is not 
coincident with the elastic center, which results in another coupling effect 
between the translational and rotational degree-of-freedoms of the aircraft wing. 
This coupling effect and the aforementioned structural coupling dynamics make 
it too difficult to correctly determine the aerodynamic forces acting on the 
aircraft wings.  

The current methods of studying the dynamic response of the aircraft structure 
consider the structural model and the aerodynamic model separately and 
therefore fails to precisely simulate the two coupling effects. In this paper, new 
methods are presented to determine the aerodynamic forces acting on aircraft 
wings during flight, which considers the model’s structural elasticity and 
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aerodynamics as a combined mathematical system. The methods are initiated 
based on a simplified two degree-of-freedoms airfoil system and then they will 
be applied for a finite element aircraft wing model, which is a multi-degree-of-
freedom system. The accuracy of the present methods will be verified by 
comparing the estimated aerodynamic forces with the actual values.  

 

y
Elastic 
center

Gravity 
Center

 
Figure 1.  The schematic diagram for the centers of an airfoil 

2. Literature Review 

Dynamic response of aircraft model during flight has received a lot of interests, 
and a number of methods have been developed about the simulating and 
analyzing the aircraft structures.  

Yosibash and Kirby [1] constructed a high order simulation model of fluid-
structure for the airfoil under flying conditions. The authors utilized spectral/hp 
solver for fluid (air) and hp-FEM solver for the airfoil to handle the coupling 
problem generated by aerodynamic and structure interaction. The two solvers 
somehow can minimize the modeling errors and the discretization errors. The 
ongoing verification and validation of fluid-structure interaction are also 
presented. In their study the airfoil was treated as a flexible thin plate in the flow 
and the one-way coupling and two-way coupling were discussed separately. The 
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coupled fluid-structure method was also used by Liu et al [2] in calculation of 
wing flutter. Fabunmi [3] presented a method of using the pseudo-inverse 
technique to determine the operating vibratory loads on a structural system. In 
his work, two types of uniform beam were studied: the cantilever beam and the 
free end beam. Results of numerical calculations showed that the accuracy of 
the determined forces correlates well with a parameter that is related to the 
number of modes contributing to the response of the structure at a given 
frequency. Shyy and Kamakoti [4] studied the interactions between rigid and 
flexible structures and fluid based on an airfoil system model. A loosely coupled 
approach was used to perform the combined fluid and structure computations. 
Two different airfoil configurations were employed to obtain the displacement 
of the airfoil and the pressure on it. A suitable interfacing technique was 
incorporated to couple and synchronize the flow and structure solver. Liu and 
Shepard [5] addressed an approach of dynamic force identification based on 
enhanced least squares and total least-squares schemes in the frequency domain. 
This approach is effective in reducing the random errors that occur in structural 
response signals. Two regularization filters, named as the truncated singular 
value decomposition (TSVD) filter and the Tikhonov filter, were employed in 
conjunction with the conventional least-squares scheme at specific frequencies. 
A new least-squares form of the Morozov’s discrepancy principle was 
formulated to aid in selecting the optimum regularization parameter for these 
filters at each frequency. The accuracy in using conventional least-squares, 
TSVD-based least-squares, and Tikhonov filter-based least-squares schemes 
were compared analytically and numerically in their study. E. Parloo et al [6] 
demonstrated a method of identifying dynamic force by means of in-operation 
modal models. The applicability of the sensitivity-based normalization approach 
for force identification on the basis of output-only data was evaluated. The 
quality of the reconstructed FRF data and the advantages of using an iterative 
weighted pseudo-inverse approach over a classic pseudo-inverse one were 
discussed through experiments performed on a beam structure.  
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Aerodynamics of airfoil models remains an important topic in aircraft research, 
and most recent work in the area involves some aspect of airfoil modeling and 
its nonlinear aeroelastic analysis. Kim and Lee [7,8] created a two-dimensional 
flexible airfoil with a freeplay nonlinearity in pitch and analyzed this model in 
the subsonic flow range. Structurally, the airfoil was modeled as finite beam 
elements and two spring elements in pitch and plunge. A doublet lattice method 
was used for the two-dimensional unsteady aerodynamics to include the camber 
deflection effect. The fictitious mass modal approach was adopted in order to 
use the consistent modal coordinates for the structures with nonlinearity. 
Nonlinear aeroelastic analyses for both the frequency domain and time domain 
were performed for rigid and flexible airfoil models to investigate the flexibility 
effect. Dynamic response of this airfoil model such as limit cycle oscillation and 
chaotic motion were observed and they were highly influenced by the pitch-to-
plunge frequency ratio. Lee et al [9] derived the equations of motion of a two-
dimensional airfoil oscillating in pitch and plunge for a structural nonlinearity 
using subsonic aerodynamic theory. In their works, three classical aerodynamic 
nonlinearities involving cubic, freeplay and hysteresis were investigated in 
detail.  

Besides the simplified two-dimensional models, more complicated aircraft wing 
models were created for purpose of analytical analysis, which usually are multi-
degree-of-freedom models. Roy and Eversman [10,11] created a multi-degree-
of-freedom finite element model for the flexile wing structure, with beam 
elements for bending and rod elements for torsion. This model was then used to 
investigate the potential of an adaptive feed-forward controller for active flutter 
suppression of a flexible wing. Dimitriadis and Cooper [12] presented a method 
for identification of non-linear multi-degree-of-freedom systems and used this 
method to model aeroelastic systems for tracking the stability of aircraft during 
flight flutter testing.  
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3.  Two Degree-of-Freedoms System 

The aircraft wing, which is modeled as a two degree-of-freedoms pitch-plunge 
system (Fig. 2), is governed by the following equations of motion: 

abfx)HUK(x)ULC(xM =++++ 2&&&                                             (1) 
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where m and I are mass and mass moment of inertia about the gravity center, 
respectively; fa is the excitation force from the aileron; α is the proportional 
damping constant; k and kθ are translational and rotational structural stiffness, 
respectively, e is the distance between the gravity and the elastic center; U 
denotes air speed; ρ denotes air density; c denotes chord length; c0 is the 
distance between the leading edge and the elastic center; and CL is the local lift 
coefficient. The derivative dCL/dθ is assumed to be constant, with a theoretical 
value of 2π for incompressible flow. 
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Figure 2. The two degree freedom system for airfoil 

Rewrite Eqn. (1) into the state space form and we have:  

aBfAYY +=&                                                               (3) 
Here   
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where A and B are the system and input matrices, respectively. The system 
states then can be determined from Eqn. (3) in the frequency domain as: 

Y(ω) = (jωI – A)-1BFa(ω)                                                  (5) 

The eigenvalues λi of the system matrix A are functions of the air speed U, 
which are related to the system’s natural frequencies ωni and damping ratios ζi 
as:  

21 ininiii j ζ−ω±ωζ−=λ                                                 (6) 
As shown in Fig. 3a, when U increases, ωn1 increases and ωn2 decreases steadily.  
The damping ratio of the second mode ζ2 decreases with an increasing airspeed 
U and it reaches zero at the critical speed Ucr.  At air speed U > Ucr, ζ2 < 0, and 
hence the system becomes unstable. 
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In the time domain, the equations of the motion for the system (Fig. 2) can be 
written as:      

                              ;HxUxLUfbKxxCxM 2
a −−=++ &&&&                                   (7) 

where, on the right hand side are the aerodynamic force and the excitation force 
at the aileron, which are referred to actual forces on the system. The objective of 
this study is to determine the actual forces using the displacement data measured 
during the aircraft’s flight. 

Indirect force identification is a method for estimating dynamic forces acting on 
a structural or mechanical system by using the system’s frequency response 
matrix and response measurements. This method is often used to determine the 
unknown dynamic forces that occur when the system is operating, at which time 
these forces cannot be directly measured. This method is derived from the multi-
input/multi-output (MIMO) transfer function relationship for linear systems as: 

                                              X(ω) = H(ω)⋅F(ω)                                               (8) 

where ω is frequency; X(ω) is an output vector of the system’s structural 
responses; F(ω) is an input vector of applied dynamic forces; and H(ω) is the 
frequency response matrix of this system. Assuming H(ω) is known, and the 
F(ω) can be determined as: 

F(ω) = H(ω)-1⋅X(ω) (H(ω) is a square matrix)                               (9) 

or 

F(ω) = [H(ω)T H(ω)]-1H(ω)T⋅X(ω) (H(ω) is a non-square matrix)              (10) 

From above equations, it can be seen that in order to determine the force F(ω), 
the H(ω) and X(ω) has to be constructed or measured through experiments.  
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The objective of this study is to identify the distributed aerodynamic force and 
moment acting on an aircraft wing during the flight. By employing the indirect 
force identification for this problem, the wing’s frequency response matrix H(ω) 
has to be obtained from a ground vibration test (GVT), where both the excitation 
and response are measurable. Next, the output structural response X(ω) is 
measured and the F(ω) can then be calculated from Eqn. (9) or (10). Different 
force determination methods used in this study are demonstrated in following 
sections.  

 
Figure 3. (a) Natural frequencies, (b) damping ratios as a function of airspeed. 

4.  Force Determination Methods 

4.1 Traditional force determination method 
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Instead of measuring the H(ω) experimentally, the frequency response matrix 
can also be found from the equation: 

H(ω) = (-ω2M + jωC + K)-1                                                (11) 

In Eqn. (11), noise can be directly added to H(ω) in order to represent an 
experimentally measured frequency response matrix which involves the noise 
effects. According to Fabunmi [3], we have: 

                          

   H(ω) = H(ω) + Enoise, and ρ

ω
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Here γ is the percentage error level and ρ is a randomly generated number which 
belongs to [-1, 1]. The frequency response matrix H(ω) then can be inverted and 
used in Eqn. (8) to identify the external forces F(ω). 

 

4.2 Force determination using “H1”& “H2” estimated frequency 
response matrices 

As an alternative approach, consider that H(ω) can be determined from 
experimental data measured through conducting a ground vibration test on an 
aircraft. In order to simulate the experiment, random measurement noise is 
added to the force and displacement signals.                        

 F(ω) = F(ω) + Nf, and γρω= ∑
=

100

1i
f )(FN                                  (13)                            
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X(ω) = X(ω) + Nx, and γρω= ∑
=

100

1i
x )(XN                                  (14) 

where γ is the noise level.  The frequency response matrix then can be estimated 
from the measured data by [6]: 

                                          H1 = GFXGFF
-1                                                       (15) 

                                          H2 = GXXGXF
-1                                                       (16) 

Here “H1” and “H2” are the estimated frequency response matrices, GFF and GFX 
are auto-power spectrum of force (F) and cross-power spectrum of force (F) and 
displacement (X), respectively. Likewise, GXX and GXF are auto-power spectrum 
of displacement (X) and cross-power spectrum of displacement (X) and force 
(F). The frequency response matrices determined by Eqn. (15) or (16) are 
transposed and inverted, and then are substituted into Eqn. (9) or (10) to 
calculate the forces F(ω). Such method is called “H1” and “H2” force 
determination method. 

4.3 Direct force determination “F1” and “F2” methods 

The “H1” and “H2” force estimation methods can be improved by following 
transformation, from Eqn. (15) we have:       

   H1
-1 = GFFGFX

-1, H1
T = GFF

-TGFX
T, and H1

-T = GFX
-TGFF

T                        (17) 

Similarly, from Eqn. (16) we have:      

     H2
-1 = GXFGXX

-1, H1
T = GXF

-TGXX
T, and H1

-T = GXX
-TGXF

T                        (18) 

Eqns. (17) and (18) calculate the inverted frequency response matrix directly, 
which can reduce the error introduced during the inversion of the frequency 
response matrix. The forces then can be calculated by substituting Eqns. (17), 
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(18) into Eqn. (9) or (10).  

5. Validation of Force Determination Methods – Two Degrees-
of-Freedom Model 

To verify the aforementioned force determination approaches, these methods are 
employed to simulate the two degree-of-freedoms airfoil system model (Figs. 1 
and 2). At first, the traditional pseudo-inverse technique is employed to 
determine the aerodynamic forces and it is assumed that the frequency response 
function matrix for force determination is measured from experimental test. Fig. 
4 plots the estimated Frequency Response Function H(ω) (FRF) using the 
traditional pseudo-inverse method, where H11 is the very first response function 
in the force response matrix [H]. The actual and estimated force and moment, as 
well as the percentage errors are also displayed in Figs. 5 and 6. As shown from 
these figures, by using the pseudo-inverse method, the percentage errors of the 
estimated force and moment are very low; with average values at 0.085% and 
0.047%, respectively. 

 
Figure 4.  FRF H11 at U/Ucr = 0 with 5% noise using traditional inverse method, 

based on two degrees-of-freedom model. 
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Figure 5. Actual, estimated, translational force and percentage error, U/Ucr = 

2/3 with 5% noise using traditional inverse technique, based on two degrees-of-
freedom model. 
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Figure 6. Actual, estimated rotational moment and percentage error, U/Ucr = 2/3 

with 5% noise using traditional inverse technique, based on two degrees-of-
freedom model. 

Secondly, the frequency response function, actual and estimated forces and 
moments, as well as percentage errors are re-calculated by using “H 111” and “H2” 
force determination methods. The sample rate to calculate H1 and H2 is 20 Hz, 
and the period is 0.05 seconds. Because the excitation force and noise added in 
this study are the random numbers, the simulation results will be slightly 
different each time the calculation is performed. Thus, we have to redo the 
calculation for a certain amount of times to obtain the average values of the 
results and use those values to compare and validate the different force 
determinations. In this study, the calculation is repeated 100 times so that the 
obtained average results are stable and predictable.  
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Figs. 7 to 9 display the FRF, actual and estimated force and displacement, and 
percentage errors obtained from the H1 method. Figs. 10 to 12 depict the same 
results obtained from the H2 method. Here the noise is added through the 
method described in Eqns. (13) and (14). The results are formulated at air speed 
of 7.666 m/s and 5% noise level. As shown in Figs. 8 and 9, the average 
percentage errors for the force and moment obtained from the H1 method are 
6.24% and 7.61%, respectively. Nevertheless, from Figs.11 and 12, the average 
percentage errors for the force and moment yielded from the H2 method are 
31.41% and 25.35%. 
 

 
Figure 7.  FRF H11 at U/Ucr = 0 with 5% noise using H1 method, based on two 

degrees-of-freedom model. 
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Figure 8. Actual, estimated translational force and percentage error, U/Ucr = 2/3 

with 5% noise using H1 method, based on two degrees-of-freedom model. 
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Figure 9. Actual, estimated rotational moment and percentage error, U/Ucr = 2/3 

with 5% noise using H1 method, based on two degrees-of-freedom model. 

 
Figure 10.   FRF H11 at U/Ucr = 0 with 5% noise using H2 method, based on two 

degrees-of-freedom model. 
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Figure11. Actual, estimated translational force and percentage error, U/Ucr = 
2/3 with 5% noise using H2 method, based on two degrees-of-freedom model. 
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Figure12. Actual, estimated rotational moment and percentage error, U/Ucr = 
2/3 with 5% noise using H2 method, based on two degrees-of-freedom model. 

Finally, actual, estimated forces and moments, and the percentage errors are 
recalculated using the “F1” and “F2” methods and plotted in Figs. 13 to 16. The 
displayed results are obtained at the airspeed of 7.666 m/s and noise level of 5%. 
Based on Figs. (13) and (14), the average percentage errors for the force and 
moment yielded from the “F1” method are 2.69% and 0.47%, while these values 
are 8.90% and 0.47% given by the “F2” method, according to the Figs. (15) and 
(16).  
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Figure 13. Actual, estimated translational force and percentage error, U/Ucr = 
2/3 with 5% noise using F1 method, , based on two degrees-of-freedom model. 
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Figure14. Actual, estimated rotational moment and percentage error, U/Ucr = 
2/3 with 5% noise using F1 method, based on two degrees-of-freedom model. 
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Figure15. Actual, estimated translational force and percentage error, U/Ucr = 
2/3 with 5% noise using F2 method, based on two degrees-of-freedom model. 
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Figure16. Actual, estimated rotational moment and percentage error, U/Ucr = 
2/3 with 5% noise using F2 method, based on two degrees-of-freedom model. 

6. Multi Degree-of-Freedom Aircraft Wing Model 

The presented force determination methods (Eqns. (9) to (18)) are then applied 
for multi-degree-of-freedom wing models.  
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Figure 17. Finite element aeroelastic aircraft wing model 

As shown in Fig. 17, an aircraft wing is modeled as a multi-degree-of-freedom 
pitch-plunge system with torsional and bending beam elements. This system is 
also governed by Eqn. (1), where M and K are mass and stiffness matrices for 
the beam elements. For each beam element “i”, its mass and stiffness matrices 
are: 
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Here a = (ρIpl)/6, b = (ρAl)/420, c = GJ/l, d = EI/l3, yθ is the Y-distance between 
the wing’s gravity and elastic center; ρ is the material’s density; Ip and I are the 
polar and regular moment of inertia of the wing model’s cross section, 
respectively; A is the cross-sectional area; l denotes the length of single element; 
G denotes the shear modulus of elasticity; J represents the polar moment of 
inertia; and E is the Young’s modulus (see Fig. 17). The input vector b and the 
proportional damping matrix C are given as: 

                  
      b = [-ca, -ca, …, -ca, 1, 1, …, 1]; C = αM + βK                                 (21) 

where ca is the Y-distance between the trailing edge and the gravity center, and 
α and β are the proportional damping constant. 

The displacement vector x (assume this model has n elements): 

x = [θ, x]T = [θ1, …, θn, x1, …, xn]T                                            (22) 

where θi is the ith element’s rotational displacement and xi is its translational 
displacement. The system’s mass and stiffness matrices can be written as: 
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            (24) 

H and L in Eqn. (1) for the multi-degree-of-freedom model are aerodynamic 
stiffness matrix and aerodynamic damping matrix, respectively, which are 
defined as: 
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(26) 

where ρ0 is the air density; c is the chord length, c0 is the Y-distance between the 
leading edge and the elastic center (Fig. 17); and CL is the local lift coefficient. 
The derivative dCL/dθ is assumed to be constant, with a theoretical value of 2π 
for incompressible flow. 

Boundary conditions are added on the global system, which assume that the 
initial bending, torsional, and translational displacements are zero. Similarly, for 
this multi-degree-of-freedom system, the governing equation (1) is rewritten in 
to the sate space form as Eqns. (3) and (4). At this time the “Y” in Eqn. (3) is 
represented as:  
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T
nnnn ]x,...,x,,...,,x,...,x,,...,[Y &&&&

1111 θθθθ=                                     (27)   

Eqns. (5) and (6) are still applicable in calculating this multi-degree-of-freedom 
system’s states in the frequency domain and the eigenvalues of the system 
matrix A.     

Fig. 18 depicts the relationship between the natural frequencies and the airspeed, 
and Fig. 19 displays the relationship between the damping ratios and the 
airspeed. From those figures, it can be found that as the airspeed U increases, 
the damping ratio of the first mode ζ2 decreases and becomes zero at the critical 
speed Ucr. At air speed U > Ucr, ζ2 < 0, and hence the system becomes unstable. 
The same phenomenon was observed from the two degrees-of-freedom system. 

The first and second mode shapes of the aircraft wing model at the airspeed U = 
0 are plotted in Figs. 20 and 21, where the first mode shape refers to bending 
and the second mode shape refers to torsion. Table 1 and 2 list the relationships 
between natural frequencies and damping rations and the airspeed (including the 
first six modes).   

 
Figure 18. Natural frequencies vs. airspeed 
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Figure 19. Damping ratios vs. airspeed 

 

Figure 20. First mode shape at ω1 = 16.244 Hz and U/Ucr = 0 
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Figure 21. Second mode shape at ω2 = 36.473 Hz and U/Ucr = 0 

Table 1. Natural frequencies (Hz) vs. airspeed (U/Ucr) 

U/Ucr Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
0 16.244 36.473 160.55 500.55 1033.2 1759.5 

0.1 10.382 33.6 166.24 251.95 458.47 973.09 
0.2 6.8443 34.064 75.398 76.655 77.911 79.168 
0.3 21.562 21.812 63.354 75.398 76.655 77.911 
0.4 16.952 20.377 71.539 75.398 76.655 77.911 
0.5 4.906 31.179 81.372 133.09 284.56 722.06 
0.6 4.7606 28.554 79.008 122.5 253.82 625.86 
0.7 4.7012 27.346 80.797 105.5 229.52 549.58 
0.8 4.6794 26.908 82.433 91.309 210.22 489.76 
0.9 4.676 26.879 68.724 98.201 193.98 442.13 
1 4.6819 26.788 62.333 100.17 179.66 403.43 
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 Table 2. Damping ratios vs. airspeed (U/Ucr) 

U/Ucr Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
0 0.19876 0.23049 0.24918 0.30178 0.40083 0.47871 

0.1 0.10773 0.11821 0.17493 0.1767 0.26788 0.39319 
0.2 0.32367 0.32681 0.38013 0.40906 0.48424 0.58842 
0.3 0.40844 0.41564 0.43326 0.4727 0.52556 0.59122 
0.4 0.40034 0.43584 0.45864 0.50383 0.54092 0.6478 
0.5 0.37023 0.37241 0.46516 0.48108 0.62537 0.731 
0.6 0.30117 0.34676 0.3704 0.51534 0.53147 0.75383 
0.7 0.23902 0.26696 0.34486 0.41992 0.56749 0.65837 
0.8 0.16434 0.19748 0.29465 0.36687 0.54666 0.63189 
0.9 0.071974 0.1587 0.18241 0.40808 0.41975 0.70132 
1 0.00014979 0.014406 0.19345 0.27838 0.46157 0.65677 

7. Validation of Force Determination Methods – Two Degrees-
of-Freedom Model 

In this section, Eqns. (9) to (18) are applied to determine the aerodynamic forces 
acting on this multi-degree-freedom airfoil system and the estimated forces and 
moments are compared to the actual values.  

First, the traditional pseudo-inverse technique is employed to determine the 
aerodynamic forces and the frequency response function matrix H(ω) is 
calculated from Eqns. (11) and (12). Fig. 22 displays the first response function 
in the force response matrix, H11. Figs. 23 and 24 compare the actual and 
estimated forces and moments. From both figures, it can be found that by using 
the traditional pseudo-inverse method, the average percentages for the forces 
and moments are 0.2027% and 0.5962%, respectively. 
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Figure 22.  FRF H11 at U/Ucr = 0 with 5% noise using traditional inverse 

method, based on multi-degree-of-freedom model. 
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Figure 23. Actual, estimated, translational force and percentage error, U/Ucr = 
2/3 with 5% noise using traditional inverse technique, based on multi-degree-of-

freedom model.  

 
Figure 24. Actual, estimated rotational moment and percentage error, U/Ucr = 

2/3 with 5% noise using traditional inverse technique, based on multi-degree-of-
freedom model. 

Next, the frequency response function H11, actual, estimate forces and moments, 
as well as percentage errors are calculated by “H1” and “H2” methods. The noise 
is added through Eqns. (13) and (14). The results plotted in following figures are 
formulated at air speed of 9.34m/s and noise level of 5%. As shown in Figs. 26 
and 27, the average percentage errors for force and moment calculated from H1 
method are 17.36% and 15.80%. Nevertheless, the percentage errors given by 
H2 method are 22.42% and 20.74%, as displayed in Figs. 29 and 30. 
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Figure 28.  FRF H11 at U/Ucr = 0 with 5% noise using H2 method, based on 
multi-degree-of-freedom model. 

 

 
Figure 29. Actual, estimated translational force and percentage error, U/Ucr = 
2/3 with 5% noise using H2 method, based on multi-degree-of-freedom model. 
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Figure 30. Actual, estimated rotational moment and percentage error, U/Ucr = 
2/3 with 5% noise using H2 method, based on multi-degree-of-freedom model. 

Finally, actual, estimated forces and moments, and the percentage errors are 
recalculated using the “F1” and “F2” methods and plotted in Figs. 31 to 34. The 
displayed results are obtained at the airspeed of 9.34 m/s and noise level of 5%. 
According to Figs. (31) and (32), the average percentage errors for the force and 
moment yielded from the “F1” method are 8.77% and 10.62%, while these 
values are 14.62% and 15.72% yielded from the “F2” method, as shown in Figs. 
(33) and (34).  

 
Figure 31. Actual, estimated translational force and percentage error, U/Ucr = 
2/3 with 5% noise using F1 method, based on multi-degree-of-freedom model. 
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Figure 32. Actual, estimated rotational moment and percentage error, U/Ucr = 
2/3 with 5% noise using F1 method, based on multi-degree-of-freedom model. 
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Figure 33. Actual, estimated translational force and percentage error, U/Ucr = 
2/3 with 5% noise using F2 method, based on multi-degree-of-freedom model. 

 
Figure 34. Actual, estimated rotational moment and percentage error, U/Ucr = 
2/3 with 5% noise using F2 method, based on multi-degree-of-freedom model. 

8. Discussions  
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corresponding structural response. Therefore, such methods are easier to apply 
for force determination in real problems. 

Compared to the “H1” and “H2” methods, the “F1” and “F2” methods yield lower 
errors in identifying the force and moment values. This is because the direct 
determination methods directly calculate the inverted frequency response matrix, 
therefore eliminate the error introduced during the inversion of the frequency 
response matrix. 

It is also found from our study that when the airspeed and noise level increase, 
the force determination errors also rise.  

9. Conclusions 

This paper presents several force determination methods and applies those 
methods to identify the aerodynamic forces and moments acting on an aircraft 
wing model during the flight. Two wing models, a two degrees-of-freedom 
model and a multi-degree-of-freedom model are created and used for this study. 
The estimated force and moments are compared to the actual values. From the 
comparisons, it is concluded that with available mass, stiffness, and damping 
matrices, the traditional pseudo-inverse method provides the best accuracy. 
However, considering both accuracy and applicability, the direct determination 
methods “F1” and “F2” are recommended for such problem. Also, the accuracy 
of the created two degrees-of-freedom and multi-degree-of-freedom wing 
models are verified through this study. The results obtained from this study are 
ready to be further verified through a series of real experiments.  
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