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Abstract
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1 Introduction

Let H be a real Hilbert space, and let C' be a nonempty closed convex
subset of H. A mapping T of C' into itself is nonexpansive if || Tz —Ty|| <
||z —y|| for each z,y € C, we denote F(T) the set of fix points of T. The
strong(weak) convergence of {x,} to x is written by x,, — = (z, — ) as
n — oo.

For any x € H, there exists a unique nearest pointin C, denoted it by
Pe(x) such that

| = Pex| < [le =y, forally € C,

such that a mapping Pr from H onto C'is called the metric projection.
Recall that H satisfies the Opial’s condition [6] if for any sequence {z,}
with z, — x, the inequality

lim inf |2, — 2| < liminf|lz, -y,

holds for every y € H with x # y. A self mapping f : C — (' is a
contraction if there exists a € (0, 1) such that || f(z) — f(v)|| < af|z —y]|
for each z,y € C.

An operator A is said to be a strongly positive linear bounded operator
on H, if there is a constant 4 > 0 with property

(Az,z) > 7||z|]?, for all z € H.

Let F' be a bifunction of C' x C' into R. The equilibrium problems for
C xC — C,isto find x € C such that

F(z,y) >0, for all y € C. (1.1)

The set of solution of Eq.(1.1) is denoted by EP(F'). Several problems in
physics, optimization, and economics reduce to find a solution of Eq.(1.1)
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[1], [4]. We consider the following iteration [10]

Un,n—i—l = ],
Un,n = )\nSnUn,n-‘rl + (]- - /\n>]7
Un,nfl = )\nflsnflUn,n + (1 - )\n71>17

(1.2)
Unj = MeSkUn o1 + (1 = M),

Un72 = )\QSQUn,S + (1 - )\2)[,
Wn = Un,1 = )\151Un,2 + (1 — )\1)],

where Aq, A9, ... are real numbers such that 0 < A, < 1, and 51, .5,,...
be an infinite nonexpansive mappings. It is clear that nonexpansiviety of
each 5, ensure the nonexapnsivity of W,,. Such a mapping W,, is called
W — mapping generated by S,,, S,_1,...,51 and A, Ap_1,..., AL

In this paper, by intuition from [7], a new iterative scheme is introduced.
This scheme find a common solution of the equilibrium problem (EP)
and fixed point problem for an infinite family of nonexpansive mappings.
Also, we prove a strong convergence theorem.

The following lemmas will be useful for proving the main results of this
aticle:

Lemma 1.1 /8] Let C be a nonempty closed convex subset of a Banach
space E and {S,} : C — C be a family of infinitely nonexpansive map-
pings such that N2, F(S,) # 0, and {\,} be a sequence of positive num-
bers in [0,b] for someb € (0,1). For anyn > 1, let W,, be the W -mapping
of C into itself generated by Sy, Sn_1,...,51 and Ay, A\_1,..., 1. Then
W,, is asymptotically reqular and nonexpansive. Further, if E is strictly

convez, then F(W,,) = N, F(S;).

Lemma 1.2 /8] Let C' be a nonempty closed convex subset of a strictly
convexr Banach space E. Let {S,} : C — C be a family of infinitely
nonexpansive mappings such that 22, F(S,) # 0 and {\,} be a sequence
of positive numbers in [0,b] for some b € (0,1). Then, for every x € C
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and k> 1 lim U,y exists.
n—o0

Lemma 1.3 [8] Let C be a nonempty closed convex subset of stricly con-
vex Banach E .Let {S,} : C — C be a family of infinitely nonexpansive
mappings such that (0", F(S,) # 0. and {\,} be a sequence of positive
numbers in [0,b] for some b € (0,1). Then W is a nonexpansive mapping
and F(W) =Ny, F(S,).

Lemma 1.4 [2] Let C' be a nonempty closed convex subset of a Hilbert
space H and {S,} : C — C be a family of infinitely nonexpansive map-
pings such that N2, F(S,) # 0 and {\,} be a sequence of positive num-
bers in [0,b] for some b € (0,1). If Kis any bounded subset of C, then
limsup||Wax — W,z| = 0.

n—oo

Lemma 1.5 [5] Assume A is a strongly positive linear bounded operator
on a Hilbert space H with coefficient ¥ > 0 and 0 < p < ||A[|”'. Then
1T = pAll < T —p7.

Lemma 1.6 [9] Let {z,} and {y,} be bounded sequences in a Banach
space E and {$,} be a sequence in [0, 1] with 0 < li}gg}fﬁn < limsupf, <

n—o0

1. Suppose 11 = (1=, Yn+Bnzn for all integersn > 1 and lim sup(||yn11—
n—oo

Ynll = [2ns1 = z4][) < 0. Then lim [y, — @[ = 0.
Lemma 1.7 [2] Let H be a real Hilbert space. Then the following holds:

(a) llz+yll* < lyll* + 2(z,x +y) for all v,y € H,
(b) llax + (1 = a)y||* = allx]* + (1 = ) [lyll* — a(l = )|z — y|*,
(¢) Iz = yll* = llzI” + lylI* — 2{z, y).

Lemma 1.8 [I] Let K be a nonempty closed convex subset of H and F
be a bi-function of K x K into R satisfying the following conditions:

(A1) F(xz,x) =0 for allz € K,
(A2) F is monotone, that is, F(x,y) + F(y,z) <0 for all z,y € K,
(A3) for each x,y,z € K

limF(tz + (1 = t)z,y) < F(z,y),
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(A4) for each v € K, y — F(x,y) is conver and lower semi-continuous.Let
r>0andz e H.
Then, there exists z € K such that

1
F(Z7y)+*<y—Z,Z—CL’>ZO7 vyEK
T

Lemma 1.9 /3] Let K be a nonempty closed convex subset of H and let
F be a bifunction of K X K into R satisfying (A1) — (A4). Forr > 0 and
x € H , define a mapping T, : H — K as follows:

1
TT(‘r):{ZGK:F(Z7y)+;<y_Z7Z_x>207 vyeK}v

for all x € H. Then the following hold

(i) T, is single valued map,
(i1) T, is firmly nonexpansive, that is , for any x,y € H

| Tz — TryH2 <(T,x —T,y,x —y),

(i) F(T,) = EP(F),
(iv) EP(F) is closed and conver.

Lemma 1.10 [11] Assume {a,} be a sequence of nonnegative numbers
such that

an+1 S (]- - an)an + 5n7

where {a,} is a sequence in (0,1) and {0,} is a sequence in real number
such that

(o]
(i) Jgrgoan =0, Zan = 00;
n=1

(i1) limsup(s—n <0 or ) |6,] < oo,

n—oo Olp n—1

then lim a, = 0.
n—oo
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2 Explicit viscosity iterative algorithm

In this section, a new iterative scheme for finding a common element of
the set of solutions for a equilibrium problems and the set of common

fixed point for an infinite family of mappings in Hilbert space, is intro-
duced.

Theorem 2.1 Let

C be a nonempty closed conver subset of a real Hilbert space H,

f be a p—contractive map on C,

J={1,2,...,k} be a finite index set,

For each i € J, let G; be a bifunction from C x C into R satisfying
A be a strongly positive linear bounded operator on H with coefficient
w >0,

e {S,}: H— H be a family of infinite nonexpansive mappings,

o Ny FW)NEP(G;) # 0 where F(W) = (_, F(S}),

o {x,} be the sequence generated as following :

Gl (un,h y) + i<y - un,h un,l - xn) Z 07
Ga(tn2,y) + 7y = Ung, Ung — Tn) >0,

Gk(un,lm y) + i<y - un,k7 un,k - $n> 2 07

Tn

en - % f:l Unp,i,
Yn = anYf(Hn) + (I - 571/4)071:

Tpt+1 = ApTy + (1 - an)Wnyna

where {W,,} is a sequence defined by Eq.(1.2). Also, {a,}, {8} C
[0,1], 7, € (0,00) and 0 <y < =.

Suppose
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(C1): lim B, =0, n;ﬁn = 00,
(C2): lim inf r, > 0, nli_}rgo(rnﬂ —7,) =0;
(C3): 0 < liminf o, <limsup a, <1,

n—oo n—00

(C4): foreachi=1,2,....k 0< )\ <c<l.
Then

(i) the sequence {x,} is bounded.
(ii) 7}1_%0”3771-1-1 — x| = 0.

(i) it [Wagn = gl = 0.

Proof. From (C1), we may assume that 3, < [|A]|7! for all n > 1.
By Lemma 1.5, we obtain || — 5,A|| < 1 — fB,w . It is clear that

Pﬂk F(W)ﬂEP(G-)<[ — A — ~f) is a contraction of C into itself. Indeed,
i=1 g

for all z,y € C

Hpﬂle F(W)(EP(G:) ()— Pﬂle F(W)(EP(Gy) @)l

ST =A+Af) (@) =T = A+7)) W)
< = Allllz = yll + 71 (@) = fFW)

< (1 =a)|lz =yl + ol =yl

= (1= (@ =)z -yl

(i): Let 2* € N, F(W)N EP(G;). Since u,; = T}, v, and z* = T, ;2"
we see for any n > N

Hun,i - x*H = ”Trn,ixn — T, i7" < Hxn - I*‘|’7

thus

16 — 2"} < flzn — 27 (2.1)

Since f is p—contraction, we have
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1y — ™| = 187 £ (02) + (I — B A)0, — 27|
= |8 (v (0r) — Az™) + (I = BnA)(6n — 27|
< Bl f(0n) — Az™|| + (|1 = Bu A6 — 2]
< BuIIf(6n) — f2")]]
+ Bullvf(27) — Az™|| + (1 = Bp) ||z, — ¥

From which it follows that

[yn — 2%l < (1 = Bu(@ — yp)llen — 27| + Bullyf(27) — Az™[]. (2.2)

In viwe of Eq. (2.1) and Eq.(2.2), we obtain that

|21 — 27| = lanzy + (1 — ) Wy, — 27|
= llan(zn — %) + (1 = o) (Wayn — 27|
< gl — 2"+ (1 = an)llyn — 27|
< apllzn, — 2| + (1 = an){(1 = Bu(@ — 7p)) [z — 27|
+Bnllv f(27) — Az™| }
= (1 = an)(1 = Bu(@w — vp)) |20 — 27|

o _ @) = A
+Bn(@ = vp)(1 — o) o

It follows by induction that

*
J— <
|Tns1 — 2| < maz {]|z1 >

Therefore, the sequence {z,} is bounded and also {y, }, {6, } are bounded.
(ii): Notic that

”yn—i-l - yn” = H(I - Bn—i-lA)(gn—i-l - en) + (6n - ﬁn—f—l)Aen
T Br1 (f(Onr1) = f(0n)) + [(00) (Bat1 — Bn) H]
< (1= Bn1@)[|Ons1 — Ol + [6n = Brsa| | A
+7Bni10010n11 = Onll +7[Bnia — Bul £ ()]

It follows that

[Yn+1 = nll < (1= Busa(@ = 0))10ns1 = Onll + [Buts = Bl M. (2.3)
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where M = Sup ,>1 {||40.] + [|7(0.)] }-

Moreover, we have

1
Gi(un-‘rl,ia un,i) + r <un,i — Un+1,iy Un415 — xn—i—l) 2 07 (24)
n+1
textbfl > i > k. (2.5)
and
1
Gi(Unis Ung1i) + — (Unt1, — Un, Un; — Tp) > 0. (2.6)
T

n

Combining Eq.(2.5) and Eq.(2.6), we obtain

0 <71 {Gi(Uns1 Uni) + Gi(Unis Unt1,i) }

”
+(Un i — Ung1,i Unt1i — Tt — ntl (Uni — Tn))
n

,
< Uni — Unt14y Unt1i — Tpgl — ntl (Uni — Tn)),
n

from which it follows that

T
<un,i_un+1,i7 un,i_un+1,i+xn+1_xn—i_xn_un,i—i_ ntl (un,z_mn» S 0 (27)

n

which implies that

T —T
WH% —unill. (2.8)

n

tnt1: — Unill < ||Tns1 — znll +

Using the condition (C2) and noting that there exists b > 0 such that
r, > b > 0, we obtain

1 r — Tl .-
[Ons1 — Onl| < *E :Hun-kl,i = Unil| < |Tp1 — | + MM (2.9)
k r
=1

n
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and

16n+1 = Oall < 2 = zall + =lrass = 7l

k
where M := 1> "||@, — | < o0.
i=1

Moreover, we note that

||Wn+lyn - Wnyn” = ||/\151Un+1,2yn + (1 - /\1>yn
—(AS1Un2yn + (1 = A1) yn) ||
S M Uns1,2Un — Un oyl
< M A2S2Un i1 3Yn + (1 — Xayn)
—(X2S2Un 3yn + (1 = A2)yn) ||
< M| Unt1.3Yn — Un 3ynl|

::1:...

S ( /\m)||Un+1,n+1yn - Un,n—l—lynH

m=1

=

=

)\m) ||)\n+1 Sn+1 Un+1,n+2yn

m=1
+(1 - )\n—i-lyn - ynH
= (IT M)l as1Sni19n — Ansa)ynll
m=1
n+1 . n+1
= (IT MllSnt1un — wall < M(TT M)
m=1 m=1

where M := Sup 51 {[Snt1Yn — ynll}-
Combining Eq.(2.3), Eq.(2.10) and Eq.(2.11), we obtain
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[Whs1Un+1 — Wt |l = 1Wat1¥nt1 — WagaYn + Wogayn —
S Hyn-‘rl - ynH + HWn—i—lyn -

Wyl

<160l + M|Bass = Bul + M(T] M)
m=1

M
<||Zpg1 — x| + ?|7°n+1 — 7|

n+1

+M|ﬁn+1 _ﬁn| +M(H )\m)

m=1

We have

lim sup([[Wis1¥yn41 — Wt |l = 241 — 2a]) < 0.

n—oo

From Lemma 1.6, we see that

IWotn —xpl] = 0 Jas n — oco.

which implies that

,}gglollﬂsnﬂ — Tyl = T}g{}o(l — ) [Wayn — zn]| = 0

(iii): We shall prove that 7}1_)1{)1@”% — zy|| = 0.
Notic that

||un1i - x*”Z S <T i Ln — TTnyi'r*a Ty — I*>

Tn,i

= 3{lluni — 2P + llzn — 2*[1* = luns — zal*}

thus

s = 271* < ww — 27|* = lJuns — 2]l
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From Eq.(2.13), we get

160n — 27| = ||Z Ui — ) |

< [ln —2*)* — EZ”UM — zal*.

(2.14)

It follows from Eq.(2.14) that

21 — 2" = o (2 — 27) + (1 = o) (W — Waz™) |
<l — 2|1 + (1= ) {[[(1 = BuA) (0 — 27)
+Bu(1f(0n) — Ax”)|?}
< |z — 2" + (1 = cn){(1 = Buw)l|0n — 27|

+Ball7f (0) — Ax")|*}

< apllzn — 22 + (1 — o) |0, — 272

Bl f (0n) — Ax”)|?

< allzn — 2" + (1 = o) {[Jan — 27|
1.k
—%;HUW‘ — a*}
+Bullvf (05) — Ax™)|?
< e = 2" = (1 — o) leum zn”
+Bll7f (0n) — Az,
Thanks to the conditions of (C1)- (C4) and Eq.(2.13), we conclude that

)7 D Mtni = @nll* < o = 27|* = [l2nss — 277

< Hxn-I-l - xn”(||xn+1 - :E*H + Hxn - $*||)

Bl f (0n) — Ax”)|?

dim [lup; — z,|| =0, for each i=1,2,...k
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also

S 16, = zall = Jim s = 2l = 0

|y = Onll = Bullvf(6,) — Abn|| = 0 as n — oo.

Moreover, we know that

[yn = znll < {2 = Onll + (100 = yul

HWnyn - ynH < HWnyn - mn” + Hxn - enH + Hen - yn”

In viwe of Eq.(2.12), Eq.(2.15) and Eq.(2.16) , we can obtain

Jim [y, — 2, =0

nlgIOlOHWnyn - ynH =0.

O

(2.15)

(2.16)

(2.17)

(2.18)

Theorem 2.2 Suppose all assumptions of Theorem 2.1 are holds. Then
the sequence {x,} converge strongly to &, which solves the variational

imequality
k
(A=9))i,@ —2,) <0, &€ (| FW)EP(G)).
i=1
Equivalently, Pﬂle F(W) ﬂEP(GZ-)(I —A—~f)(Z) =17
Proof. We shall prove that

lim sup((A — 1),y — %) < 0,

n—o0
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where z* = PﬂleF(W)ﬂEP(Gi)f@*)'

We choose a subsequence {y,,} of {y,} such that

lim sup{(A — 1), g — 2°) = lim (A =7 /)a" g, — 7). (2.19)

n—oo

since {y,,} is bounded, there exits a subsequence of {y,,}, we denote it
by {¥n,} such that y,, — ¢, g€ C.

We shall show that ¢ € N, F(W)N EP(G;). On the contrary, suppose
that ¢ ¢ F(W). By Opial’s condition

lim inf[yn, — gl <Timnf{ly,, — Wq|
Shggloglf{“ynp - Wyan + HWynp - WQH}
Shgf_l}g)lf{“ynp - Wyan + Hynp - QH}

By virtue of Lemma 1.4 and noticing Eq.(2.18)
S [Wyn, = Y, | < 0 {[IWyn, = Wa, g, | + (W, Y, =, 1}

< lim {Sup e |[We — Wiz}

+ 10 [[Wo, Y, — Y, | = 0.
It follows that
hggg}fllynp —q| < liggiogfuynp —ql.

This is a contradiction. Therefore, we have ¢ € F(W). Also, we prove
q €N, EP(G)).
For each i € J = {1,2,...,k}, since G;(un,,y) + %(y,u% — Zn,) > 0,
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from (A2), we see that

7(9 = Uny, Un, — xn;,) > Gi(unp7y) + Gl(y, unp)

’l"np

+i(y — Uy, Un, — Tn,)

> Gi(y, up,),
hence
Up, — Tp
(Y — Un,, —= 2) > Gi(y, un,), forally € C.
p
Since 2=l _, 0, un; — ¢, in viwe of (A4), we conclude

np

Gi(y,q) < 0,textbf forally € C.
Let 0 <t <1,y € Candy =ty+ (1 —t)q. It is clear that G;(ys,q) < 0.
From (A1)-(A4), we obtai
0= Gi(yr, 1) <tGi(yr,y) + (1 = )Gy, @) < tGilye ), Gily, q) = 0,
textbf forally € C.
Thus ¢ € NE, EP(G)).
From Eq.(2.19), we have

limsup((A = yf)2", yn — 27) = lim (A = 7f)a", yn, — o)
= ((A=~f)a",2* —q) <0

It follows from Eq.(2.17) and Eq.(2.19) that

limsup((4 — v f)z", 2" — z,) < limsup((A —vf)2", yn — 5)
n—oo n—oo
+limsup((A — vf)z*, 2" —y,) < 0.
n—oo

Finall that x,, — ¢ where z* = P, ")
inally, we prove that x q where x ﬂleF(W)ﬂEP(Gi)ﬂx )

By virtue of Lemma 1.7
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g = 22 = (1 = BuA) (0 — ) + Bu(7f(0) — Az") |
< I = BuA)(On — 2)I* + 28 (1f (0n) — A™, Yo — 27)
<1 = BrA)(0n — ")
+26027plen — 2" lyn — 2" + 260 (7S (0n) — Az, yn — 27)
< (1= Bow)’llen — 2"[1° + Buvo(lzn — 2|17 + llyn — 2*[1%)
+25n<7f(x*) - Afkayn - ZU*>

from which it follows that

(1 - 6nw)2 + anyp

* (12 * 1|2
Yn —x7||” < Tp—T
| | TG | I
28,
+———(f(z") — Az",y, — z7)
= o )
<{1- _—}Hxn —*|)?
1 — Bupy
2Bu(w—p), 1
* _ A * n _ *
AT (@) - Ay =)
2
LBy
2(@ —p)
where L = Sup{||x, — x*| }.
Also
[2n1 — 2*[° < apllzn — 2|1 + (1 — o) lyn — 2*|? (2.20)

it follows from Eq.(2.20) that

2Bn(@ — 7p) .2
%)W}Hxn — 7|
~\2Bn(@w —p)
T e Bupy
Bnw?

Tow - w)L}'

1 — 2 < {1 - (1

Hom—(10) = Aoy, = ')
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Let &, = (1 — ay,) 2230 4pq

1—Bnpy
L fa) - Aty — ety + D
Ep 1= vf(x*) — Az™ y, — x — L.
@ —p 2(w —vp)
Therefore,
[Zn41 — 217 < (1 = &)z — 2*[1° + &nen (2.21)

Thanks to the condition (C1) and Eq.(2.21), we conclude that
Jim 6, = 0,36, = .

From Lemma 1.10 we can obtain z,, — z*. O

3 Numerical Example

In this section, we get one example is presented to guarantee the Theorem
(2.2).

Example 3.1 Let H = R,C = [-1,1] and Gy(z,y) = —32* + zy +
2y, Go(z,y) = —42* + 2y + 3y* and Gs(x,y) = —92% + xy + 8y%. Also,
we consider S, = I, f(x) = £ and A = I be a strongly positive linear
bounded operator with coefficient v = 1. It is easy to check that A and f
satisfy all conditions in Theorem 2.2. For each v > 0 and x € C, there

exists z € C such that, for any y € C,

1

1
-3+ 2y +20° + ~(y—2)(z —2) >0

T
S22y + ((r+ 1Dz —a)y —3r2> — 2>+ 20 >0

31



Set G(y) = 2ry> + (r + 1)z — )y — 3rz? — 2% + zz. Then G(y) is a
quadratic function of y with coefficients a = 2r,b = (r + 1)z — x and
c=—-3rz> — 2+ zx. So

A=[(r+1)z—z2]* = 8r(zz — 2* — 3rz?)
=(r+1)222 = 2(r 4+ Doz + 2> + 24r°2% + 8r2® — 8rzx
=2 — 2(5rz + 2)z + (257°2% 4+ 10r2* + 27)

[(x — (5rz + 2))]%

Since G(y) > 0 for ally € C, if and only if A = [(x — (5rz + 2))]* < 0.
Therefore, z = =*=, which yields T, 1 = ugl) =

Brl7 Brptl”
By the same argument, for Gy and G, one can conclude T, o = u® ——
n
—,,(8) — _xn __n
and T, 5 = uy’ = T Let r, = i Hence

ull) 4 u® 4w 12800 + 344n% + 67n + 3
—— Ty,-
3 3864n3 4 300n2 + 32n + 1

0, =

2n—1
10n—97 =1

Suppose that o, = = % and \, = €, we have

Wi = Ut = MSiUss + (1= M),

Wa = Us = MSiUns + (1 — M)I
:)\151{)\282U23 + (1 — )\2)]} + (1 — )\1)],
M A5 + A (1= Ao)Si + (1= A,

Wi =Us1 = MS1Usz + (1 = M)I
NS A Uss + (1= M) T} + (1= A,
= A A2S5152Us3 + A (1 — X)) St + (1 — \) 1,
:)\1/\25182{>\3353U34 + (1 — )\3)[} + )\1(1 — )\2)81 + (1 — /\1)1,
M AoA3S1 9585 4 A da(1 — A3)SSs + Ar(1 — Ao)St + (1 — Ap)L.

By iteration this manner, we have

Wo =Upi = Mo AS1S2 - S+ MAg - Ay (1= Ay) 8182 -+ Sy
FA A Aol = Ape1)818s -+ Sng 4+ 4 A (1 — Ag) Sy + (1 — A1

Let T, = I, )\, = ¢, we obtain
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Wy=["+e"11-e)+ - +e(l—e)+(1—-e)l =1

Hence

280n2 + 344n® + 67n + 3. 15n — 14

yn:<

864n3 + 300n% + 32n + 1

)

15n

L

We have the following algorithm for the sequence {x,}

2n —1

8n — 8§

Tnt1 =

Choose 27 =

Ty
10n —9

10n —9

Yn-

table and figure of the result.

1. By using MATLAB software, we obtain the following

n T, n Tp n L,

1 1.0 11 0.003385691332 21 0.000002071711754
2 1.270565302 12 0.001637456001 22 | 0.0000009778618741
3 0.7706281483 | 13 | 0.0007885980277 | 23 | 0.0000004609899888
4 0.4251825949 | 14 | 0.0003784282172 | 24 | 0.0000002170787103
> 0.2242603285 | 15| 0.0001810390789 | 25 | 0.0000001021162838
6 0.1151384546 | 16 | 0.00008637699279 | 26 | 0.00000004799105366
7 | 0.05805496956 | 17 | 0.00004111536174 | 27 | 0.00000002253432275
8 | 0.02889456779 | 18 | 0.00001953029496 | 28 | 0.00000001057245007
9 | 0.01424086637 | 19 | 0.000009260000453 | 29 | 0.000000004956540717
10 | 0.006965124578 | 20 | 0.000004383229046 | 30 | 0.000000002322073954
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