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Abstract

We shall generalize the concept of z = (1−t)x⊕ty to n times which contains
to verify some their properties and inequalities in CAT (0) spaces. In the sequel
with introducing of α-nonexpansive mappings, we obtain some fixed points and
approximate fixed points theorems.
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1 Introduction

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊆ R to X such
that c(0) = x, c(l) = y, and d(c(t), c(t0)) = |t − t0| for all t, t0 ∈ [0, l]. In particular,
c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric)
segment joining x and y. When it is unique, this geodesic is denoted by [x, y]. The
space (X, d) is said to be a geodesic space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every
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geodesic segment joining any two of its points.
A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of 4) and a geodesic segment between each pair of vertices
(the edges of 4). A comparison triangle for a geodesic triangle 4(x1, x2, x3) in
(X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane E2 such that
dE2(xi, yj) = d(xi, yj) for i, j ∈ {1, 2, 3}.
A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of
appropriate size satisfy the following comparison axiom:
”Let 4 be a geodesic triangle in X and let 4 be a comparison triangle for 4. Then 4
is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all comparison points
x, y ∈ 4,

d(x, y) ≤ dE2(x, y).”

Definition 1.1. ([1]) A hyperbolic space is a triple (X, d,W ) where (X, d) is a metric
space and W : X ×X × [0, 1]→ X is such that

(W1) d(z,W (x, y, t)) ≤ (1− t)d(z, x) + td(z, y)

(W2) d(W (x, y, t),W (x, y, s)) = |t− s|d(x, y)

(W3) W (x, y, t) = W (y, x, 1− t)

(W4) d(W (x, z, t),W (y, w, t)) ≤ (1− t)d(x, y) + td(z, w)

for all x, y, z, w ∈ X and t, s ∈ [0, 1].

If x, y ∈ X and t ∈ [0, 1] then we use the notation (1− t)x⊕ ty for W (x, y, t). We
shall denote by [x, y] the set {(1− t)x⊕ ty : t ∈ [0, 1]}. A nonempty subset C ⊆ X is
convex if [x, y] ⊆ C for all x, y ∈ C.
We remark that any normed space (X, ‖.‖) is a hyperbolic space, with

(1− t)x⊕ ty := (1− t)x+ ty.

Here we recall a couple of lemmas which will be used next.

Lemma 1.2. ([2, Lemma 2.4]) Let (X, d) be a CAT (0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z) ≤ max{d(x, z), d(y, z)},

for x, y, z ∈ X and t ∈ [0, 1].

Lemma 1.3. ([2, Lemma 2.5]) Let (X, d) be a CAT (0) space. Then

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, , z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all x, y, z ∈ X and t ∈ [0, 1].

In particular by Lemma 1.3 we have

d(z,
1

2
x⊕ 1

2
y)2 ≤ 1

2
d(z, x)2 +

1

2
d(z, y)2 − 1

4
d(x, y)2,

for all x, y, z ∈ X, which is called (CN) inequality of Bruhat-Tits, as it was shown
in [3]. In fact (cf. [4], p. 163), a geodesic space is a CAT (0) space if and only if it
satisfies the (CN) inequality.
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2 Main results

Throughout this section we let n ∈ N, z1 = x and zn = y until Definition 3.2.

Lemma 2.1. Let (X, d) be a CAT (0) space. Then

1. Let x, y ∈ X, x 6= y and zi, z
′
i ∈ [x, y] such that d(x, zi) = d(x, z′i) for all

1 ≤ i ≤ n. Then zi = z′i for 1 ≤ i ≤ n.

2. Let x, y ∈ X, then for each α = (α1, · · · , αn) ∈ [0, 1]n with
∑n
i=1 αi = 1 there

exist points z1, · · · , zn ∈ [x, y] and unique point z ∈ [x, y] such that d(z, zi) =
αid(x, y) for 1 ≤ i ≤ n.

Proof. Since zi, z
′
i ∈ [x, y], there exist ti, t

′
i ∈ [0, l] such that c(ti) = zi and

c(t′i) = z′i. Thus d(x, zi) = d(c(0), c(ti)) = ti and similarly d(x, z′i) = t′i. Since
d(x, zi) = d(x, z′i), we have ti = t′i, and consequentially zi = z′i for 1 ≤ i ≤ n, which
proves (1).
To prove (2), by [2, Lemma 2.1(iv)], this is true for n = 2, because for α = (α1, α2)
with α1 +α2 = 1 there exists unique point z ∈ [x, y] such that d(x, z) = α1l, d(z, y) =
α2l that for convention we had shown with z = α1x⊕ α2y.
Now by induction let it holds for n − 1 and choose α = (α1, · · · , αn) ∈ [0, 1]n

such that
∑n
i=1 αi = 1. Put βi := αi

1−αn
for 1 ≤ i ≤ n − 1. Thus

∑n−1
i=1 βi = 1

and by hypothesis of induction there exists unique point z′ ∈ [z1, zn−1] such that
d(z′, zi) = βil for 1,≤ i ≤ n − 1, now there exists unique point z ∈ [z′, zn] such that
d(z, zn) = αnl, d(z, z′) = (1− αn)l.
To prove (2) directly, let ti = 1 − αn − αi, t = 1 − αn ∈ [0, 1] for 1 ≤ i ≤ n. Put
zi = c(til) and z = c(tl) so d(z, zi) = |t− ti|l = αil, for 1 ≤ i ≤ n. For uniqueness, if
d(z, zi) = d(z′, zi) for 1 ≤ i ≤ n, then by (1) and i = 1, we have z = z′. 2

Example 2.2. Let X = [0, 1] and put

A =

{
(x, 0) : 0 ≤ x ≤ 2

3

}
∪
{

(
2

3
, y) :

−1

6
≤ y ≤ 1

6

}
.

Define f : X → A ⊆ R2 by

f(x) =

 (x, 0), 0 ≤ x ≤ 2
3 ;

( 2
3 , x−

5
6 ), 2

3 ≤ x ≤
5
6 ;

( 2
3 , x−

5
6 ), 5

6 ≤ x ≤ 1.

So f is isometric homeomorphism. For instance let α1 = 2
3 , α2 = α3 = 1

6 . Therefore
z1 = x = 0, z2 = 2

3 , z3 = y = 1, z = 5
6 and l = 1. Since t = 1 − α3 = 5

6 and
t2 = 1 − α3 − α2 = 2

3 so z2 = c(t2) = 2
3 , z = 5

6 and by homeomorphism we have
z1 = (0, 0), z2 = ( 2

3 ,
−1
6 ), z3 = ( 2

3 ,
1
6 ) and z = ( 2

3 , 0). And also we have d(z, zi) = αil,
for 1 ≤ i ≤ 3.
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𝑧𝑧2 =
2
3 

𝑧𝑧 =  
5
6 

 𝑧𝑧3 = 1 

𝑧𝑧1 = 0 𝑥𝑥 
𝑦𝑦 

𝑧𝑧2 
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Notation: By the point zα, we mean the unique point

zα = α1z1 ⊕ α2z2 ⊕ · · · ⊕ αnzn

where α = (α1, · · · , αn) ∈ [0, 1]n such that
∑n
i=1 αi = 1 and zi ∈ X for 1 ≤ i ≤ n.

Also zα can be written as
zα = (1− αn)z′ ⊕ αnzn,

where z′ = α1

1−αn
z1 ⊕ · · · ⊕ αn−1

1−αn
zn−1 where αn 6= 1.

Remark 2.3. Let (X, d) be a CAT (0) space, let x, y ∈ X such that x 6= y and
α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ [0, 1]n with

∑n
i=1 αi = 1 =

∑n
i=1 βi. Then

zα = zβ ⇐⇒ α = β.

Proof. This is true because,

d(zα, zi) = d(zβ , zi)⇒ αil = βil⇒ αi = βi,

for 1 ≤ i ≤ n.

Theorem 2.4. Let (X, d) be a CAT (0) space, let x, y ∈ X such that x 6= y and
d(x, y) = l. Then

1. [x, y] = {zα|α ∈ [0, 1]n,
∑n
i=1 αi = 1}.

2. For all z ∈ X the following holds:
(∃z1, · · · , zn ∈ [x, y] such that

∑n
i=1 d(z, zi) = d(x, y)) ⇐⇒ z ∈ [x, y].

3. The mapping f : [0, 1]n → [x, y], f(α) = zα is continuous and bijective.

Proof. (1) The case of n = 2 is proved in [2, Lemma 2.1]. Now let z ∈ [x, y]. By

induction, suppose there exists β ∈ [0, 1]n−1, such that
∑n−1
i=1 βi = 1 and z = zβ . Put

αi = βi for 1 ≤ i ≤ n − 2 and αn−1 = αn = βn−1

2 therefore
∑n
i=1 αi = 1 and there

exists z′ = c(βn−1

2 l) that d(z′, x) = (
∑n−2
i=1 βi + βn−1

2 )l and d(z, z′) = βn−1

2 l. Now

z′ = (
∑n−2
i=1 βi + βn−1

2 )zβ ⊕ βn−1

2 y thus z′ ∈ [x, y] and d(z, z′) = αnl.
To prove (2) let for every z ∈ X there exist z1, · · · , zn ∈ [x, y] such that

∑n
i=1 d(z, zi) =

d(x, y). Put αi = d(z,zi)
l where zi ∈ [x, y] and 1 ≤ i ≤ n, so there exists zα such that

zα = z.
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Conversely, if z ∈ [x, y] then z = zα for some α and z1, · · · , zn such that d(z, zi) =
αid(x, y) so

∑n
i=1 d(z, zi) = d(x, y).

To prove (3) applying (1) and Remark 2.3, we get that f is well defined and bi-
jective. The continuity of f is obvious by induction, because f can be written as
f(α) = g(β) ⊕ h(αn) where g(β) = zβ = β1z1 ⊕ · · · ⊕ βn−1zn−1, βi := αi

1−αn
for

1 ≤ i ≤ n− 1 and h(αn) = αnzn. 2

Lemma 2.5. Let (X, d) be a CAT (0) space. Then

1. d(zα, z) ≤
∑n
i=1 αid(zi, z) ≤ max{d(zi, z) : 1 ≤ i ≤ n},

2. d(zα, z)
2 ≤

∑n
i=1 αid(zi, z)

2 ≤ max{d(zi, z)
2 : 1 ≤ i ≤ n},

3. d(zα, z
′
β) ≤

∑n
i,j=1 αiβjd(zi, z

′
j) ≤ max{d(zi, z

′
j) : 1 ≤ i, j ≤ n},

for α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ [0, 1]n with
∑n
i=1 αi =

∑n
i=1 βi = 1 and

z, zi, z
′
i ∈ X for 1 ≤ i ≤ n which zα = α1z1 ⊕ α2z2 ⊕ · · · ⊕ αnzn, z′β = β1z

′
1 ⊕ β2z′2 ⊕

· · · ⊕ βnz′n.

Proof. By Lemma 1.2 it is true for n = 2. So by induction let

zα = α1z1 ⊕ α2z2 ⊕ · · · ⊕ αnzn

where α = (α1, · · · , αn) ∈ [0, 1]n such that
∑n
i=1 αi = 1 and zi ∈ X for 1 ≤ i ≤ n.

Put γ :=
(

α1

1−αn
, · · · , αn−1

1−αn

)
that

∑n−1
k=1

αk

1−αn
= 1 by Theorem 2.1 there exists vγ ∈

[x, zn−1] such that vγ = α1

1−αn
z1⊕· · ·⊕ αn−1

1−αn
zn−1 and we have zα = (1−αn)vγ⊕αnzn

so

d(zα, z) = d((1− αn)vγ ⊕ αnzn, z)
≤ (1− αn)d(vγ , z) + αnd(zn, z)

= (1− αn)d

(
α1

1− αn
z1 ⊕ · · · ⊕

αn−1
1− αn

zn−1, z

)
+ αnd(zn, z)

≤
n∑
i=1

αid(zi, z)

≤ max{d(zi, z) : 1 ≤ i ≤ n}.2

This proves (1).
(2) can easily proved according to Lemma 1.3 and again by induction on n ≥ 2.2

Lemma 2.6. Let (X, d) be a hyperbolic space. Then

d(zα, z
′
α) ≤

n∑
i=1

αid(zi, z
′
i) ≤ max{d(zi, z

′
i) : 1 ≤ i ≤ n},

for α = (α1, · · · , αn) ∈ [0, 1]n with
∑n
i=1 αi = 1 and zi, z

′
i ∈ X for 1 ≤ i ≤ n which

zα = α1z1 ⊕ α2z2 ⊕ · · · ⊕ αnzn, z′α = α1z
′
1 ⊕ α2z2 ⊕ · · · ⊕ αnz′n.
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Proof. By the property of (W4) it is true for n = 2. The remaining is similar to
the proof of the lemma 2.5. 2

3 Fixed points and approximate fixed points for Tα
maps

In 2008 T. Suzuki [5], defined condition (C) for mappings on a subset of a Banach
space, as following: ”Let T be a mapping on a subset C of a Banach space E. Then
T is said to satisfy condition (C) if

1

2
‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C.”
This condition is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.
In that paper, he has presented fixed point theorems and convergence theorems for
mappings satisfying condition (C). Also Examples 1 and 2 in the same paper stated
that there exists a map T which satisfies condition (C), but T is not nonexpansive,
and there exists a map T which is quasi-nonexpansive, but it does not satisfy condi-
tion (C).
Recently B. Nanjaras, B. Panyanaka and W. Phuengrattana in [6], A. Razani and H.
Salahifard in [7] and other mathematicians has proved some theorems according to
single-valued mappings or multi-valued mappings which are satisfying Suzuki’s con-
dition (C) in a CAT (0) space.

Some basic properties on condition (C) by [6, Propositions 3.2, 3.3], [7, Theorems
2.3, 2.7 and Corollary 2.8] and [8, Theorem 1.3] are:

P1 ([6, Lemma 2.5]) Let {xn} and {yn} be bounded sequences in a CAT (0) space
X and let {αn} ⊆ [0, 1) such that

∑∞
n=1 αn =∞ and lim supn αn < 1. Suppose

that xn+1 = αnyn ⊕ (1 − αn)xn and d(yn+1, yn) ≤ d(xn+1, xn) for all n ∈ N.
Then limn→∞ d(yn, xn) = 0.

P2 ([6, Proposition 3.2]) Let K be a nonempty subset of a CAT (0) space X. If
T : K → K be a nonexpansive mapping, then T satisfies condition (C).

P3 ([6, Proposition 3.3]) Let K be a nonempty subset of a CAT (0) space X. If
T : K → K satisfies condition (C) and has a fixed point, then T is a quasi-
nonexpansive mapping.

P4 ([7, Theorem 2.3]) Let K be a bounded closed convex subset of a complete
CAT (0) space X. If T : K → K satisfies the condition (C) and F (T ) 6= ∅, then
F (T ) is ∆-closed and convex set.
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P5 ([7, Theorem 2.7]) Let K be a bounded closed convex subset of a complete
CAT (0) space X. If T : K → K satisfies condition (C), then F (T ) is nonempty.

P6 ([7, Corollary 2.8]) Let K be a bounded closed convex subset of a complete
CAT (0) space X. If T : K → K satisfies condition (C), then F (T ) is nonempty,
∆-closed and convex.

P7 ([8, Theorem 1.3]) Let (X, d) be a convex subset of a CAT (0) space and f :
X → X a quasi-nonexpansive map whose fixed point set is nonempty. Then
F (f) is closed, convex and hence contractible.

And now, we start our results by following definitions.

Definition 3.1. ([5]) Let T be a mapping on a subset K of a CAT (0) space (X, d).
Then T is said to satisfy condition (C) if

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ K.

The following we will use this notation Tα = α1T1⊕· · ·⊕αnTn where T1, · · · , Tn :
X → [x, y] for 1 ≤ i ≤ n and α = (α1, · · · , αn) ∈ [0, 1]n a multiindex satisfying∑n
i=1 αi = 1.

Definition 3.2. ([9-10])Let α = (α1, · · · , αn) ∈ [0, 1]n be a multiindex satisfying∑n
i=1 αi = 1. The maps T1, · · · , Tn on X are said to be α-nonexpansive if

n∑
i=1

αid(Tix, Tiy) ≤ d(x, y), (3.1)

for all x, y ∈ X.

Theorem 3.3. Let K be a bounded closed convex subset of a complete CAT (0) space
(X, d). If Tα : K → K is defined by Tα = α1T1 ⊕ · · · ⊕ αnTn which T1, · · · , Tn are
selfmaps on K, which commute each other and satisfy condition (C), then Tα has a
fixed point.

Proof. By P5, F (Ti) 6= ∅ for 1 ≤ i ≤ n. We say
⋂n
i=1 F (Ti) 6= ∅. By induction we

assume that L :=
⋂n−1
i=1 F (Ti) 6= ∅. Let x ∈ L so we have

Tnx = Tn(Tix) = Ti(Tnx),

thus Tnx ∈ F (Ti) for 1 ≤ i ≤ n − 1. Therefore Tnx ∈ L hence Tn(L) ⊆ L. By
P6, F (Ti) nonempty and convex and since Ti satisfy the condition (C) by P3, Ti
is a quasinonexpansive map and by P7, F (Ti) closed and convex, for (1 ≤ i ≤ n),
therefore L and F (Tn) are nonempty, bounded closed convex subsets of a complete
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CAT (0) space. Thus T : L → L satisfies the condition of the P4, hence Tnx has a
fixed point in L, that is,

L ∩ F (Tn) =

n⋂
i=1

F (Ti) 6= ∅.

If we let x ∈
⋂n
i=1 F (Ti), then

d(x, Tαx) ≤
n∑
i=1

αid(x, Tix) = 0,

namely x ∈ F (Tα). 2

Theorem 3.4. Let K be a bounded closed convex subset of a complete CAT (0) space
(X, d). If Tα : K → K defined by Tα = α1T1 ⊕ · · · ⊕ αnTn which T1, · · · , Tn are
selfmaps on K, which T1 satisfies the condition (C) and d(x, Tnx) ≤ d(x, T1x) for
every x ∈ K, then infx∈K d(x, Tαx) = 0.

Proof. Let x1 ∈ K, define sequence {xn} ⊆ K by xn+1 := tT1xn ⊕ (1− t)xn for
n ∈ N, where t ∈ [ 12 , 1). Then by the assumption 1

2d(xn, T1xn) ≤ td(xn, T1xn) =
d(xn, xn+1) for n ∈ N hence d(T1xn+1, T1xn) ≤ d(xn+1, xn). So by P1 we have
infx∈K d(x, T1x) = 0. So

d(x, Tαx) ≤ d(x, T1x) + d(T1x, Tαx),

= d(x, T1x) + α1d(T1x, Tnx),

≤ d(x, T1x) + d(T1x, x) + d(x, Tnx),

≤ 3d(x, T1x),

therefore there exists {xn} ⊆ K such that d(xn, T1xn)→ 0 as n→∞ thus d(xn, Tαxn)→
0.2

Corollary 3.5. ([7, Lemma 2.5]) Let K be a bounded closed convex subset of a
complete CAT (0) space (X, d). If T : K → K satisfies the condition (C), then there
exists an approximate fixed point sequence for T , i.e., infx∈K d(x, Tx) = 0.
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