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Abstract

In this paper, we will present a modification of the preconditioned AOR-
type method for solving the linear system. A theorem is given to show the
convergence rate of modification of the preconditioned AOR methods that
can be enlarged than the convergence AOR method.
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1 Introduction

Consider the linear system as the following

Az = b, (1.1)
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where A = (a;;) is an n X n square and nonsingular matrix and x and
b are n-dimensional vectors. The linear system appears in many scien-
tific problems [1-13]. So the problem of solving Eq.(1.1) is important in
numerical linear algebra. When the condition number of A is very large,
the system of Eq.(1.1) is ill-posed and small changes in elements of A can
make large changes to the obtained response. To eliminate the recent is-
sue, a preconditioned technique would be useful. Kohno et al. in [4] have
been considered a preconditioner P, = I + S,, where S, is given by

0 —aqaqs 0 0
0 0 —QaQ93 ... 0
S, = , (1.2)
0 0 0 " —ap1Gn-1p
0 0 0 0

and «;, ¢ = 1,2,...,n — 1, are nonnegative real numbers. Kotakemorie
et al. in [2] proposed Ps = I + BU as the preconditioned matrix, where
[ is a positive real number. Wu et al. presented preconditioned AOR
iterative methods with two different preconditioners in [12], Also these
preconditioned methods presented by Kohno et al. in [4] and Kotakemori
in [5]. Gauss type preconditioning methods for nonnegative matrices and
M-matrix linear systems are applied by Zhang in [14] . A new precondi-
tioned AOR method for Z-matrices presented in [11] by Wang et al. as
the following

1 0 0 0
—fra1p 1 0 0

Py =1+ Kg= 0 —fhags : ) (1.3)
1 0
0 0 ... =Bh1ap_1n 1



where (;, i = 1,2,...,n — 1 are nonnegative real numbers. In this paper,
we will present the preconditioned AOR iterative method with

1 —Q1a12 0 N 0 0
—51(112 1 —Q20923 ... 0 0
0 —fea ... 0 0
Pag _ ]—I—Saﬁ _ 52 23
0 0 0 . 1 —Op—10p—1n
0 0 0 ce —ﬁn,lan,lyn 1

(1.4)
where «;, B;, i = 1,2,...,n — 1, are nonnegative real numbers. We will
show that the rate of convergence of this preconditioned can be faster
than the rate of convergence of the AOR method.

2 Preliminaries

For solving the linear system Eq.(1.1), if we split A into A = M — N with
the non-singular matrix M, the basic iterative method can be expressed
with

20 = MIN2O + M, i=0,1,2, ..., (2.1)
at which iterative method is convergent to the unique solution z = A~1b
for each initial value 2 if and only if p(M~1N) < 1.
For simplicity, we let A = I — L — U where I is the identity matrix, —L,
—U are strictly lower and strictly upper triangular part of A, respectively.
Definition 2.1. The accelerated over-relaxation AOR method is

e =Ly aW + (I —oL)'wb, i=0,1,2,..., (2.2)

where
Low=(I—0aL)'[(1-w)I+ (w—0)L+wU], (2.3)

is iteration matrix and o,w are real parameters with w # 0, [3].
The original system Eq.(1.1) may be transform into the preconditioned




form as follows

PAz = Pb. (2.4)

Then the corresponding basic iterative method can be defined by
2 = M, TN, W + M, P, i=0,1,2, ., (2.5)

where PA = M, — N, is a splitting of PA.

Definition 2.2.

(i) A matrix A is a Z-matrix if a;; <0, 4,7 =1,2,...,n, 1 # j, [13].
(i) A nonsingular Z-matrix is called an M-matrix if A= > 0, [7,13].

Definition 2.3. If A be a real matrix, A = M — N is called a splitting
of A if M be a nonsingular matrix. The splitting is called M-splitting if
and only if M is an M-matrix and N > 0, [12].

Lemma 2.1. Let A >0

(i) If ax < Az for some positive vector x, x # 0, then a < p(A).

(ii) If Az < Bz for some positive vector x, then p(A) < . Moreover, if A
is irreducible and if 0 # ax < Ax < Bz for some nonnegative vector,
then a < p(A) < 3, and z is a positive vector [10].

Lemma 2.2. let A = M — N be an M —splitting of A then p(M~!N) < 1
if and only if A is a nonsingular M —matrix [5].

Lemma 2.3. Let A be a Z—matrix, then A is a nonsingular M —matrix
if and only if there is a positive vector x such that Az >> 0, [1].

3 AOR method with the modification of the preconditioner
I+ Sozﬁ

In this section, we consider a preconditioned form

PagAl' = Pagb, (31)



with the preconditioner P,g = I + Sy, i.e.,
Aagx = bag, (32)

where A, = P, A and byg = Posb.
We use the AOR method for solving Eq.(3.2) and have the corresponding
preconditioned AOR iterative method with the following iterative matrix

Low = (Dag — aLag)_l[(l —w)Dops + (W —0)Lag + wUag, (3.3)

where D,s is diagonal matrix and —Lgg3, —U,p are strictly lower and
strictly upper triangular matrices which are obtained by splitting A,z,
respectively. The main result is given as follows:

Theorem 3.1. Let A = [a;;] is an n x n nonsingular Z-matrix, assume
that 0 <o <w<1, w#0and oy, 5; € [0,1], i =1,2,....,n — 1,

(i) If p(Lyy) < 1, then
/)(I_Jo,w) < p(La,oJ> <1

(ii) Let A be irreducible, let

Aii10i41; < 1,0=1,2,...,n—1,

then
p(Low) = p(Low) <1,
or
p(Low) > p(Len) > 1
Proof: Let



1
M=—(I—-oL
~(I—oL),
1
N==[(1=w) +(w—-o)L+wl]
1
E :=—(D.s—0oclL
af w( aff g 0‘6)’
1
Fap=—[(1 = w)Dag + (v = 0) Lag + wlag],
1
Ma,@:;(IJFSaﬁ)(I—UL%
1
Nag=—(I + Sap)[(1 )] + (w = o) L + wU],

where o, w are defined in definition Eq.(2.1), —L, —U are strictly lower
and strictly upper triangular part of A, respectively. Dog, —Lag, —Uap
are the diagonal, strictly lower and strictly upper triangular matrices
obtained from A,g, respectively.

Then, we have

A=M—N, Aus= Eos — Fop = Mys — Nag.
(i) Obviously, since A is a nonsingular Z—matrix and w # 0, 0

< oo
w <1, then M = %(I — oL) is a nonsingular M —matrix and N >
then A can be splitted as an M —splitting as the following

<
0,

A=M-N=2(-on)= L1 =)+ (=o)L +wU].

w w

If p(Lyw) < 1, it implies of Lemma 2.2, that A is a nonsingular
M —matrix, then by using Lemma 2.3 there is a positive vector x such
that Ax > 0, hence we have A,pr = (I + Sap)Ax > 0. Similarly, A,
is also a nonsingular M — matrix. The entries of A,z are

Ajj = Qij — OG04 j410i41,5 — Pic1Gi—1,0,-1; for 1 <i <n,
Aij = Qij — GG j41Qi415 for ©=1,

aij = ajj — Bi1ai-15a;-15 for 1=n. (3.4)

The entries of matrix D,s = diag(di1, dag, ..., dpyn) are



=1— 0410415 — Bic1ai-15a;-1; when 1 <1 <mn,

S,
N

S
<=

=1— oa;;4105 for 1=1,

Ozn’ =1~ ﬁiflaifl,iaifl,j for i=n. (3-5)

let A,3 be a nonsingular M —matrix, so d;; > 0. So D, is an invertible
positive diagonal matrix. We know that L,g > 0, this implies that E,3
can be a Z—matrix. Suppose UD;lLaﬂ > ( is a strictly lower triangular
matrix it yields p(0 D 3Ls) = 0 < 1, we have (I — 0D_3La3)"" > 0,
then

Eog = (I —0D_5Lap) ' Dy > 0. (3.6)
Therefore E,p is a nonsingular M —matrix.
Obviously, we know that U, and F,3 > 0. Hence, we prove that A,z =
Eus — F.z5 is an M —splitting. Using Lemma 2.2, it yields p(L,.,) =
p(E;BIFag) < 1, since Ayp = Eop — Fop and A = M — N are both
M —splitting and MojﬁlNaﬁ = M~'N, therefore, both splitting A,s =
E.3 — Fop and Ayp = M, — Ny are nonnegative.
On the other hand, let Dyg — Log =1 — L — Sapl, Log = Dop — I +
L + S.sL, we have

1
Mug — Eop=— + Sap)(I —0oL) — ;(Daﬁ — 0Lap)

(I+ Sag — ol — JSagL — Daﬁ + O'Lag)

[[—I—Saﬁ—O'L—O'SaﬁL—Daﬁ—f-O'(Daﬁ —]—I—L—f—Saﬁ)]

[(1 — U)(I - Da@) + Sag] > 0. (37)
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So
A;gMaﬁ — A;EEQE — A;;(Mag — E.3) >0

- )

then we get
A;ﬁl’Maﬁ > A;BIEaﬁ > 07
we have p(E_;5Fop) < p(MggNag), [8]. That is

P(Low) < p(Low) < 1.

(ii)) Let A =1 — L — U be irreducible. Suppose



Low=I—0oL)'[(1 —w) + (w—0)L +wU]
=(1-wl+w(l—-0)L+wU+ H, (3.8)
with
H=(I—-oL) "oL[w(l — o)L+ wU] > 0.

L, is a nonnegative and irreducible matrix. There exists a positive vec-
tor x, such that [10]

Ly, =z,

where p(L,,,) is denoted by 9. Using Eq.(3.8), we obtain the identity as
the following

(1—-w)+ (w—0)L+wU]z =9 —ol)x. (3.9)
By manipulating Eq.(3.9), we get
(1—w—-—I+ (w—0+vY0)L+wU]z =0, (3.10)

and
(W—1)({[I —-oLl)x=w(L+U—1)x. (3.11)

Let Sop L = Dy + Ly, Soap U = Dy + Uy, where Dy, Ly, are the diagonal
and lower triangular parts of S,z L and D,, U; are the diagonal and
upper triangular parts of S,s U, respectively.

Hence,

Aaﬁ :Da,é’ - Laﬁ - Uaﬁ
:([—L—Sa/g L)—(U—Sa5+5a5 U) (3.12)
—(I =Dy —Dy) — (L+Ly) — (U — Sap + Uy, (3.13)
where

Daﬁzl_Dl_DQa LaB:L+L1a UO&B:U_Saﬁ—'—Ul‘

By Eqgs.(3.10) and (3.11), we have



Lngilf —dr= (D 8 — ULa,g) (1 — w) s T (w — O’)Laﬁ + anﬂ — ﬁ(Daﬁ — O'Lag)]x

[(
(DM—JMQIM—w— 9)(I — Dy — Do) + (w— 0+ 0o0)(L+ Ly) +
U1)]

T

Sap)]}

s(L+U)—
1)Sap(I — aL)]

:(Daﬁ—aLaﬁ) HI( —w—9)+ (w—0—09)L + wU]
+[-(1=w—-0)(D1+D3)+ (w—0+00)L1 +w(U; —

=(Dag — 0Lag) '[9 = 1)(D1 + Dy) +w(Dy + Do) + o(9 — 1)Ly +wLy
+w(Uy — Sap))z

= (Dap = 0Lag) 1[0 — 1)(Dy + D) + (9 — 1)Ly + (S

— (Das — 0Lag) (9 = 1)(Ds + Do) + 00 — 1)Ly + (9 -

= (D — 0Lap) (0 = 1)(1 = 0)Dy + (9 — 1)Dy + (I —

here 0 <o < 1, 8,3 > 0, Dy, Dy > 0. Using Eq.(3.6), we have D,s—0 L,
is an M —matrix.
If ¥ < 1, then Emwx — 9z <0, so Ijgywx < vz. By using Lemma 2.1, we
get

P(Low) < p(Low) < 1.
If 9 > 1, then L,z — 92 > 0, so Ly,x > Jx. By using Lemma 2.1, we
get

p(Low) > p(Lyw) > 1.
Corollary 3.1. Let A = [a;;] € R™" be a nonsingular M —matrix.
Suppose that

0<a; <1, i=1,2,..,n—

then for w #£ 0, 0 <o <w < 1, it yields

P(Low) < p(Low) < 1.

Remark 3.1. We have given some inequalities of spectral radius of it-
eration matrices. The spectral radius of the AOR method also depends
upon the choice of the parameters «;, 8;, 1 =1,2,...,n — 1.

Example 3.1.Let the coefficient matrix A of Eq.(1.1) is given by

1

Y

11
—-11

A:

If we choose w =1 and o = 0.5, We get p(Lgs,1) = 0.70. By choosing
= 27 51 , We get p(L05 1) = 0.57. It shows that ,O(L05 1) < p(L05 1)

1)Saglz,

Sap) )



Example 3.2.Let the coefficient matrix A of Eq.(1.1) is given by

1

0 1
If we choose w = 1 and o
OZ1:B1:0, 042:]., 52:%7

p(Loe1) < p(Loga)-
Example 3.3.Let the coefficient matrix A of Eq.(1.1) is given by

0.6, we get p(Loe1) = 0.75. By choosing
we get p(Log1) = 0.62. It shows that

_ 1 -02-01-04 —0.2 _
-02 1 -03-0.1 -0.6
A=1-03-02 1 -01 —06 |,
-01-0.1-0.1 1 -0.01
_—0.2 -03-04-03 1 |

If we choose w = 1 and o = 0.5, we get p(Los1) = 0.97. By choosing
=0 =0, az = a3 =

%762263:

1
7

p(io.g,’l) = 090 It ShOWS that p(EO.S,l) S p(LO.E),l)'
Let the coefficient matrix A of Eq.(1.1) is given by

1
—0.05
0
—0.1
0

—0.4 —0.1
1 —-0.1
—0.056 1
—-0.1 0.1
-0.1 O

| —0.25 —0.15 —0.1

0

0
—0.45

1
—0.05

0

ay = Py = 0, we get

0.2 —0.1 |
0 0
—0.1 —0.2
~0.2 -0.25
1 0.1

01 1

If we choose w =1 and ¢ = 0.5, we get p(Los1) = 0.45.
If we choose w =1 and ¢ = 0.6, we get p(Log1) = 0.43.

By choosing a; = 3; =

29

10

L i =1,.,5 we get p(Los1) = 0.35 and




p(f/o_ﬁJ) = 0.33. B

By choosing «; = %, B = %, i=1,..,5 we get p(Los1) = 0.35 and
p(Loe1) = 0.34. It implies that p(Los1) < p(Losi) and p(Loe1) <
p(L0.6,1)-
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