On the modification of the preconditioned AOR iterative method for linear system

H. Almasieh ${ }^{\text {a,* }}$ S. Gholami ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran

Received 10 March 2012; accepted 1 October 2013

Abstract

In this paper, we will present a modification of the preconditioned AORtype method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.

Key words: AOR iterative method; Preconditioner; Z-matrix; Convergence. 2010 AMS Mathematics Subject Classification : 65H20; 35R11.

1 Introduction

Consider the linear system as the following

$$
\begin{equation*}
A x=b, \tag{1.1}
\end{equation*}
$$

[^0]where $A=\left(a_{i j}\right)$ is an $n \times n$ square and nonsingular matrix and x and b are n-dimensional vectors. The linear system appears in many scientific problems [1-13]. So the problem of solving Eq.(1.1) is important in numerical linear algebra. When the condition number of A is very large, the system of Eq.(1.1) is ill-posed and small changes in elements of A can make large changes to the obtained response. To eliminate the recent issue, a preconditioned technique would be useful. Kohno et al. in [4] have been considered a preconditioner $P_{\alpha}=I+S_{\alpha}$, where S_{α} is given by
\[

S_{\alpha}=\left($$
\begin{array}{ccccc}
0 & -\alpha_{1} a_{12} & 0 & \cdots & 0 \tag{1.2}\\
0 & 0 & -\alpha_{2} a_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \ddots & -\alpha_{n-1} a_{n-1, n} \\
0 & 0 & 0 & \cdots & 0
\end{array}
$$\right)
\]

and $\alpha_{i}, i=1,2, \ldots, n-1$, are nonnegative real numbers. Kotakemorie et al. in [2] proposed $P_{\beta}=I+\beta U$ as the preconditioned matrix, where β is a positive real number. Wu et al. presented preconditioned AOR iterative methods with two different preconditioners in [12], Also these preconditioned methods presented by Kohno et al. in [4] and Kotakemori in [5]. Gauss type preconditioning methods for nonnegative matrices and M-matrix linear systems are applied by Zhang in [14]. A new preconditioned AOR method for Z-matrices presented in [11] by Wang et al. as the following

$$
P_{\beta}=I+K_{\beta}=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \tag{1.3}\\
-\beta_{1} a_{12} & 1 & \ldots & 0 & 0 \\
0 & -\beta_{2} a_{23} & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 1 & 0 \\
0 & 0 & \ldots & -\beta_{n-1} a_{n-1, n} & 1
\end{array}\right),
$$

where $\beta_{i}, i=1,2, \ldots, n-1$ are nonnegative real numbers. In this paper, we will present the preconditioned AOR iterative method with
$P_{\alpha \beta}=I+S_{\alpha \beta}=\left(\begin{array}{cccccc}1 & -\alpha_{1} a_{12} & 0 & \ldots & 0 & 0 \\ -\beta_{1} a_{12} & 1 & -\alpha_{2} a_{23} & \ldots & 0 & 0 \\ 0 & -\beta_{2} a_{23} & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 1 & -\alpha_{n-1} a_{n-1, n} \\ 0 & 0 & 0 & \ldots & -\beta_{n-1} a_{n-1, n} & 1\end{array}\right)$,
where $\alpha_{i}, \beta_{i}, i=1,2, \ldots, n-1$, are nonnegative real numbers. We will show that the rate of convergence of this preconditioned can be faster than the rate of convergence of the AOR method.

2 Preliminaries

For solving the linear system Eq.(1.1), if we split A into $A=M-N$ with the non-singular matrix M , the basic iterative method can be expressed with

$$
\begin{equation*}
x^{(i+1)}=M^{-1} N x^{(i)}+M^{-1} b, \quad i=0,1,2, \ldots, \tag{2.1}
\end{equation*}
$$

at which iterative method is convergent to the unique solution $x=A^{-1} b$ for each initial value $x^{(0)}$ if and only if $\rho\left(M^{-1} N\right)<1$.
For simplicity, we let $A=I-L-U$ where I is the identity matrix, $-L$, $-U$ are strictly lower and strictly upper triangular part of A, respectively.
Definition 2.1. The accelerated over-relaxation AOR method is

$$
\begin{equation*}
x^{(i+1)}=L_{\sigma, \omega} x^{(i)}+(I-\sigma L)^{-1} \omega b, \quad i=0,1,2, \ldots, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\sigma, \omega}=(I-\sigma L)^{-1}[(1-\omega) I+(\omega-\sigma) L+\omega U], \tag{2.3}
\end{equation*}
$$

is iteration matrix and σ, ω are real parameters with $\omega \neq 0,[3]$.
The original system Eq.(1.1) may be transform into the preconditioned
form as follows

$$
\begin{equation*}
P A x=P b . \tag{2.4}
\end{equation*}
$$

Then the corresponding basic iterative method can be defined by

$$
\begin{equation*}
x^{(i+1)}=M_{p}^{-1} N_{p} x^{(i)}+M_{p}^{-1} P b, \quad i=0,1,2, \ldots, \tag{2.5}
\end{equation*}
$$

where $P A=M_{p}-N_{p}$ is a splitting of $P A$.

Definition 2.2.

(i) A matrix A is a Z-matrix if $a_{i j} \leq 0, i, j=1,2, \ldots, n, i \neq j,[13]$.
(ii) A nonsingular Z-matrix is called an M-matrix if $A^{-1} \geq 0,[7,13]$.

Definition 2.3. If A be a real matrix, $A=M-N$ is called a splitting of A if M be a nonsingular matrix. The splitting is called M -splitting if and only if M is an M-matrix and $N \geq 0$, [12].

Lemma 2.1. Let $A \geq 0$
(i) If $\alpha x \leq A x$ for some positive vector $x, x \neq 0$, then $\alpha \leq \rho(A)$.
(ii) If $A x \leq \beta x$ for some positive vector x, then $\rho(A) \leq \beta$. Moreover, if A is irreducible and if $0 \neq \alpha x \leq A x \leq \beta x$ for some nonnegative vector, then $\alpha \leq \rho(A) \leq \beta$, and x is a positive vector [10].

Lemma 2.2. let $A=M-N$ be an M-splitting of A then $\rho\left(M^{-1} N\right)<1$ if and only if A is a nonsingular M-matrix [5].
Lemma 2.3. Let A be a Z-matrix, then A is a nonsingular M-matrix if and only if there is a positive vector x such that $A x \gg 0,[1]$.

3 AOR method with the modification of the preconditioner $I+S_{\alpha \beta}$

In this section, we consider a preconditioned form

$$
\begin{equation*}
P_{\alpha \beta} A x=P_{\alpha \beta} b, \tag{3.1}
\end{equation*}
$$

with the preconditioner $P_{\alpha \beta}=I+S_{\alpha \beta}$, i.e.,

$$
\begin{equation*}
A_{\alpha \beta} x=b_{\alpha \beta}, \tag{3.2}
\end{equation*}
$$

where $A_{\alpha \beta}=P_{\alpha \beta} A$ and $b_{\alpha \beta}=P_{\alpha \beta} b$.
We use the AOR method for solving Eq.(3.2) and have the corresponding preconditioned AOR iterative method with the following iterative matrix

$$
\begin{equation*}
\bar{L}_{\sigma, \omega}=\left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(1-\omega) D_{\alpha \beta}+(\omega-\sigma) L_{\alpha \beta}+\omega U_{\alpha \beta},\right. \tag{3.3}
\end{equation*}
$$

where $D_{\alpha \beta}$ is diagonal matrix and $-L_{\alpha \beta},-U_{\alpha \beta}$ are strictly lower and strictly upper triangular matrices which are obtained by splitting $A_{\alpha \beta}$, respectively. The main result is given as follows:
Theorem 3.1. Let $A=\left[a_{i j}\right]$ is an $n \times n$ nonsingular Z-matrix, assume that $0 \leq \sigma \leq \omega \leq 1, \omega \neq 0$ and $\alpha_{i}, \beta_{i} \in[0,1], i=1,2, \ldots, n-1$,
(i) If $\rho\left(L_{\sigma, \omega}\right)<1$, then

$$
\rho\left(\bar{L}_{\sigma, \omega}\right) \leq \rho\left(L_{\sigma, \omega}\right)<1 .
$$

(ii) Let A be irreducible, let

$$
a_{i, i+1} a_{i+1, i}<1, i=1,2, \ldots, n-1
$$

then

$$
\rho\left(\bar{L}_{\sigma, \omega}\right)=\rho\left(L_{\sigma, \omega}\right)<1,
$$

or

$$
\rho\left(\bar{L}_{\sigma, \omega}\right) \geq \rho\left(L_{\sigma, \omega}\right)>1 .
$$

Proof: Let

$$
\begin{aligned}
M & =\frac{1}{\omega}(I-\sigma L), \\
N & =\frac{1}{\omega}[(1-\omega) I+(\omega-\sigma) L+\omega U], \\
E_{\alpha \beta} & =\frac{1}{\omega}\left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right), \\
F_{\alpha \beta} & =\frac{1}{\omega}\left[(1-\omega) D_{\alpha \beta}+(\omega-\sigma) L_{\alpha \beta}+\omega U_{\alpha \beta}\right], \\
M_{\alpha \beta} & =\frac{1}{\omega}\left(I+S_{\alpha \beta}\right)(I-\sigma L), \\
N_{\alpha \beta} & =\frac{1}{\omega}\left(I+S_{\alpha \beta}\right)[(1-\omega) I+(\omega-\sigma) L+\omega U],
\end{aligned}
$$

where σ, ω are defined in definition Eq.(2.1), $-L,-U$ are strictly lower and strictly upper triangular part of A, respectively. $D_{\alpha \beta},-L_{\alpha \beta},-U_{\alpha \beta}$ are the diagonal, strictly lower and strictly upper triangular matrices obtained from $A_{\alpha \beta}$, respectively.
Then, we have

$$
A=M-N, \quad A_{\alpha \beta}=E_{\alpha \beta}-F_{\alpha \beta}=M_{\alpha \beta}-N_{\alpha \beta} .
$$

(i) Obviously, since A is a nonsingular Z-matrix and $\omega \neq 0,0 \leq \sigma \leq$ $\omega \leq 1$, then $M=\frac{1}{\omega}(I-\sigma L)$ is a nonsingular M-matrix and $N \geq 0$, then A can be splitted as an M-splitting as the following

$$
A=M-N=\frac{1}{\omega}(I-\sigma L)-\frac{1}{\omega}[(1-\omega) I+(\omega-\sigma) L+\omega U] .
$$

If $\rho\left(L_{\sigma, \omega}\right)<1$, it implies of Lemma 2.2, that A is a nonsingular M-matrix, then by using Lemma 2.3 there is a positive vector x such that $A x \geq 0$, hence we have $A_{\alpha \beta} x=\left(I+S_{\alpha \beta}\right) A x \geq 0$. Similarly, $A_{\alpha \beta}$ is also a nonsingular M - matrix. The entries of $A_{\alpha \beta}$ are

$$
\begin{align*}
& \bar{a}_{i j}=a_{i j}-\alpha_{i} a_{i, i+1} a_{i+1, j}-\beta_{i-1} a_{i-1, i} a_{i-1, j} \text { for } 1<i<n, \\
& \bar{a}_{i j}=a_{i j}-\alpha_{i} a_{i, i+1} a_{i+1, j} \text { for } i=1, \\
& \bar{a}_{i j}=a_{i j}-\beta_{i-1} a_{i-1, i} a_{i-1, j} \text { for } i=n . \tag{3.4}
\end{align*}
$$

The entries of matrix $D_{\alpha \beta}=\operatorname{diag}\left(\bar{d}_{11}, \bar{d}_{22}, \ldots, \bar{d}_{n n}\right)$ are

$$
\begin{align*}
& \bar{d}_{i i}=1-\alpha_{i} a_{i, i+1} a_{i+1, j}-\beta_{i-1} a_{i-1, i} a_{i-1, j} \text { when } 1<i<n, \\
& \bar{d}_{i i}=1-\alpha_{i} a_{i, i+1} a_{i j} \text { for } i=1, \\
& \bar{d}_{i i}=1-\beta_{i-1} a_{i-1, i} a_{i-1, j} \text { for } i=n . \tag{3.5}
\end{align*}
$$

let $A_{\alpha \beta}$ be a nonsingular M-matrix, so $\bar{d}_{i i}>0$. So $D_{\alpha \beta}$ is an invertible positive diagonal matrix. We know that $L_{\alpha \beta} \geq 0$, this implies that $E_{\alpha \beta}$ can be a Z-matrix. Suppose $\sigma D_{\alpha \beta}^{-1} L_{\alpha \beta} \geq 0$ is a strictly lower triangular matrix it yields $\rho\left(\sigma D_{\alpha \beta}^{-1} L_{\alpha}\right)=0<1$, we have $\left(I-\sigma D_{\alpha \beta}^{-1} L_{\alpha \beta}\right)^{-1} \geq 0$, then

$$
\begin{equation*}
E_{\alpha \beta}=\left(I-\sigma D_{\alpha \beta}^{-1} L_{\alpha \beta}\right)^{-1} D_{\alpha \beta}^{-1} \geq 0 . \tag{3.6}
\end{equation*}
$$

Therefore $E_{\alpha \beta}$ is a nonsingular M-matrix.
Obviously, we know that $U_{\alpha \beta}$ and $F_{\alpha \beta} \geq 0$. Hence, we prove that $A_{\alpha \beta}=$ $E_{\alpha \beta}-F_{\alpha \beta}$ is an M-splitting. Using Lemma 2.2, it yields $\rho\left(\bar{L}_{\sigma, \omega}\right)=$ $\rho\left(E_{\alpha \beta}^{-1} F_{\alpha \beta}\right)<1$, since $A_{\alpha \beta}=E_{\alpha \beta}-F_{\alpha \beta}$ and $A=M-N$ are both M-splitting and $M_{\alpha \beta}^{-1} N_{\alpha \beta}=M^{-1} N$, therefore, both splitting $A_{\alpha \beta}=$ $E_{\alpha \beta}-F_{\alpha \beta}$ and $A_{\alpha \beta}=M_{\alpha \beta}-N_{\alpha \beta}$ are nonnegative.
On the other hand, let $D_{\alpha \beta}-L_{\alpha \beta}=I-L-S_{\alpha \beta} L, L_{\alpha \beta}=D_{\alpha \beta}-I+$ $L+S_{\alpha \beta} L$, we have

$$
\begin{align*}
M_{\alpha \beta}-E_{\alpha \beta} & =\frac{1}{\omega}\left(I+S_{\alpha \beta}\right)(I-\sigma L)-\frac{1}{\omega}\left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right) \\
& =\frac{1}{\omega}\left(I+S_{\alpha \beta}-\sigma L-\sigma S_{\alpha \beta} L-D_{\alpha \beta}+\sigma L_{\alpha \beta}\right) \\
& =\frac{1}{\omega}\left[I+S_{\alpha \beta}-\sigma L-\sigma S_{\alpha \beta} L-D_{\alpha \beta}+\sigma\left(D_{\alpha \beta}-I+L+S_{\alpha \beta}\right)\right] \\
& =\frac{1}{\omega}\left[(1-\sigma)\left(I-D_{\alpha \beta}\right)+S_{\alpha \beta}\right] \geq 0 . \tag{3.7}
\end{align*}
$$

So

$$
A_{\alpha \beta}^{-1} M_{\alpha \beta}-A_{\alpha \beta}^{-1} E_{\alpha \beta}=A_{\alpha \beta}^{-1}\left(M_{\alpha \beta}-E_{\alpha \beta}\right) \geq 0,
$$

then we get

$$
A_{\alpha \beta}^{-1} M_{\alpha \beta} \geq A_{\alpha \beta}^{-1} E_{\alpha \beta} \geq 0,
$$

we have $\rho\left(E_{\alpha \beta}^{-1} F_{\alpha \beta}\right) \leq \rho\left(M_{\alpha \beta}^{-1} N_{\alpha \beta}\right)$, [8]. That is

$$
\rho\left(\bar{L}_{\sigma, \omega}\right) \leq \rho\left(L_{\sigma, \omega}\right)<1
$$

(ii) Let $A=I-L-U$ be irreducible. Suppose

$$
\begin{align*}
L_{\sigma, \omega} & =(I-\sigma L)^{-1}[(1-\omega) I+(\omega-\sigma) L+\omega U] \\
& =(1-\omega) I+\omega(1-\sigma) L+\omega U+H, \tag{3.8}
\end{align*}
$$

with

$$
H=(I-\sigma L)^{-1} \sigma L[\omega(1-\sigma) L+\omega U] \geq 0
$$

$L_{\sigma, \omega}$ is a nonnegative and irreducible matrix. There exists a positive vector x, such that [10]

$$
L_{\sigma, \omega}=\vartheta x
$$

where $\rho\left(L_{\sigma, \omega}\right)$ is denoted by ϑ. Using Eq.(3.8), we obtain the identity as the following

$$
\begin{equation*}
[(1-\omega) I+(\omega-\sigma) L+\omega U] x=\vartheta(I-\sigma L) x . \tag{3.9}
\end{equation*}
$$

By manipulating Eq.(3.9), we get

$$
\begin{equation*}
[(1-\omega-\vartheta) I+(\omega-\sigma+\vartheta \sigma) L+\omega U] x=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
(\vartheta-1)(I-\sigma L) x=\omega(L+U-I) x . \tag{3.11}
\end{equation*}
$$

Let $S_{\alpha \beta} L=D_{1}+L_{1}, S_{\alpha \beta} U=D_{2}+U_{1}$, where D_{1}, L_{1}, are the diagonal and lower triangular parts of $S_{\alpha \beta} L$ and D_{2}, U_{1} are the diagonal and upper triangular parts of $S_{\alpha \beta} U$, respectively.
Hence,

$$
\begin{align*}
A_{\alpha \beta} & =D_{\alpha \beta}-L_{\alpha \beta}-U_{\alpha \beta} \\
& =\left(I-L-S_{\alpha \beta} L\right)-\left(U-S_{\alpha \beta}+S_{\alpha \beta} U\right) \tag{3.12}\\
& =\left(I-D_{1}-D_{2}\right)-\left(L+L_{1}\right)-\left(U-S_{\alpha \beta}+U_{1}\right), \tag{3.13}
\end{align*}
$$

where

$$
D_{\alpha \beta}=I-D_{1}-D_{2}, \quad L_{\alpha \beta}=L+L_{1}, \quad U_{\alpha \beta}=U-S_{\alpha \beta}+U_{1} .
$$

By Eqs.(3.10) and (3.11), we have

$$
\begin{aligned}
\bar{L}_{\sigma, \omega} x-\vartheta x= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(1-\omega) D_{\alpha \beta}+(\omega-\sigma) L_{\alpha \beta}+\omega U_{\alpha \beta}-\vartheta\left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)\right] x \\
= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(1-\omega-\vartheta)\left(I-D_{1}-D_{2}\right)+(\omega-\sigma+\sigma \vartheta)\left(L+L_{1}\right)+\right. \\
& \left.\omega\left(U-S_{\alpha \beta}+U_{1}\right)\right] x \\
= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\{[(1-\omega-\vartheta)+(\omega-\sigma-\sigma \vartheta) L+\omega U] \\
+ & {\left.\left[-(1-\omega-\sigma)\left(D_{1}+D_{2}\right)+(\omega-\sigma+\sigma \vartheta) L_{1}+\omega\left(U_{1}-S_{\alpha \beta}\right)\right]\right\} x } \\
= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(\vartheta-1)\left(D_{1}+D_{2}\right)+\omega\left(D_{1}+D_{2}\right)+\sigma(\vartheta-1) L_{1}+\omega L_{1}\right. \\
+ & \left.\omega\left(U_{1}-S_{\alpha \beta}\right)\right] x \\
= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(\vartheta-1)\left(D_{1}+D_{2}\right)+\sigma(\vartheta-1) L_{1}+\omega\left(S_{\alpha \beta}(L+U)-S_{\alpha \beta}\right)\right] x \\
= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(\vartheta-1)\left(D_{1}+D_{2}\right)+\sigma(\vartheta-1) L_{1}+(\vartheta-1) S_{\alpha \beta}(I-\sigma L)\right] x \\
= & \left(D_{\alpha \beta}-\sigma L_{\alpha \beta}\right)^{-1}\left[(\vartheta-1)(1-\sigma) D_{1}+(\vartheta-1) D_{2}+(\vartheta-1) S_{\alpha \beta}\right] x,
\end{aligned}
$$

here $0 \leq \sigma<1, S_{\alpha \beta} \geq 0, D_{1}, D_{2} \geq 0$. Using Eq.(3.6), we have $D_{\alpha \beta}-\sigma L_{\alpha \beta}$ is an M-matrix.
If $\vartheta<1$, then $\bar{L}_{\sigma, \omega} x-\vartheta x \leq 0$, so $\bar{L}_{\sigma, \omega} x \leq \vartheta x$. By using Lemma 2.1, we get

$$
\rho\left(\bar{L}_{\sigma, \omega}\right) \leq \rho\left(L_{\sigma, \omega}\right)<1 .
$$

If $\vartheta>1$, then $\bar{L}_{\sigma, \omega} x-\vartheta x \geq 0$, so $\bar{L}_{\sigma, \omega} x \geq \vartheta x$. By using Lemma 2.1, we get

$$
\rho\left(\bar{L}_{\sigma, \omega}\right) \geq \rho\left(L_{\sigma, \omega}\right)>1
$$

Corollary 3.1. Let $A=\left[a_{i j}\right] \in R^{n \times n}$ be a nonsingular M-matrix. Suppose that

$$
0 \leq \alpha_{i} \leq 1, \quad i=1,2, \ldots, n-1
$$

then for $\omega \neq 0,0 \leq \sigma \leq \omega \leq 1$, it yields

$$
\rho\left(\bar{L}_{\sigma, \omega}\right) \leq \rho\left(L_{\sigma, \omega}\right)<1
$$

Remark 3.1. We have given some inequalities of spectral radius of iteration matrices. The spectral radius of the AOR method also depends upon the choice of the parameters $\alpha_{i}, \beta_{i}, i=1,2, \ldots, n-1$.
Example 3.1.Let the coefficient matrix A of Eq.(1.1) is given by

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

If we choose $\omega=1$ and $\sigma=0.5$, We get $\rho\left(L_{0.5}, 1\right)=0.70$. By choosing $\alpha_{1}=\frac{1}{2}, \beta_{1}=\frac{1}{3}$, we get $\rho\left(\bar{L}_{0.5,1}\right)=0.57$. It shows that $\rho\left(\bar{L}_{0.5,1}\right) \leq \rho\left(L_{0.5,1}\right)$.

Example 3.2.Let the coefficient matrix A of Eq.(1.1) is given by

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-\frac{1}{2} & 0 & 1
\end{array}\right]
$$

If we choose $\omega=1$ and $\sigma=0.6$, we get $\rho\left(L_{0.6,1}\right)=0.75$. By choosing $\alpha_{1}=\beta_{1}=0, \alpha_{2}=1, \beta_{2}=\frac{1}{2}$, we get $\rho\left(\bar{L}_{0.6,1}\right)=0.62$. It shows that $\rho\left(\bar{L}_{0.6,1}\right) \leq \rho\left(L_{0.6,1}\right)$.
Example 3.3.Let the coefficient matrix A of Eq.(1.1) is given by

$$
A=\left[\begin{array}{ccccc}
1 & -0.2 & -0.1 & -0.4 & -0.2 \\
-0.2 & 1 & -0.3 & -0.1 & -0.6 \\
-0.3 & -0.2 & 1 & -0.1 & -0.6 \\
-0.1 & -0.1 & -0.1 & 1 & -0.01 \\
-0.2 & -0.3 & -0.4 & -0.3 & 1
\end{array}\right]
$$

If we choose $\omega=1$ and $\sigma=0.5$, we get $\rho\left(L_{0.5,1}\right)=0.97$. By choosing $\alpha_{1}=\beta_{1}=0, \quad \alpha_{2}=\alpha_{3}=\frac{1}{3}, \beta_{2}=\beta_{3}=\frac{1}{7}, \alpha_{4}=\beta_{4}=0$, we get $\rho\left(\bar{L}_{0.5,1}\right)=0.90$. It shows that $\rho\left(\bar{L}_{0.5,1}\right) \leq \rho\left(L_{0.5,1}\right)$.
Let the coefficient matrix A of Eq.(1.1) is given by

$$
A=\left[\begin{array}{cccccc}
1 & -0.4 & -0.1 & 0 & -0.2 & -0.1 \\
-0.05 & 1 & -0.1 & 0 & 0 & 0 \\
0 & -0.05 & 1 & -0.45 & -0.1 & -0.2 \\
-0.1 & -0.1 & -0.1 & 1 & -0.2 & -0.25 \\
0 & -0.1 & 0 & -0.05 & 1 & -0.1 \\
-0.25 & -0.15 & -0.1 & 0 & -0.1 & 1
\end{array}\right]
$$

If we choose $\omega=1$ and $\sigma=0.5$, we get $\rho\left(L_{0.5,1}\right)=0.45$.
If we choose $\omega=1$ and $\sigma=0.6$, we get $\rho\left(L_{0.6,1}\right)=0.43$.
By choosing $\alpha_{i}=\beta_{i}=\frac{1}{2}, i=1, \ldots, 5$, we get $\rho\left(\bar{L}_{0.5,1}\right)=0.35$ and
$\rho\left(\bar{L}_{0.6,1}\right)=0.33$.
By choosing $\alpha_{i}=\frac{1}{2}, \beta_{i}=\frac{1}{3}, i=1, \ldots, 5$, we get $\rho\left(\bar{L}_{0.5,1}\right)=0.35$ and $\rho\left(\bar{L}_{0.6,1}\right)=0.34$. It implies that $\rho\left(\bar{L}_{0.5,1}\right) \leq \rho\left(L_{0.5,1}\right)$ and $\rho\left(\bar{L}_{0.6,1}\right) \leq$ $\rho\left(L_{0.6,1}\right)$.

References

[1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York (1979).
[2] A. D. Gunawardena, S. K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Lin. Alg. Appl. 154 (1991) 123-143.
[3] A. Hadjidimos, Accelerated overrelaxation method, Appl. Math. Comput. 32 (1978) 149-157.
[4] T. Kohno, H. Kotakemori, Improving the modified Gauss-Seidel method for Z-matrices, Lin. Alg. Appl. 267 (1997) 113-123.
[5] H. Kotakemori, H. Niki, N. Okamoto, Accelerated iterative method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97.
[6] J. Li, T. Z. Huang, Preconditioned methods of Z-matrices, Acta. Math. Sci. 25 (2005) 5-10.
[7] W. Li, W. W. Sun, Modified Guass-Seidel type methods and Jacobi type methods for Z-matrices, Lin. Alg. Appl. 317 (2000) 227-240.
[8] Y. Z. Song, Comparisons of nonnegative splittings of matrices, Lin. Alg. Appl. 154 (1991) 443-455.
[9] Y. Z. Song, Comparison theorems for splitting of matrices, Num. Math. 92 (2002) 563-591.
[10] R. S. Varga, Matrix iterative analysis, Prentice-Hall,Inc, Englewood Cliffs, N.J. (1962).
[11] G. Wang, N. Zhang, F. Tan, A new preconditioned AOR method for Z-matrices, Wor. Aca. Sci. Engin. Tech. 67 (2010) 572-574.
[12] M. Wu, L. Wang, Y. Song, Preconditioned AOR iterative method for linear systems, Appl. Num. Math. 57 (2007) 672-685.
[13] D. M. Young, Iterative solution of large linear systems, Academic Press, New York (1971).
[14] Y. Zhang, T. Z. Huang, X. Liu, Gauss type preconditioning techniques for linear system, Appl. Math. Comput. 188 (2007) 612-633.

[^0]: * Corresponding authors' mail:halmasieh@yahoo.co.uk(H.Almasieh)

