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Abstract

In this paper, we will present a modification of the preconditioned AOR-
type method for solving the linear system. A theorem is given to show the
convergence rate of modification of the preconditioned AOR methods that
can be enlarged than the convergence AOR method.
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1 Introduction

Consider the linear system as the following

Ax = b, (1.1)

∗ Corresponding authors’ mail:halmasieh@yahoo.co.uk(H.Almasieh)



where A = (aij) is an n × n square and nonsingular matrix and x and
b are n-dimensional vectors. The linear system appears in many scien-
tific problems [1-13]. So the problem of solving Eq.(1.1) is important in
numerical linear algebra. When the condition number of A is very large,
the system of Eq.(1.1) is ill-posed and small changes in elements of A can
make large changes to the obtained response. To eliminate the recent is-
sue, a preconditioned technique would be useful. Kohno et al. in [4] have
been considered a preconditioner Pα = I + Sα, where Sα is given by

Sα =



0 −α1a12 0 ... 0

0 0 −α2a23 ... 0
...

...
... . . .

...

0 0 0
. . . −αn−1an−1,n

0 0 0 ... 0


, (1.2)

and αi, i = 1, 2, ..., n − 1, are nonnegative real numbers. Kotakemorie
et al. in [2] proposed Pβ = I + βU as the preconditioned matrix, where
β is a positive real number. Wu et al. presented preconditioned AOR
iterative methods with two different preconditioners in [12], Also these
preconditioned methods presented by Kohno et al. in [4] and Kotakemori
in [5]. Gauss type preconditioning methods for nonnegative matrices and
M-matrix linear systems are applied by Zhang in [14] . A new precondi-
tioned AOR method for Z-matrices presented in [11] by Wang et al. as
the following

Pβ = I +Kβ =



1 0 . . . 0 0

−β1a12 1 ... 0 0

0 −β2a23
...

...
...

...
...

. . . 1 0

0 0 . . . −βn−1an−1,n 1


, (1.3)
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where βi, i = 1, 2, ..., n− 1 are nonnegative real numbers. In this paper,
we will present the preconditioned AOR iterative method with

Pαβ = I+Sαβ =



1 −α1a12 0 . . . 0 0

−β1a12 1 −α2a23 ... 0 0

0 −β2a23 1 . . . 0 0
...

...
...

...
...

...

0 0 0
. . . 1 −αn−1an−1,n

0 0 0 . . . −βn−1an−1,n 1


,

(1.4)
where αi, βi, i = 1, 2, ..., n − 1, are nonnegative real numbers. We will
show that the rate of convergence of this preconditioned can be faster
than the rate of convergence of the AOR method.

2 Preliminaries

For solving the linear system Eq.(1.1), if we split A into A = M−N with
the non-singular matrix M, the basic iterative method can be expressed
with

x(i+1) = M−1Nx(i) +M−1b, i = 0, 1, 2, ..., (2.1)

at which iterative method is convergent to the unique solution x = A−1b
for each initial value x(0) if and only if ρ(M−1N) < 1.
For simplicity, we let A = I − L− U where I is the identity matrix, −L,
−U are strictly lower and strictly upper triangular part of A, respectively.
Definition 2.1. The accelerated over-relaxation AOR method is

x(i+1) = Lσ,ωx
(i) + (I − σL)−1ωb, i = 0, 1, 2, ..., (2.2)

where

Lσ,ω = (I − σL)−1[(1− ω)I + (ω − σ)L+ ωU ], (2.3)

is iteration matrix and σ, ω are real parameters with ω 6= 0, [3].
The original system Eq.(1.1) may be transform into the preconditioned
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form as follows

PAx = Pb. (2.4)

Then the corresponding basic iterative method can be defined by

x(i+1) = Mp
−1Npx

(i) +Mp
−1Pb, i = 0, 1, 2, ..., (2.5)

where PA = Mp −Np is a splitting of PA.

Definition 2.2.

(i) A matrix A is a Z-matrix if aij ≤ 0, i, j = 1, 2, ..., n, i 6= j, [13].
(ii) A nonsingular Z-matrix is called an M-matrix if A−1 ≥ 0, [7,13].

Definition 2.3. If A be a real matrix, A = M −N is called a splitting
of A if M be a nonsingular matrix. The splitting is called M-splitting if
and only if M is an M-matrix and N ≥ 0, [12].

Lemma 2.1. Let A ≥ 0

(i) If αx ≤ Ax for some positive vector x, x 6= 0, then α ≤ ρ(A).
(ii) If Ax ≤ βx for some positive vector x, then ρ(A) ≤ β. Moreover, if A

is irreducible and if 0 6= αx ≤ Ax ≤ βx for some nonnegative vector,
then α ≤ ρ(A) ≤ β, and x is a positive vector [10].

Lemma 2.2. let A = M−N be an M−splitting of A then ρ(M−1N) < 1
if and only if A is a nonsingular M−matrix [5].
Lemma 2.3. Let A be a Z−matrix, then A is a nonsingular M−matrix
if and only if there is a positive vector x such that Ax >> 0, [1].

3 AOR method with the modification of the preconditioner
I + Sαβ

In this section, we consider a preconditioned form

PαβAx = Pαβb, (3.1)
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with the preconditioner Pαβ = I + Sαβ, i.e.,

Aαβx = bαβ, (3.2)

where Aαβ = PαβA and bαβ = Pαβb.
We use the AOR method for solving Eq.(3.2) and have the corresponding
preconditioned AOR iterative method with the following iterative matrix

L̄σ,ω = (Dαβ − σLαβ)−1[(1− ω)Dαβ + (ω − σ)Lαβ + ωUαβ, (3.3)

where Dαβ is diagonal matrix and −Lαβ, −Uαβ are strictly lower and
strictly upper triangular matrices which are obtained by splitting Aαβ,
respectively. The main result is given as follows:
Theorem 3.1. Let A = [aij] is an n × n nonsingular Z-matrix, assume
that 0 ≤ σ ≤ ω ≤ 1, ω 6= 0 and αi, βi ∈ [0, 1], i = 1, 2, ..., n− 1,

(i) If ρ(Lσ,ω) < 1, then

ρ(L̄σ,ω) ≤ ρ(Lσ,ω) < 1.

(ii) Let A be irreducible, let

ai,i+1ai+1,i < 1, i = 1, 2, ..., n− 1,

then

ρ(L̄σ,ω) = ρ(Lσ,ω) < 1,

or

ρ(L̄σ,ω) ≥ ρ(Lσ,ω) > 1.

Proof: Let
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M =
1

ω
(I − σL),

N =
1

ω
[(1− ω)I + (ω − σ)L+ ωU ],

Eαβ =
1

ω
(Dαβ − σLαβ),

Fαβ =
1

ω
[(1− ω)Dαβ + (ω − σ)Lαβ + ωUαβ],

Mαβ =
1

ω
(I + Sαβ)(I − σL),

Nαβ =
1

ω
(I + Sαβ)[(1− ω)I + (ω − σ)L+ ωU ],

where σ, ω are defined in definition Eq.(2.1), −L, −U are strictly lower
and strictly upper triangular part of A, respectively. Dαβ, −Lαβ, −Uαβ
are the diagonal, strictly lower and strictly upper triangular matrices
obtained from Aαβ, respectively.
Then, we have

A = M −N, Aαβ = Eαβ − Fαβ = Mαβ −Nαβ.

(i) Obviously, since A is a nonsingular Z−matrix and ω 6= 0, 0 ≤ σ ≤
ω ≤ 1, then M = 1

ω
(I − σL) is a nonsingular M−matrix and N ≥ 0,

then A can be splitted as an M−splitting as the following

A = M −N =
1

ω
(I − σL)− 1

ω
[(1− ω)I + (ω − σ)L+ ωU ].

If ρ(Lσ,ω) < 1, it implies of Lemma 2.2, that A is a nonsingular
M−matrix, then by using Lemma 2.3 there is a positive vector x such
that Ax ≥ 0, hence we have Aαβx = (I + Sαβ)Ax ≥ 0. Similarly, Aαβ
is also a nonsingular M− matrix. The entries of Aαβ are

āij = aij − αiai,i+1ai+1,j − βi−1ai−1,iai−1,j for 1 < i < n,

āij = aij − αiai,i+1ai+1,j for i = 1,

āij = aij − βi−1ai−1,iai−1,j for i = n. (3.4)

The entries of matrix Dαβ = diag(d̄11, d̄22, ..., d̄nn) are
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d̄ii = 1− αiai,i+1ai+1,j − βi−1ai−1,iai−1,j when 1 < i < n,

d̄ii = 1− αiai,i+1aij for i = 1,

d̄ii = 1− βi−1ai−1,iai−1,j for i = n. (3.5)

let Aαβ be a nonsingular M−matrix, so d̄ii > 0. So Dαβ is an invertible
positive diagonal matrix. We know that Lαβ ≥ 0, this implies that Eαβ
can be a Z−matrix. Suppose σD−1

αβLαβ ≥ 0 is a strictly lower triangular

matrix it yields ρ(σD−1
αβLα) = 0 < 1, we have (I − σD−1

αβLαβ)−1 ≥ 0,
then

Eαβ = (I − σD−1
αβLαβ)−1D−1

αβ ≥ 0. (3.6)

Therefore Eαβ is a nonsingular M−matrix.
Obviously, we know that Uαβ and Fαβ ≥ 0. Hence, we prove that Aαβ =
Eαβ − Fαβ is an M−splitting. Using Lemma 2.2, it yields ρ(L̄σ,ω) =
ρ(E−1

αβFαβ) < 1, since Aαβ = Eαβ − Fαβ and A = M − N are both

M−splitting and M−1
αβNαβ = M−1N , therefore, both splitting Aαβ =

Eαβ − Fαβ and Aαβ = Mαβ −Nαβ are nonnegative.
On the other hand, let Dαβ − Lαβ = I − L− SαβL, Lαβ = Dαβ − I +
L+ SαβL, we have

Mαβ − Eαβ =
1

ω
(I + Sαβ)(I − σL)− 1

ω
(Dαβ − σLαβ)

=
1

ω
(I + Sαβ − σL− σSαβL−Dαβ + σLαβ)

=
1

ω
[I + Sαβ − σL− σSαβL−Dαβ + σ(Dαβ − I + L+ Sαβ)]

=
1

ω
[(1− σ)(I −Dαβ) + Sαβ] ≥ 0. (3.7)

So

A−1
αβMαβ − A−1

αβEαβ = A−1
αβ(Mαβ − Eαβ) ≥ 0,

then we get

A−1
αβMαβ ≥ A−1

αβEαβ ≥ 0,

we have ρ(E−1
αβFαβ) ≤ ρ(M−1

αβNαβ), [8]. That is

ρ(L̄σ,ω) ≤ ρ(Lσ,ω) < 1.

(ii) Let A = I − L− U be irreducible. Suppose
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Lσ,ω = (I − σL)−1[(1− ω)I + (ω − σ)L+ ωU ]

= (1− ω)I + ω(1− σ)L+ ωU +H, (3.8)

with

H = (I − σL)−1σL[ω(1− σ)L+ ωU ] ≥ 0.

Lσ,ω is a nonnegative and irreducible matrix. There exists a positive vec-
tor x, such that [10]

Lσ,ω = ϑx,

where ρ(Lσ,ω) is denoted by ϑ. Using Eq.(3.8), we obtain the identity as
the following

[(1− ω)I + (ω − σ)L+ ωU ]x = ϑ(I − σL)x. (3.9)

By manipulating Eq.(3.9), we get

[(1− ω − ϑ)I + (ω − σ + ϑσ)L+ ωU ]x = 0, (3.10)

and

(ϑ− 1)(I − σL)x = ω(L+ U − I)x. (3.11)

Let Sαβ L = D1 + L1, Sαβ U = D2 + U1, where D1, L1, are the diagonal
and lower triangular parts of Sαβ L and D2, U1 are the diagonal and
upper triangular parts of Sαβ U , respectively.
Hence,

Aαβ =Dαβ − Lαβ − Uαβ
= (I − L− Sαβ L)− (U − Sαβ + Sαβ U) (3.12)

= (I −D1 −D2)− (L+ L1)− (U − Sαβ + U1), (3.13)

where

Dαβ = I −D1 −D2, Lαβ = L+ L1, Uαβ = U − Sαβ + U1.

By Eqs.(3.10) and (3.11), we have
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L̄σ,ωx− ϑx= (Dαβ − σLαβ)−1[(1− ω)Dαβ + (ω − σ)Lαβ + ωUαβ − ϑ(Dαβ − σLαβ)]x

= (Dαβ − σLαβ)−1[(1− ω − ϑ)(I −D1 −D2) + (ω − σ + σϑ)(L+ L1) +

ω(U − Sαβ + U1)]x

= (Dαβ − σLαβ)−1{[(1− ω − ϑ) + (ω − σ − σϑ)L+ ωU ]

+ [−(1− ω − σ)(D1 +D2) + (ω − σ + σϑ)L1 + ω(U1 − Sαβ)]}x
= (Dαβ − σLαβ)−1[(ϑ− 1)(D1 +D2) + ω(D1 +D2) + σ(ϑ− 1)L1 + ωL1

+ω(U1 − Sαβ)]x

= (Dαβ − σLαβ)−1[(ϑ− 1)(D1 +D2) + σ(ϑ− 1)L1 + ω(Sαβ(L+ U)− Sαβ)]x

= (Dαβ − σLαβ)−1[(ϑ− 1)(D1 +D2) + σ(ϑ− 1)L1 + (ϑ− 1)Sαβ(I − σL)]x

= (Dαβ − σLαβ)−1[(ϑ− 1)(1− σ)D1 + (ϑ− 1)D2 + (ϑ− 1)Sαβ]x,

here 0 ≤ σ < 1, Sαβ ≥ 0, D1, D2 ≥ 0. Using Eq.(3.6), we have Dαβ−σLαβ
is an M−matrix.
If ϑ < 1, then L̄σ,ωx − ϑx ≤ 0, so L̄σ,ωx ≤ ϑx. By using Lemma 2.1, we
get

ρ(L̄σ,ω) ≤ ρ(Lσ,ω) < 1.

If ϑ > 1, then L̄σ,ωx − ϑx ≥ 0, so L̄σ,ωx ≥ ϑx. By using Lemma 2.1, we
get

ρ(L̄σ,ω) ≥ ρ(Lσ,ω) > 1.

Corollary 3.1. Let A = [aij] ∈ Rn×n be a nonsingular M−matrix.
Suppose that

0 ≤ αi ≤ 1, i = 1, 2, ..., n− 1,

then for ω 6= 0, 0 ≤ σ ≤ ω ≤ 1, it yields

ρ(L̄σ,ω) ≤ ρ(Lσ,ω) < 1.

Remark 3.1. We have given some inequalities of spectral radius of it-
eration matrices. The spectral radius of the AOR method also depends
upon the choice of the parameters αi, βi, i = 1, 2, ..., n− 1.
Example 3.1.Let the coefficient matrix A of Eq.(1.1) is given by

A =

 1 1

−1 1

 .
If we choose ω = 1 and σ = 0.5, We get ρ(L0.5, 1) = 0.70. By choosing
α1 = 1

2
, β1 = 1

3
, we get ρ(L̄0.5,1) = 0.57. It shows that ρ(L̄0.5,1) ≤ ρ(L0.5,1).
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Example 3.2.Let the coefficient matrix A of Eq.(1.1) is given by

A =


1 −1 0

0 1 −1

−1
2

0 1

 ,

If we choose ω = 1 and σ = 0.6, we get ρ(L0.6,1) = 0.75. By choosing
α1 = β1 = 0, α2 = 1, β2 = 1

2
, we get ρ(L̄0.6,1) = 0.62. It shows that

ρ(L̄0.6,1) ≤ ρ(L0.6,1).
Example 3.3.Let the coefficient matrix A of Eq.(1.1) is given by

A =



1 −0.2 −0.1 −0.4 −0.2

−0.2 1 −0.3 −0.1 −0.6

−0.3 −0.2 1 −0.1 −0.6

−0.1 −0.1 −0.1 1 −0.01

−0.2 −0.3 −0.4 −0.3 1


,

If we choose ω = 1 and σ = 0.5, we get ρ(L0.5,1) = 0.97. By choosing
α1 = β1 = 0, α2 = α3 = 1

3
, β2 = β3 = 1

7
, α4 = β4 = 0, we get

ρ(L̄0.5,1) = 0.90. It shows that ρ(L̄0.5,1) ≤ ρ(L0.5,1).
Let the coefficient matrix A of Eq.(1.1) is given by

A =



1 −0.4 −0.1 0 −0.2 −0.1

−0.05 1 −0.1 0 0 0

0 −0.05 1 −0.45 −0.1 −0.2

−0.1 −0.1 −0.1 1 −0.2 −0.25

0 −0.1 0 −0.05 1 −0.1

−0.25 −0.15 −0.1 0 −0.1 1


,

If we choose ω = 1 and σ = 0.5, we get ρ(L0.5,1) = 0.45.
If we choose ω = 1 and σ = 0.6, we get ρ(L0.6,1) = 0.43.
By choosing αi = βi = 1

2
, i = 1, ..., 5, we get ρ(L̄0.5,1) = 0.35 and
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ρ(L̄0.6,1) = 0.33.
By choosing αi = 1

2
, βi = 1

3
, i = 1, ..., 5, we get ρ(L̄0.5,1) = 0.35 and

ρ(L̄0.6,1) = 0.34. It implies that ρ(L̄0.5,1) ≤ ρ(L0.5,1) and ρ(L̄0.6,1) ≤
ρ(L0.6,1).
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