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Abstract

Here, Adomian decomposition method has been used for finding approximate
and numerical solutions of nonlinear differential difference equations arising in
mathematical physics. Two models of special interest in physics, namely, the
Hybrid nonlinear differential difference equation and Relativistic Toda coupled
nonlinear differential-difference equation are chosen to illustrate the validity and
the great potential of the proposed method. Comparisons are made between the
results of the proposed method and exact solutions. The results show that the
Adomian Decomposition Method is an attractive method in solving the non-
linear differential difference equations. It is worthwhile to mention that the
Adomian decomposition method is also easy to be applied to other nonlinear
differential difference equation arising in physics.
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1 Introduction

The nonlinear differential-difference equations (DDEs) have been the focus of many
nonlinear studies. The DDEs play an important role in modeling complicated physical
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phenomena such as particle vibrations in lattices, currents row in electrical networks,
and pulses in biological chains. The solutions of these DDEs can provide numer-
ical simulations of nonlinear partial differential equations, queuing problems, and
discretizations in solid state and quantum physics. Since the works of Fermi et al.
in the 1950s [1], there were quite a number of research works developed during the
last decades on DDEs. For instances, Levi and his coworkers analyzed the condition
for existence of higher symmetries for a class of DDEs [2], [3], Yamilov and his co-
workers [4], [5] outstanding contribution to the classification of DDEs, integrability
tests and connections between integrable PDEs and DDEs [6 − 23]. The Adomian
Decomposition Method (ADM) [24−30] has been used to solve effectively, easily, and
accurately a large class of linear and nonlinear equations, solutions partial, determin-
istic or stochastic differential equations with approximates which converge rapidly.
The paper has been organized as follows. In Section 2, we extended the ADM to solv-
ing nonlinear differential-difference equations with initial condition, an brief outline of
the methodology is presented. In Section 3, two models arising in physics are chosen
to illustrate the validity of the Adomian decomposition method in solving NDDE(s).
Finally, discussions and conclusions are presented in Section 4.

2 Methods and its Applications

For a given the nonlinear differential-difference equation as

L(un) + R(un, un+1, un−1 + ...........) + N(un, un+1, un−1, .......) = g, (2.1)

with prescribed conditions, where un is the unknown function, L is the highest order
derivative which is assumed to be n easily invertible, R is a linear differential operator
of less order than L, N(un, un+1, un−1, ...) represents the nonlinear term and gn is
the source term. Assuming the inverse operator L−1 exists and it can be taken as the
define integral with respect to from t0 to t,i.e.

L−1 =
∫ t

t0

(.)dt (2.2)

Applying L−1 to both sides of (2.1) with initial conditions,we have

un = f(x)− L−1[R(un, un+1, un−1 + ...) + N(un, un+1, un−1, ...)], (2.3)

where the function f(x) represents the term arising from integrating the source term
g and from using the given initial or boundary conditions,all are assumed to be pre-
scribed.

The Adomian decomposition,assumes a series that the unknown function un(t)
can be expressed by an infinite series as

un(t) =
∞∑

m=0

um,n(t) (2.4)
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The nonlinear operator N(un, un+1, un−1, ...) can be decomposed by an infinite
series of polynomials given by

N(un, un+1, un−1, ...) =
∞∑

m=0

Am,n, (2.5)

where Am,n are the Adomian’s polynomials. To determine the Adomian polynomials,
we introduce a parameter λ and (2.5) becomes

N(
∞∑

m=0

um,n(t)λm,
∞∑

m=0

um,n+1(t)λm,
∞∑

m=0

um,n−1(t)λm, ...) =
∞∑

m=0

Am,nλm, (2.6)

Am,n =
1
m!

[
dm

dλm
N(

∞∑
m=0

um,n(t)λm,
∞∑

m=0

um,n+1(t)λm,
∞∑

m=0

um,n−1(t)λm, ...)]λ=0,

(2.7)

This formula is easy to compute by using Maple software or by setting a computer
code to get as many polynomials as we need in the calculation of the numerical as well
as explicit solutions. Knowing the zeros component un(0), the remaining components
where n > 1 can be determined by using recurrence relation

u0(n) = f(x), (2.8)

um(n + 1, t) = −L−1[R(um,n, um,n+1, um,n−1, ...) + Am,n],m > 0 (2.9)

For the numerical computation,we consider the expression as follows:

φn,k =
k∑

m=0

um,n, (2.10)

denotes the n-term approximation to un(t).

3 Applications

To illustrate the effectiveness and the advantages of the proposed method. Here, we
consider two models of nonlinear differential-difference equations of special interest
physically, namely, the Hybrid nonlinear differential difference equation and Relativis-
tic Toda coupled nonlinear differential-difference equation.
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3.1 The Hybrid nonlinear differential difference equation

Example 1.Let us first consider the Hybrid nonlinear differential difference equation
[20]

∂un

∂t
= (α− u2

n)(un+1 − un−1), (3.11)

subject to the initial condition

un(0) =
√
−αtanh(d/2)(1 + cosh(d))sech(dn− 2), (3.12)

where d is constant. The Hybrid nonlinear difference (3.11) describe the discretization
of the KdV and modified KdV equations. Applying ADM, (3.11) can be rewritten in
the operator form.

Fig.[1.a]: Approximate solution for 5-order approximation of un(t) obtained by Ado-
mian decomposition method with a fixed values of d = 0.1, t = 15 and α = −0.1 for
a different values of n.

Fig.[1.b]:Exact solution of un(t), (3.18) with a fixed values of d = 0.1, t = 15 and
α = −0.1 for a different values of n.
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Fig.[2.a]: Approximate solution for 5-order approximation of un(t) obtained by
Adomian decomposition method with a fixed values of d = 0.5, t = .1 and c = −0.1
for a different values of n.

Fig.[2.b]: Exact solution of un(t), (3.32) with a fixed values of d = 0.5, t = .1
and c = −0.1 for a different values of n.

Fig.[2.c]: Approximate solution for 5-order approximation of vn(t) obtained by
Adomian decomposition method with a fixed values of d = 0.5, t = .1 and c = −0.1
for a different values of n.
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Fig.[2.d]: Exact solution of vn(t), (3.33) with a fixed values of d = 0.5, t = .1
and c = −0.1 for a different values of n.

L[un(t)] = [R(u) + N(u)], (3.13)

where L = ∂
∂t is a linear operator R(u) = α[u(n + 1)− u(n− 1)] is the remainder of

the linear operator.The nonlinear term is given by N(u) = −u2(n)(u(n + 1)− u(n−
1)).Opeating with L−1 on to both sides of (3.13) with initial condition (3.12) gives

un(t) = un(0) + L−1[R(u) + N(u)] (3.14)

The Adomian decomposition method assumes an infinite series solutions of the
unknown function un(t) in the form

un(t) =
∞∑

m=0

um(n, t) (3.15)

It is to be noted that the subscript m does not stand for the m-th lattice any more, it
means the m-th element is the decomposition series. Similarly, the nonlinear operator
N(u) can be decomposed as

N(u) =
∞∑

m=0

Am(u0, u1, u2, ...., um), (3.16)

where Am are the appropriate Adomian polynomials, which is defined as [24, 25]. The
first four components of Am are given by [21].

According to (3.14), (3.15) and (3.16), the first few components of the decompo-
sition series um(n, t) are readily found to be

u0(n) =
√
−αtanh(d/2)(1 + cosh(d))sech(dn− 2),

u1(n, t) = L−1[α[u0(n + 1, t)− u0(n− 1, t)] + A0],

u2(n, t) = L−1[α[u1(n + 1, t)− u1(n− 1, t)] + A1],

u3(n, t) = L−1[α[u2(n + 1, t)− u2(n− 1, t)] + A2],

um+1(n, t) = L−1[α[um(n + 1, t)− um(n− 1, t)] + Am], (3.17)

and so on. The rest of the components of um(n, t) can be directly evaluated via (3.17)
in a similar way. It is worth noting that the accuracy of the Adomian approach is
significantly enhanced by calculation as many more terms as we like. This may be
made but only at the expense of a considerable increase in the complexity of analysis.
The Explicit forms for u1,u2,u3, ..... are written in Appendix A.
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To verify numerically whether the proposed methodology lead to high accuracy, we
evaluate the numerical solutions using the fourth-term approximation and compared
it with the exact analytical solution. So, we could get fourth-order approximation
φ5(n) =

∑5
m=0 um(n, t). Figs.[1.(a,b)] shows comparisons between the numerical

approximate solutions obtained by ADM with a fixed values of d, t for a different
values of n and exact solutions [20], which proofs the two solutions are quite good.
We could say that solution to the Hybrid nonlinear differential difference equation
obtained by ADM agree well with the exact solutions [20]

un(t) =
√
−αtanh(d/2)(1 + cosh(d))sech[dn− 2αtanh(d/2)(1 + coshd)t− 2]. (3.18)

3.2 Relativistic Toda coupled nonlinear differential-difference
equation

Example 2. A second instructive model is the Relativistic Toda coupled nonlinear
differential difference equation [20]

∂un(t)
∂t

= (1 + αun(t))(vn(t)− vn−1(t)), (3.19)

∂vn(t)
∂t

= vn(t)(un+1(t)− un(t) + αvn+1(t)− αvn−1(t)), (3.20)

subject to the initial conditions

un(0) = −1− c1coth(d1) + c1tanh[d1n], (3.21)

vn(0) = c1coth(d1)− c1tanh[d1n], (3.22)

where c1 and d1 are constants. The Toda lattice difference (3.19) and (3.20) describe
vibrations in mass spring lattices with an exponential interation force. Applying
ADM, Eqs. (3.19) and (3.20) can be written in an operator form

L[un(t)] = [v(n)− v(n− 1)] + αM [u(n), v(n), v(n− 1)], (3.23)

L[vn(t)] = N [u(n), u(n + 1), v(n), v(n + 1), v(n− 1)], (3.24)

Operating with L−1 on to both sides of (3.23) and (3.24) with initial conditions
(3.21) and (3.22) gives

un(t) = un(0) + L−1[v(n)− v(n + 1) + αM [(u(n), v(n), v(n− 1)], (3.25)

vn(t) = vn(0) + L−1[N(u(n), u(n + 1), v(n), u(n + 1))] (3.26)
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The nonlinear operators M [u(n), v(n), v(n − 1)] = u(n)(v(n) − v(n − 1)) and
N [(u(n), u(n + 1), v(n), u(n + 1)] = v(n)[u(n + 1)− u(n) + αv(n + 1)−αv(n− 1)] are
given by the infinite series of Adomian polynomial

M(un, vn, vn−1) =
∞∑

m=0

Am, (3.27)

N(un, un+1, vn, vn+1, vn−1) =
∞∑

m=0

Bm, (3.28)

where Am and Bm are the approximate Adomian polynomials which are generated ac-
cording to algorithms determined. The first four components Am and Bm of Adomain
polynomials are written in Appendix B.

The Adomian decomposition method assumes an infinite series solutions of the
unknown functions un(t) and vn(t) in the form

un(t) =
∞∑

m=0

um(n, t), (3.29)

vn(t) =
∞∑

m=0

vm(n, t) (3.30)

Inserting (3.29) and (3.30) into (3.25) and (3.26) gives

u0(n) = −1− c1coth(d1) + c1tanh[d1n],

v0(n) = c1coth(d1)− c1tanh[d1n],

um+1(n, t) = L−1[vm(n, t)− vm(n + 1, t) + Am],m > 0

vm+1(n, t) = L−1[Bm],m > 0 (3.31)

With the aid of the zeroth components of un,0 and vn,0, by all terms arise from
the initial conditions (3.21) and (3.22),and as a result, the remaining components
um(n, t) and vm(n, t), m > 0 can be determined. The Explicit forms for u1,u2,u3 and
v1,v1 and v1 are written in Appendix C.

To verify numerically whether the proposed methodology lead to high accuracy, we
evaluate the numerical solutions using the fourth-term approximation and compared
it with the exact analytical solution. So, we could get fourth-order approximation
φ5(n) =

∑5
m=0 um(n, t). Figs. [2.(a-d)] shows comparisons between the numerical

approximate solutions obtained by ADM and exact solutions [20], which proofs the
two solutions are quite good. It is to be noted that solution to Relativistic Toda
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coupled nonlinear differential-difference equation obtained by ADM agree well with
the exact solutions [20]

un(t) = −1− c1coth(d1) + c1tanh[d1n + c1t], (3.32)

vn(t) = c1coth(d1)− c1tanh[d1n + c1t], (3.33)

where c1 and d1 are constants to be determined later.

4 Summary and Discussion

In summary, we successfully apply the Adomian Decomposition method to solve
nonlinear NDDEs. As an illustrative example, we employ DDEs-ADM to the Hy-
brid nonlinear differential difference equation and Relativistic Toda coupled nonlin-
ear differential-difference equation. The comparison are made between the solutions
obtained by Adomian Decomposition Method with exact solution. The comparison
shows the validity of Adomian Decomposition Method applied to nonlinear differ-
entialdifference equation. Since the numerous DDEs in many fields of scientific and
the hardness of solving them, this DDEs-ADM will become a much more interesting
method to solving nonlinear DDEs in science and engineering.

The results reported here provide further evidence of the usefulness of Adomain
decomposition (AMD) method. The ADM was clearly very efficient and powerful
technique in finding the solutions of the nonlinear differential difference equations.
It is clear that this method avoids linearization and biologically unrealistic assump-
tions,and provides an efficient numerical solution.

A clear conclusion can be drawn from the numerical results that the ADM algo-
rithm provides highly accurate numerical soultions without spatial discretization for
nonlinear differential equations. It is also worth noting that the advantage of the
decomposition methodology displays a fast convergence of the solutions.

Finally, we point out that the ADM confirm the correctness of those obtained by
other methods. The method is straightforward and concise, and it can also be applied
to other nonlinear differential difference equations in mathematical physics. This is
our task in future work.
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