
Mathematics Scientific Journal

Vol. 7, No. 1, (2011), 1-10
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Abstract

Let R be a commutative noetherian ring. We study the behavior of injective
and flat dimension of R-modules under the functors HomR(-,-) and -⊗R-.
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1 Introduction

Throughout this note, rings are commutative noetherian with identity, modules are uni-
tary and A is an abelian category. Homological dimensions are most important invari-
ants of modules in commutative algebra. The necessary condition to the definition of
dimensions (injective, flat, projective,...) is the existence of the homological resolutions.
Homological algebra, as a connected system of notions and results, was first develop for
categories of modules by Cartan and Eilenberg in [2] and was immediately generalized
by Buchsbaum in [1] to exact categories. The generalization was an important since
it was covered to large classes of Grothendieck categories other than the category of
modules, for example the category of sheaves, the category of quasi-coherent sheaves,
and the category of chain complexes of a given Grothendieck category, for more details
see, [3], [4], [5] and [7]. This generalization is not sufficient to cover all the potential,
or even all the actual, applications of homological algebra. This first became apparent
to the author in connection with studies in the homotopy category of chain complexes
of modules. However such categories as the category of Banach spaces and continuous
linear maps, or the category of abelian varieties over a field of non-zero characteristic,
ought clearly to have homological algebra. But they are not exact category. The notion
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of an abelian category is grounded on an additive category, i.e, a category in which maps
can be added. In such category exactness can be defined, as well as the notions of kernel,
image and cokernel.

2 Notations and Recollections

First we want to fix some notations and recall the most important definitions and facts.

Definition 2.1. An object P of A is called projective if it satisfies the following universal
lifting property:
Let g : B −→ C be a surjection and h : P −→ C be a morphism, then there is at least
one morphism f : P −→ B such that h = g ◦ f .

Let A = R-Mod be the category of all R-module. We can see that a projective module
is a projective object of A. The notion of projective module first appeared by Cartan
and Eilenberg in [2]. It is easy to see that free R-modules are projective(lift a basis)
and direct summand of free R-modules are also projective modules. So a R-module is
projective if and only if it is a direct summand of a free module. The category A has
enough projective if for every object A of A there is a surjection P −→ A, where P is a
projective object of A. There is an another characterization of projective objects in the
category A.
An object M is a projective object if and only if the covariant functor HomR(M ,-) is an

exact functor, i.e, for every short exact sequence 0 // A // B // C // 0 of objects
of A the following sequence of abelian groups is exact.

0 // HomA(M,A) // HomA(M,B) // HomA(M,C) // 0

Definition 2.2. Let M be an object of A. A projective resolution of M is a chain
complex P• with Pi = 0 for each i < 0, together a morphism P0 −→ M such that the
augmented complex

· · · // P2
// P1

// P0
// M // 0

is an acyclic complex.

The dual of projective object in the opposite category Aop is called injective object
in the category A. So the concept of injectivity in A can be defined as follows.

Definition 2.3. An object I of A is called injective if it satisfies the following universal
lifting property:
Let g : B −→ C be an injection and h : B −→ I be a morphism, then there is at least
one morphism f : C −→ I such that h = f ◦ g.

The category A has enough injective if for any object A of A there is an injection
A −→ I with I is injective. the notion of injective module was invented by R. Bear in
1940, long before projective modules were introduced. A R-module I is called injective
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if and only if for every ideal J of R, every homomorphism J −→ I can be extended to a
homomorphism R −→ I. We know that the definition of injective R-modules is dual to
the definition of projective R-modules. So one can deduce the following result.

Proposition 2.4. [8, Lemma 2.3.4] Let I be an object of A. Then the following are
equivalent
(i) I is an injective object of A.
(ii) I is a projective object of Aop.
(iii) The contravariant functor HomA(-,I) is exact, that is, it takes short exact sequence
in A to short exact sequence of abelian groups.

Definition 2.5. Let M be an object of A. An injective resolution of M is a cochain
complex I• with Ii = 0 for each i < 0, together a morphism M −→ I0 such that the
augmented complex

0 // M // I0 // I1 // I2 // · · ·

is an acyclic complex.

It is a well-known that any Grothendieck category has enough injective. For example
the category R-Mod is a Grothendieck category and so it has enough injective.

Proposition 2.6. [8, Lemma 2.3.6] If A has enough injective, then every object of A
has injective resolution.

3 Left and Right Derived Functors

Let F : A −→ B be a covariant right exact functor of abelian categories. If A has enough
projective, we can construct the left derived functors LiF (i > 0) of F as follows. If A is
an object of A, choose (once and for all) a projective resolution P• −→ A and define

LiF = Hi(F (P•)).

Note that since F (P1) // F (P0) // F (A) // 0 is exact, we have L0F (A) ∼= F (A).

It is well-known that for each i ≥ 0, LiF is an additive functor of abelian categories. For
given R-modules A and B, let P• −→ B be a projective resolution of B. Consider the
covariant right exact functor A⊗R-, its right derived functors are called Tor groups. So

TorRi (A,B) = Li(A⊗R B) = Hi(A⊗R P•).

We know that the notion of flat R-module can be characterized by Tor groups via
the following properties.

Proposition 3.1. [8, Proposition 3.2.1] Let A be a R-module. Then the following are
equivalent.
(i) A is flat.
(ii) TorRi (A,B) vanishes for all i 6= 0 and all B.
(iii) TorR1 (A,B) vanishes for all B.
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Let F : A −→ B be a right exact functor of abelian categories. If A has enough
injective then we can construct the right derive d functors RiF (A)(i ≥ 0) of F as follows.
For this purpose choose an injective resolution A −→ I• and define

RiF (A) = Hi(F (I•)).

The sequence 0 // F (A) // F (I0) // F (I1) is exact so we have R0F (A) ∼= F (A).

We know that the category of R-modules has enough injective. Therefore the following
definition is well-defined.

Definition 3.2. Let A and B be R-modules. The right derived functors of covariant
left exact functor HomR(A,-) are called Ext groups, i.e

ExtiR(A,B) = RiHomR(A, )(B).

In particular, Ext0R(A,B) = HomR(A,B). It is well-known the injective and projec-
tive objects can be characterized by Ext groups.

Proposition 3.3. [8, Proposition 2.5.1] The following conditions are equivalent;.
(i) B is an injective R-module.
(ii) HomR(-,B) is an exact functor.
(iii) ExtiR(A,B) vanishes for all i > 0 and all R-module A.
(iv) Ext1R(A,B) vanishes for all R-module A.

The vanishing of Ext group with respect to the first variable characterizes projective
R-modules.

Proposition 3.4. [8, Proposition 2.5.2] The following conditions are equivalent;.
(i) A is an projective R-module.
(ii) HomR(A,-) is an exact functor.
(iii) ExtiR(A,B) vanishes for all i > 0 and all R-module B.
(iv) Ext1R(A,B) vanishes for all R-module B.

4 Homological dimensions in the category of R-modules

An R-module F is called flat if the functor F⊗R- is an exact functor. We know that all
projective R-modules are flat. So every R-module is a homomorphic image of some flat
R-modules. Thus for a given R-module M , there is a flat resolution

· · · // F2
// F1

// F0
// M // 0.

Now we recall the definition of important homological invariants of R-modules. This
invariants can be defined by the length of homological resolutions.

Definition 4.1. Let A be a R-module.
(i) The projective dimension pd(A) is the minimum of integers n (if it exists) such that
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there is a projective resolution of length n.
(ii) The injective dimension id(A) is the minimum of integers n (if it exists) such that
there is an injective resolution of length n.
(iii) The flat dimension fd(A) is the minimum of integers n (if it exists) such that there
is a flat resolution of length n.
If there exists no finite resolution, we put pd(A), id(A) or fd(A) equals to +∞.

Lemma 4.2. Let S be a flat R-algebra and M , N be R-modules. If M is finitely gener-
ated, then

HomR(M,N)⊗R S ∼= HomR(M ⊗R S,N ⊗R S).

Proof. The R-module M is finitely generated, so there is an exact sequence

F1
// F0

// M // 0

of R-modules with F1 and F0 are finitely generated free R-modules. Therefore we have
the following commutative diagram with exact rows

0 // HomR(M,N) //

ϕ

��

HomR(F0, N)⊗R S //

ϕ

��

HomR(F0, N)⊗R S

ϕ

��
0 // HomR(M ⊗R S,N ⊗R S) // HomR(M ⊗R S,N ⊗R S) // HomR(M ⊗R S,N ⊗R S)

where the maps ϕ are given by ϕ(f⊗s)(x⊗ t) = s(f(x)⊗ t). But the last two vertical
morphisms are isomorphisms since F0 and F1 are finitely generated free R-modules.
Hence the first ϕ is also an isomorphism.

Theorem 4.3. Let S be a flat R-algebra and M , N be R-modules. If M is finitely
generated then

ExtiR(M,N)⊗R S ∼= ExtiR(M ⊗R S,N ⊗R S).

Proof. The R-module M has a projective resolution

P• : · · · // P2
// P1

// P0
// M // 0

with each Pi is finitely generated. In the other hand

P• ⊗R S : · · · // P2 ⊗R S // P1 ⊗R S // P0 ⊗R S // M ⊗R S // 0

is a projective resolution of the S-modules M ⊗R S and hence by Lemma 4.2 we have
the following isomorphisms

ExtiR(M,N) ∼= Hi(HomR(P•, N))⊗R S
∼= Hi(HomR(P• ⊗R S,N ⊗R S))
∼= ExtiR(M ⊗R S,N ⊗R S).
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Definition 4.4. An injective R-module E is said to be an injective cogenerator for R-
modules if for each R-module M and non-zero element x ∈M , there is f ∈ HomR(M,E)
such that f(x) 6= 0.

Equivalently E is an injective cogenerator if and only if HomR(M,E) 6= 0 for any
non-zero R-module M . The group Q/Z is an injective cogenerator for abelian groups.
So that M+ = HomZ(M,Q/Z) for any non-zero R-module M . Moreover, if M is any R-
module then HomZ(M,R+) ∼= M+. Hence R+ is an injective cogenerator for R-modules
since R+ is injective. Thus the category R-Mod has an injective cogenerator.

Theorem 4.5. Let F be an R-module. Then the following are equivalent.
(i) F is a flat R-module.
(ii) HomR(F,E) is an injective R-module for any injective R-module E.
(iii) HomR(F,E) is an injective R-module for any injective cogenerator E.

Proof. (i) =⇒ (ii) Let

0 // A // B // C // 0

be an exact sequence of R-modules, since F is flat we have the exact sequence of R-
modules

0 // F ⊗R A // F ⊗R B // F ⊗R C // 0

. Let E be an injective R-module then we deduce the following exact sequence

0 // HomR(F ⊗R A,E) // HomR(F ⊗R B,E) // HomR(F ⊗R C,E) // 0 .

So by adjointness of Hom(-,-) and -⊗R- we have the following short exact sequence

0 // HomR(A,HomR(F,E)) // HomR(B,HomR(F,E)) // HomR(C,HomR(F,E)) // 0 .

Then HomR(F,E) is an injective R-module.
(ii) =⇒ (iii) is trivial.

(iii) =⇒ (i) Let 0 // A // B // C // 0 be an exact sequence of R-modules, since
HomR(F,E) is an injective R-module we have the exact sequence of R-modules

0 // HomR(A,HomR(F,E)) // HomR(B,HomR(F,E)) // HomR(C,HomR(F,E)) // 0 .

So by adjointness of Hom(-,-) and -⊗R- we have the following short exact sequence

0 // HomR(F ⊗R A,E) // HomR(F ⊗R B,E) // HomR(F ⊗R C,E) // 0 .

Since E is an injective cogenerator we deduce the following exact sequence

0 // F ⊗R A // F ⊗R B // F ⊗R C // 0 .

Then F is flat.



The behavior of homological dimensions 7

Corollary 4.6. Let F be a flat R-module. Then the following are equivalent.
(i) F is flat.
(ii) The character module F+ is an injective R-module.

Proof. Note that R+ is an injective cogenerator.

Theorem 4.7. Let R be a ring, A and B be R-module, C an injective R-module. Then
there is a natural homomorphism

A⊗R HomR(B,C) −→ HomR(HomR(A,B), C)

defined by τ(a⊗ f)(g) = f(g(a)), where a ∈ A, f ∈
HomR(B,C), and g ∈ HomR(A,B). If A is a finitely generated R-module then τ is an
isomorphism.

Proof. Since A is finitely generated R-module, then there is an exact sequence

F1
// F0

// M // 0

of R-modules with F1 and F0 are finitely generated free R-modules. Therefore we have
the following commutative diagram with exact rows

F1 ⊗R HomR(B,C) //

��

F1 ⊗R HomR(B,C) //

��

F1 ⊗R HomR(B,C)

��

// 0

HomR(HomR(F1, B), C) // HomR(HomR(F0, B), C) // HomR(HomR(A,B), C) // 0.

But the first two vertical morphisms are isomorphisms. So τ is an isomorphism.

Theorem 4.8. Let R be a ring, A and B be R-module, C an injective R-module. Then
the natural homomorphism

TorRi (A,HomR(B,C)) ∼= HomR(ExtiR(A,B), C).

defined by τ(a⊗ f)(g) = f(g(a)) is an isomorphism where a ∈ A, f ∈ HomR(B,C),
and g ∈ HomR(A,B). If A is a finitely generated R-module then τ is an isomorphism.

Proof. The result followed by the fact that the R-module A has a projective resolution
by finitely generated projective R-module.

Theorem 4.9. Let A be a finitely generated R-module and B be a R-module, C be a flat
R-module. Then the natural homomorphism

HomR(A,B)⊗R C −→ HomR(A,B)⊗R C).

defined by τ(f ⊗ c)(a) = f(a)⊗ c is an isomorphism.

Proof. The proof is similar to the proof of Theorem 4.8.
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Theorem 4.10. Let A be a finitely generated R-module and B be a R-module, C be a
flat R-module. Then the natural homomorphism

ExtiR(A,B)⊗R C ∼= ExtiR(A,B)⊗R C).

Proof. The proof is similar to the proof of Theorem 4.9.

Theorem 4.11. Let E be a R-module. Then the following are equivalent.
(i) E is an injective R-module.
(ii) HomR(E,E′) is a flat R-module for all injective R-module E′.
(iii) HomR(E,E′) is a flat R-module for all injective cogenerator E′.
(iv) E ⊗R F is an injective R-module for all flat R-module F .
(v) E ⊗R F is an injective R-module for all faithfully flat R-module F .

Proof. (i) =⇒ (ii) Let I be an ideal of R. Then I is finitely generated since R is
noetherian. But E is injective so we have the following exact sequence

0 // HomR(HomR(I, E), E′) // HomR(HomR(R,E), E′),

id and hence

0 // HomR(E,E′)⊗R I // HomR(E,E′).

Therefore HomR(E,E′) is a flat R-module.
(ii) =⇒ (iii) and (iii) =⇒ (iv) are trivial.
(iii) =⇒ (i) Follows by reversing the proof (i) =⇒ (ii) and using the fact that E is an
injective cogenerator.
(i) =⇒ (iv) Let I be an ideal of R. Then we have the following exact sequence

HomR(R,E)⊗R F // HomR(I, E)⊗R F // 0.

Now let F be a flat R-module then by Theorem 4.9 we have the following short exact
sequence

HomR(R,E ⊗R F ) // HomR(I, E ⊗R F ) // 0.

Hence (iv) follows.
(v) =⇒ (i) Follows by reversing the proof (i) =⇒ (iv) above and using the fact that F is
faithfully flat R-module.

Corollary 4.12. E is an injective R-module if and only if the character module E+ is
a flat R-module.

Now using the above theorems and we get the main results of this note.

Theorem 4.13. Let M be a R-module and E be a injective cogenerator. Then fd(M) =
id(HomR(M,E)) and id(M) = fd(HomR(M,E)).
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Proof. Let M be an R-module and

· · · // F2
// F1

// F0
// M // 0

be a flat resolution of M . Thus we get an injective resolution

0 // HomR(M,E) // HomR(F0, E) // HomR(F1, E) // HomR(F2, E) // · · ·

of HomR(M,E). So one can deduce that fd(M) = id(HomR(M,E)). Now consider
the injective resolution

0 // M // I0 // I1 // I2 // · · ·

of M . By applying the functor HomR(-,E) we get a flat resolution

· · · // HomR(I2, E) // HomR(I1, E) // HomR(I0, E) // HomR(M,E) // 0

of HomR(M,E). So it is easy to see id(M) = fd(HomR(M,E)).

Theorem 4.14. Let M be a R-module and F be a faithfully flat R-module. Then
id(M) = id(M ⊗R F ).

Proof. Consider the injective resolution

0 // M // I0 // I1 // I2 // · · · .

Thus consider the injective resolution

0 // M ⊗R F // I0 ⊗R F // I1 ⊗R F // I2 ⊗R F // · · ·

is an injective resolution of M ⊗R F . So the result follows.
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