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Abstract
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1 Introduction

Since 1965 where Zadeh [28] presented fuzzy logic, up to now, this
logic is applicable in many fields of sciences. An equation may ap-
pears in many fields of sciences, Some works have been done on
equations and relational equations [27,24,26]. Recently Zadeh in-
troduced some properties of a fuzzy equation [29].

There are many applications that we need to find an n-th root of
a fuzzy number. One my reduce the problem of solving a fuzzy al-
gebraic equation to finding the n-th root of a fuzzy number. Some
fuzzy equations were checked in [8–13]. There are some works on
fuzzy equations in [12]. All these methods compute the roots of
an algebraic fuzzy equation analytically but there aren’t any ana-
lytically solution for algebraic fuzzy equations with degree greater
than 3. In the recent years we introduced a new method to solve
an algebraic equations, numerically [5,6].

In this paper we want to find the n-th root of a fuzzy number,
numerically.

The structure of this paper is as follows. In Section 2 we introduce
an algebraic fuzzy equation of degree n, with crisp coefficients and
fuzzy variable. In Section 3 an algorithm is presented to find the
n-th root of a fuzzy number with nonnegative root, numerically. In
Section 4 we extend the method for negative roots a fuzzy number.
In Section 5 we use the algorithm for the roots of a general fuzzy
number by approximating the both right hand side and the roots.
There are some examples in Section 6.

2 Preliminaries

Let F (R) be the set of all real fuzzy numbers (which are normal,
upper semicontinuous, convex and compactly supported fuzzy sets).
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The parametric form of a fuzzy number is shown by ṽ = (v(r), v(r)),
where functions v(r) and v(r); 0 ≤ r ≤ 1 satisfy the following
requirements [21,25]:

(1) v(r) is monotonically increasing left continuous function.
(2) v(r) is monotonically decreasing left continuous function.
(3) v(r) ≤ v(r) , 0 ≤ r ≤ 1.

Let ṽ = (v(r), v(r)), ũ = (u(r), u(r)) ∈ F (R). Some results of
applying fuzzy arithmetic on fuzzy numbers ṽ and ũ are as follows:

• x > 0 : xṽ = (xv(r), xv(r));
• x < 0 : xṽ = (xv(r), xv(r));
• ṽ + ũ = (v(r) + u(r), v(r) + u(r));
• ṽ − ũ = (v(r)− u(r), v(r)− u(r)).

A fuzzy number with left right (LR) form is introduced in [16].

Definition 2.1 A fuzzy set ṽ is called a generalized left right fuzzy
number, if its membership function satisfy the following [1]

µṽ(x) =



Lṽ(x) , l ≤ x ≤ ml,

1 , ml ≤ x ≤ mr,

Rṽ(x) , mr ≤ x ≤ r,

0 , otherwise,

where Lṽ(x) is the left spread membership function that is an in-
creasing continuous function on [l,ml] and Rṽ(x) is the right spread
membership function that is a decreasing continuous function on
[mr, r].

A fuzzy number ṽ is nonnegative (non-positive) if for x < 0 (x > 0)
we have µṽ(x) = 0, equivalently if v ≥ 0 (v ≤ 0) on [0, 1]. Also a
fuzzy number ṽ is positive (negative) if for x ≤ 0 (x ≥ 0) we have
µṽ(x) = 0, equivalently if v > 0 (v < 0) on [0, 1]. So we have
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• If ṽ and ũ be nonnegative fuzzy numbers then
ṽũ = (v(r)u(r), v(r)u(r)).
• If ṽ and ũ be non-positive fuzzy numbers then
ṽũ = (v(r)u(r), v(r)u(r)).

Definition 2.2 P̃n(x̃) is a fuzzy polynomial from degree at most
n ≥ 1 with crisp coefficients, if there are some crisp numbers
a1, . . . , an, such that,

P̃n(x̃) =
n∑
j=1

ajx̃
j. (2.1)

Let n be a positive integer. An algebraic fuzzy equation with fuzzy
variable and crisp coefficients from degree n, is defined by

anx̃
n + . . .+ a1x̃ = b̃, (2.2)

where a1, . . . an ∈ R and an 6= 0. i.e. an equation P̃n(x̃) = b̃, where
P̃n(x̃) is a polynomial from degree n.

Definition 2.3 We say that a fuzzy number ṽ has ”m−degree poly-
nomial form” if there exist two polynomials pm(r) and qm(r), from
degree at most m; such that ṽ = (pm(r), qm(r)).

Let PFm(R) be the set of all m−degree polynomial form fuzzy
numbers.

It has been shown in [1] that some kind of generalized LR fuzzy
numbers can be approximated by unique m−degree polynomial
form fuzzy numbers.

Let F : Rs −→ Rd be a function such that maps Y T = (y1, . . . , ys)
to F T (Y ) = (F1(Y ), . . . , Fd(Y )), where d ≥ s. To solve the equa-
tion F (Y ) = 0 by Gauss-Newton method [19,20] we take A(Y ) =

[∂Fi(Y )
∂yj

], i = 1, . . . , d and j = 1, . . . , s. Now let Y (0) be an ini-

tial vector. Thus to improve this guess one must solve the system
A(Y (k))H(k) = −F (Y (k)) and taking Y (k+1) = Y (k) +H(k). We solve
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this system by least square method as follows

A(Y (k))TA(Y (k))H(k) = −A(Y (k))TF (Y (k)).

Some convergence conditions and uniqueness of the solution were
proposed in [14,15,23].

3 Roots of a fuzzy number

In this section we consider the following equation

x̃n = b̃, (3.1)

where x̃ is a nonnegative single modal value fuzzy number belonging
to PFm(R), and b̃ is a single modal value fuzzy number belonging
to PFl(R), such that l ≤ nm, also we have

x =
m∑
i=0

αir
i , x =

m∑
i=0

βir
i

and

b =
l∑

i=0

bir
i , b =

l∑
i=0

bir
i.

For the equation (3.1) we have

x̃n = b ,

x̃
n

= b .

Thus we have

x̃n =

(
m∑
i=0

αir
i

)n
=

l∑
i=0

bir
i , (3.2)

x̃
n

=

(
m∑
i=0

βir
i

)n
=

l∑
i=0

bir
i. (3.3)
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Let for i = 0, 1, . . . , nm; Li and Ui be the coefficients of ri in (3.2)
and (3.3) respectively, therefore

nm∑
i=0

Li(α0, . . . , αm, β0, . . . , βm)ri = 0,

nm∑
i=0

Ui(α0, . . . , αm, β0, . . . , βm)ri = 0,

thus

Li(α0, . . . , αm, β0, . . . , βm) = 0 , i = 0, 1, . . . , nm,

Ui(α0, . . . , αm, β0, . . . , βm) = 0 , i = 0, 1, . . . , nm.

Defining

Z(α0, . . . , αm, β0, . . . , βm) =
∑m
i=0 αi −

∑m
i=0 βi, (3.4)

we have


Li(α0, . . . , αm, β0, . . . , βm) = 0 , i = 0, 1, . . . , nm,

Ui(α0, . . . , αm, β0, . . . , βm) = 0 , i = 0, 1, . . . , nm,

Z(α0, . . . , αm, β0, . . . , βm) = 0,

(3.5)

which is a system of nonlinear equations with d = 2nm+3 equations
and s = 2m + 2 unknowns. We solve this system by an iterative
Gauss-Newton method.
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Defining

A =



∂L0

∂α0
. . . ∂L0

∂αm

∂L0

∂β0
. . . ∂L0

∂βm
...

. . .
...

...
. . .

...

∂Lnm

∂α0
. . . ∂Lnm

∂αm

∂Lnm

∂β0
. . . ∂Lnm

∂βm

∂U0

∂α0
. . . ∂U0

∂αm

∂U0

∂β0
. . . ∂U0

∂βm
...

. . .
...

...
. . .

...

∂Unm

∂α0
. . . ∂Unm

∂αm

∂Unm

∂β0
. . . ∂Unm

∂βm

∂Z
∂α0

. . . ∂Z
∂αm

∂Z
∂β0

. . . ∂Z
∂βm



,

B = −



L0

...

Lnm

U0

...

Unm

Z



, Y =



α0

...

αm

β0
...

βm


, H =



h1

h2
...

h2m+2


,

we have

AH = B. (3.6)

In the above system we used A and B instead of A(Y ) and B(Y ),
respectively. We solve this system with an initial vector Y (0), by
least square method and then we improve this guess. We find the
sequence {Y (k)} as follows. With an initial vector Y (0), in iteration
k, we compute A(k) and B(k) and solve A(k)H(k) = B(k) by least
square method as follows

A(k)TA(k)H(k) = A(k)TB(k), (3.7)

and improve the solution by

Y (k+1) = Y (k) +H(k). (3.8)
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Again we used A(k) and B(k) instead of A(Y (k)) and B(Y (k)), re-
spectively.

If {Y (k)} converges to a Y ∗; then x̃∗ is a Gauss-Newton solution of
( 2.2) where

x∗ =
n∑
i=0

α∗
i r
i , x∗ =

n∑
i=0

β∗
i r
i.

Thus we use the following algorithm:

ALGORITHM

(1) Specify an initial vector Y (0).
(2) k = 0.
(3) Compute A(k) and B(k).

(4) Compute H(k) from A(k)TA(k)H(k) = A(k)TB(k).
(5) Y (k+1) = Y (k) +H(k).
(6) If the convergence condition is yield, then end.
(7) k = k + 1, and go to step 3.

By a lemma we show that for n = 1, the matrix ATA is nonsingular.

Lemma 3.1 Let n = 1 i.e. x̃ = b̃, where x̃, b̃ ∈ PFm(R).In each
iteration, we have

ATA = I2m+2 + V,

and

(ATA)−1 = I2m+2 −
1

(2m+ 3)
V,

such that

V =

 Ψ −Ψ

−Ψ Ψ

 ,
where Ψ = 11T , such that for i = 1, 2, · · · ,m+ 1; 1i = 1.

Proof. The proof is a result of Lemma 3.1 in [6]. �
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For the matrix defined above we have |ATA| = (2m+ 3) [6].

By the following Theorem we show that for a system of linear equa-
tions, the sequence of Gauss-Newton method, will be converged to
the exact solution at the first iteration, with any initial vector.

Theorem 3.1 [6], Let K be a d × s matrix where d > s and
the linear system of equations KY = L has a unique solution. The
sequence of Gauss-Newton method will be converged to the exact
solution of a linear system of equations at the first iteration with
any initial vector.

Theorem 3.2 Let n = 1 i.e. x̃ = b̃, where x̃, b̃ ∈ PFm(R). The
equation has a unique root and with any initial guess, the root will
be obtained at the first iteration.

Proof. From Lemma 3.1, ATA is nonsingular and from Theorem 3.1
the proof is completed. �

Theorem 3.3 If the equation is crisp then the sequence obtains
from the following recurrence equation:

xk+1 = (
n− 1

n
)xk +

b

nxn−1
k

. (3.9)

Proof. The proof is a direct consequence of Theorem 3.4 [6]. �

Lemma 3.2 If the fuzzy equation (3.1) has a root x̃∗ then [x̃∗]1 is
a root of the equation [x̃n]1 = [b̃]1.

Corollary 1 If the equation [x̃n]1 = [b̃]1 has no root, then the fuzzy
equation x̃n = b̃ has no root too.

Lemma 3.3 [22], In each iteration the system (3.7) has a solution.

If the fuzzy equation P̃n(x) = 0̃ has a solution and the initial point
is close to root of the equation then the method has a convergence
sequence.([14,15,19,20,23])
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In the triangular case (m = 1), we have

x = α0 + α1r , x = β0 + β1r,

thus

xn = (α0 + α1r)
n =

n∑
i=0

(
n

i

)
αn−i0 αi1r

i,

therefore we haveLi(α0, α1, β0, β1) =
(
n
i

)
αn−i0 αi1 − b0,

Ui(α0, α1, β0, β1) =
(
n
i

)
βn−i0 βi1 − b0.

(3.10)

4 Negative Roots

Let x̃ be a negative fuzzy number. We know that For the equa-
tion (3.1) we have

x̃
n

= b ,

x̃n = b .

Thus we have

x̃n =

(
m∑
i=0

βir
i

)n
=

l∑
i=0

bir
i , (4.1)

x̃
n

=

(
m∑
i=0

αir
i

)n
=

l∑
i=0

bir
i, (4.2)

and we have a system of nonlinear equations with d = 2nm + 3
equations and s = 2m + 2 unknowns same as, in which for i =
0, 1, . . . , nm; Li and Ui are the coefficients of ri in (4.1) and (4.2),
respectively.

One can do one of the followings:

i Using the Algorithm for two set of equations ( 3.2), (3.3) and
(4.1), (4.2).
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ii Solving the equation
∑n
j=1 aj[x̃

j]1 = [b̃]1 and finding a root t of
it. If t ≥ 0 then using Algorithm for (3.2), (3.3), and otherwise
using it for (4.1), (4.2).

5 Roots of a general fuzzy number

In this section we consider the following equation

x̃n = b̃, (5.1)

where x̃ and b̃ are two single modal value LR fuzzy numbers.

In this case by considering two nonnegative integers m and l ≤ nm;
one can approximate b̃ by b̃l ∈ PFl(R) (we can use the nearest
approximation of b̃ out of PFl(R) [1]) and use the proposed method
for the following equation

x̃nm = b̃l, (5.2)

to find an approximation x̃cm of the exact solution of the main fuzzy
equation (if exists) out of PFm(R).

Choosing m and l is depended on the shape of left and right spread
functions, and their derivation order.

6 Numerical Examples

In this Section the presented examples have been solved by Math-
ematica 8.

Example 6.1 n = 2.

x̃2 = (1 + 4r + 4r2, 16− 8r + r2).
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Fig. 1. positive root

Considering x̃ = (1, 1) and m = 1 after 7 iterations, we have

x̃ = (1.00000000000+2.00000000000r, 4.00000000000−1.00000000000r)

Example 6.2 n = 2.

x̃4 = (1 + 4r + 4r2, 16− 8r + r2).

Considering x̃ = (1, 1) and m = 4 after 11 iterations, we have
x̃ = (x(r), x(r)), where

x(r) = 1.0564 + 0.861r− 0.254r2 + 0.1133r3− 0.0411r4, and x(r) =
2.0000049−0.2499930r−0.0156163r2−0.0019404r3−0.0002806r4.
See Figure 1.

Considering x̃ = (−1,−1) and m = 4 after 11 iterations, we have
x̃ = (x(r), x(r)), where

x(r) = −1.0564−0.861r+0.254r2−0.1133r3+0.0411r4, and x(r) =
−2.0000049+0.2499930r+0.0156163r2+0.0019404r3+0.0002806r4.
See Figure 2.

Example 6.3 n = 2.
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Fig. 2. negative root

x̃3 = (22r, 24−2r).

Considering the nearest 14-degree polynomial polynomial form of
the right hand side, x̃ = (1, 1) and m = 7 after 8 iterations, we
have x̃ = (x(r), x(r)), where

x(r) = 1.+ 0.462098r+ 0.106767r2 + 0.0164457r3 + 0.00189987r4 +
0.000175599r5 + 0.000013478r6 + 9.42607 ∗ 10−7r7,

and

x(r) = 2.51984−1.16441r+0.269037r2−0.0414405r3+0.00478739r4−
0.000442468r5 + 0.0000340191r6 − 2.3661 ∗ 10−6r7.

For this solution the infinity norm of the error functions for left and
right hand sides are 1.4788× 10−6 and 1.0339× 10−6, respectively.

Example 6.4 n = 2.

x̃2 = (−2 + r,−r).

Considering x̃ = (1, 1) and m = 1, we can see that the sequence
converges to a solution that does not present a fuzzy number. (The
1-cut of this equation is a quadratic equation that has not any real
root.)
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7 Conclusion

In this paper a method presented to find the roots of a fuzzy num-
ber, numerically and an algorithm generates a sequence which will
converge if the modal value function has a root.

The algorithm can be converged to a root of a fuzzy number. In
general case we approximate the solution by a polynomial form
fuzzy number. Choosing the degrees of approximated polynomial
for right hand side and the solution, is depended on the shape of
left and right spread functions, and their derivation order.
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