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1 Introduction and Preliminary

Throughout this paper, we consider G as a finite simple graph with vertex set V(&) and edge set F(G). We use cf.
[5] as a reference for terminology and notation which are not explicitly defined here.

For a graph G = (V(G), E(G)), aset S C V(G) is called a dominating set if every vertex not in S has a neighbor
in S cf. [4] .The domination number +(G) of G is the minimum cardinality among all dominating sets of G. Let
G be a graph and v € V(G). The open neighborhood of v is the set N(v) = {u € V(G)|luv € E(G)}, and its
closed neighborhood is the set N[v] = N(v) Uwv. Let f be a function that assigns to each vertex a set of colors
chosen from the set {1, ..., k}; thatis, f : V(G) — P({1,...,k}). If for each vertex v € V(G) such that f(v) = 0 we
have U,e () f(u) = {1,..., k}, then f is called a k-rainbow dominating function (kRDF) of G cf. [1] and [2]. The
weight, w(f), of a function f is defined as w(f) = ¥,cv ()| f(v)|. Given a graph G, the minimum weight of a kRDF
is called the k-rainbow domination number of G, which we denote by ~,+(G). Ghanbari and Mojdeh [3] initiated
the concept of restrained 2- rainbow domination in graphs.

Let f be a function that assigns to each vertex a set of colors chosen from the set {1,2}; thatis, f : V(G) —
P({1,2}). If for each vertex v € V(G), such that f(v) = () we have U,cn(,)f(u) = {1,2}, and v is adjacent to a
vertex w € V(G) such that f(w) = () then f is called a restrained 2-rainbow dominating function (R2RDF) of G.
The weight, w(f), of a function f is defined as w(f) = ¥,cv(g)|f(v)|. Given a graph G, the minimum weight of a
R2RDF is called the restrained 2-rainbow domination number of G, which we denote by ~,..2(G).

2 Main Result

Let n > 3 and k be relatively prime natural numbers and & < n. The generalized Petersen graph GP(n,k) is
defined as follows. Let C,,, C/, be two disjoint cycles of length n. Let the vertices of C,, be u;, ..., u,, and edges
uiuir1 fori =1,....,n — 1 and u,u;.
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Let the vertices of C/, be vy, ..., v, and edges v;v;  fori = 1, ..., n, the sum i+ k being taken modulo n (through-
out this section). The graph GP(n,k) is obtained from the union of C,, and C/, by adding the edges u;v; for
i = 1,...,n. Its obvious that GP(n,k) = GP(n,n — k). The graph GP(5,2) or GP(5, 3) is the well-known Pe-
tersen graph.

Theorem 2.1. Forn > 5

(@) If n = 0(mod5), the inequality v,y2(GP(n,2)) = yrr2(GP(n,n — 2)) < 42 + 2 is satisfied.

(b) If n = 1(mod5), the inequality v,r2(GP(n,2)) = yr2(GP(n,n —2)) < 4 £] 4 2 is satisfied.

(¢) If n = 2(mod5), the inequality ~,r2(GP(n,2)) = yrr2(GP(n,n — 2)) < 4(| ] + 1) is satisfied.

(d) If n = 3(mod5), the inequality v,y2(GP(n,2)) = yrr2(GP(n,n — 2)) < 4(| 2] + 2) is satisfied.
,2)) = Yrr2(GP(n,n — 2)) < 4(| 2] + 3) is satisfied.

(
(e) If n = 4(mod5), the inequality ~,.2(GP(n
(

V(GP(n,2)) = {Usk, Usk—1, Usk—2, Usi—3, Usi—a, Vi, Voi—1, Vo—2, Vo—3, Vog—a}

such that

Usk = {usi, b = 1,2,--- }, Usg—1 = {usp—1,k = 1,2,--- }, Usg—2 = {usp—2,k = 1,2,--- }, Usg—3 = {usp_3,k =
2, b, Uskea = {usp—a, b = 1,2,---}, Vo = {usp, b = 1,2,---}, Varo1 = {usp—1,k = 1,2,---}, Vs =

{usg—o,k = 1,2,---}, Vap—3 = {usp—3,k = 1,2,--- }, Vor—g = {usx—4,k = 1,2,---} and all of indices are taken

modulo n.

(a) If n = 0(mod5), we use the following algorithm and define the function f on GP(n,2):

step 1) f(usk) = f(usk—1) = f(usk—3) =0,k =1,2,---

step 2) f(vsk—2) = f(vsk—3) = fvsp—a) =0,k =1,2,---.

step 3) If kia an odd number, then f(us,_4) = {1},k =1,2,--- and f(usx_2) = {2}, k =1,2,--- but f(u1) = {1, 2}.

step 4) If k ia an even number, then f(us;—4) = {2}, k =1,2,--- and f(usx—2) = {1}, k=1,2,---.

step 5) If k£ ia an odd number, then f(vs;—1) = f(vsk) = {1}, k =1,2,--- but f(u,) = {1,2}.

step 6) If k ia an even number, then f(vsi_1) = f(vs) = {2}, k= 1,2, --

Now we claim that f is a R2RDF on GP(n,2) and v,y2(GP(n,2)) = vp2(GP(n,n — 2)) < 2 + 2.

Firstly if there exists the vertex w of GP(n,2), such that f(w) = 0, in according definition of f (steps 1 and 2),

w is a member of Usy | Usk—1J Usk—3 U Vsk—2 U Vsk—3J Vsr—4- In other hand us; is adjacent to wusy_1, usi_3 is

adjacent to vsx_3 and vs,_o is adjacent to vs;_4. Therefore w is adjacent to a vertex z and f(z) = 0.

Now if w is a vertex of GP(n,2) and f(w) = (), then the following cases has happened.

Case 1) There exist a positive integer & such that w = wus;. If w = wu,, its obvious that w is adjacent to u; and

f(u1) = {1,2} otherwise w is adjacent to usy—1, usk1 = Us(k11)—4 and vsg. If k is an odd number, according to

step 1, step 4 and step 5, f(usp—1) = 0, f(usg+1) = {2} and f(vsx) = {1} respectively. If k is an even number,

according to step 1, step 3 and step 6, f(usr—1) = 0, f(usrr1) = {1} and f(vsx) = {2} respectively. Note that

F(va) = {1,2}.

Case 2) There exist a positive integer k such that w = us,_1. Then w is adjacent to usi_o, v5r_1 and us. If £ is an

odd number, according to step 1, step 3 and step 5, f(usr) = 0, f(usk—2) = {2} and f(vsk—1) = {1} respectively.

If k is an even number, according to step 1, step 4 and step 6, f(usr) = 0, f(usk—2) = {1} and f(vsr—1) = {2}

respectively.

Case 3) There exist a positive integer % such that w = us;_3. Then w is adjacent to usy_4, us,_o and vsg_3. If k is

an odd number, according to step 2 and step 3, f(vsx_3) = 0 and f(usp_2) = {2} and f(usr_4) = {1}. If kis an
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even number, according to step 2 and step 4, f(vsk—3) = 0, f(usp—2) = {1} and f(usk—a) = {2}.

Case 4) There exist a positive integer k such that w = vs;_5. Then w is adjacent to vsj_4, usip_o and usg. If k is an
odd number, according to step 2, step 3 and step 5, f(vsp—4) = O and f(us;—2) = {2} and f(vs;) = {1} respectively.
If k is an even number, according to step 2, step 4 and step 6, f(vsk—4) = 0 and f(usr_2) = {1} and f(vsx) = {2}
respectively.

Case 5) There exist a positive integer k£ such that w = vs;,_3. If w = w9, its obvious that w is adjacent to v, and
f(vn) = {1,2} otherwise w is adjacent to us; 3, vsx—1 and vs_yy. If k > 11is an odd number, according to step
1, step 5 and step 6, f(us,—3) = 0 and f(vsp—1)) = {2} and f(vsr—1) = {1} respectively. If k is an even number,
according to step 1, step 5 and step 6, f(us,—3) = 0 and f(v5—1)) = {1} and f(vsp—1) = {2} respectively.

Case 6) There exist a positive integer k£ such that w = vs,_4. If w = vy, its obvious that w is adjacent to u; and
f(u1) = {1,2} otherwise w is adjacent to vsi 2, v5(;—1)—1 and usx_4. If £ > 11is an odd number, according to step
2, step 6 and step 3, f(vsr—2) = 0 and f(vs_1)—1) = {2} and f(usx—4) = {1} respectively. If k is an even number,
according to step 2, step 5 and step 4, f(vsy—2) = 0 and f(vs4_1y-1) = {1} and f(usip_4) = {2} respectively.
Secondly since n = 0(mod5), then

n
\Usk| = |Usk—1| = |Usk—2| = |Usk—3| = |Usk—a| = |Vsr| = |Vsk—1] = |Vsr—2| = |Vsr—3| = |Vsr—a| = LgJ

So

4n
w(f) = [Usk—2| + |Usk—a| + |Var| + [Var—1| + 2 = = +2

(b) If n = 1(mod5), we use the following algorithm and define the function f on GP(n,2):

step 1) f(usk) = f(usk—1) = f(usk—3) =0,k =1,2,---

step 2) f(vsk—2) = f(vsk-3) = fvsk—a) =0,k =1,2,---.

step 3) If k£ ia an odd number, then f(us;_4) = {1},k =1,2,--- and f(usx_2) = {2},k =1,2,---.

step 4) If k£ ia an even number, then f(usp—4) = {2}, =1,2,--- and f(usx_2) = {1},k=1,2,---.

step 5) If £ ia an odd number, then f(vsx—1) = f(vsk) = {1}, k =1,2,--- but f(vs) = {1, 2}.

step 6) If k ia an even number, then f(vs;—1) = f(vsk) = {2}, k=1,2,---.

Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n,2) and since n = 1(mod5), then

n
|Usk| = Usi—1| = [Usk—2| = [Usk—s| = [Voi| = [Var-1] = [Vor—2| = V3| = | -
and |Usy—4| = |Vsr—a| = [ 5] + 1.
So

n

w(f) = |Usk—2| + |Usp—a| + |Vsr| + |Vsr—1| + 1 = 4L5J +2

(c) If n = 2(mod5), we use the following algorithm and define the function f on GP(n,2):
step 1) f(usk) = f(usk—1) = f(usp—3) =0,k =1,2,---.
step 2) f(vsk—2) = f(vsp—3) = fvsp—a) =0,k =1,2,---.
step 3) If kia an odd number, then f(us;—4) = {1}, k =1,2,--- and f(usx—2) = {2}, k = 1,2, - but f(u1) = {1, 2}.
step 4) If k ia an even number, then f(us,_4) = {2},k =1,2,--- and f(usx_2) = {1},k=1,2,---.
step 5) If k ia an odd number, then f(vsr—1) = f(vsk) = {1}, k =1,2,--- but f(vq) = {1,2} and f(v,—2) = {1, 2}..
step 6) If k£ ia an even number, then f(vsx—1) = f(vsk) = {2}, k=1,2,---.
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Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n,2) and since n = 2(mod5), then
n
Usk| = [Usk—1| = [Use—2| = [Vak| = [Vak—1] = [Vor—2| = LgJ

and |Usy_3| = [Usk—a| = |Var—a| = |Vsr—3| = [£] + 1.
So

n

5
(d) If n = 3(modb), we use the following algorithm and define the function f on GP(n,2):

step 1) f(usk) = f(usp—1) = flusk—3) =0,k =1,2,---.

step 2) f(vsk—2) = f(vsk—3) = fvsp—a) =0,k =1,2,---.

step 3) If k ia an odd number, then f(us;—4) = {1}, k= 1,2,--- and f(usp—2) = {2}, k =1,2,--- but f(u1) = {1, 2}

and f(u,) = {1,2}.

step 4) If k ia an even number, then f(usr—4) = {2},k =1,2,--- and f(usx—2) = {1}, k=1,2,---.

step 5) If k£ ia an odd number, then f(vsx—1) = f(vsk) = {1}, k =1,2,--- but f(vs) = {1,2} and f(v,—3) = {1,2}.

step 6) If £ ia an even number, then f(vs;—1) = f(vsk) = {2}, k=1,2,---.

Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n,2) and since n = 3(mod5), then

]

w(f) = |Usk—2| + |Usk—a| + |Var| + [Var—1| +3 =4[ =] + 4

n
\Usk| = |Usk—1| = [Vsk| = |Vog—1| = Lg
and |Usg—4| = |Usp—3| = |Usk—2| = |Var—a| = |Var—3| = |Var—2| = [E] + 1.
So

n
w(f) = |Usk—2| + |Usk—a| + |Vsr| + |Vsr—1| +4 = 4L3J +6

(e) If n = 4(mod5), we use the following algorithm and define the function f on GP(n,2):
step 1) f(u5k) - f(u5k71) = f(u5k73) - (bv k=12, but f(Un) = {1}
step 2) f(vsk—2) = f(vsp—3) = fvsp—a) =0,k =1,2,---.
step 3) If kia an odd number, then f(us;—4) = {1}, k =1,2,--- and f(usx—2) = {2}, k =1,2,--- but f(u1) = {1, 2}.
step 4) If k ia an even number, then f(usx—4) = {2}, k =1,2,--- and f(usr—2) = {1}, k =1,2,--- but f(up—1) =
{1,2}.
step 5) If k£ ia an odd number, then f(vsi—1) = f(vsk) = {1}, k=1,2,--- .
step 6) If k ia an even number, then f(vs;_1) = f(vsr) = {2}, k=1,2,---.
Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n,2) and since n = 4(mod5), then
\Usk| = V5| = | £ ] and

n
\Usk—a| = |Usk—3| = |Usk—2| = |Usk—1| = |Vsk—a| = |Var—3| = [Vor—2| = |Vsr—1| = LEJ + 1.

So
n
w(f) = |Usk—2| + |Usk—a| + |Vai| + |Vsg—1]| + 3 = 4L5J +6.
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