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ABSTRACT

This paper, about the solution of fuzzy Volterra integral equation of fuzzy Volterra integral

equation of second kind (F-VIE2) using spectral method is discussed. The parametric form of

fuzzy driving term is applied for F-VIE2. Then three cases for (F-VIE2) are searched to solve

them. This classifications are considered based on the sign of interval. The Gauss-Legendre

points and Legendre weights for arithmetics in spectral method are used to solve (F-VIE2).

Finally two examples are got to illustrate more.

1 Introduction
The integral equations method are used for solving many problems in mathematics, the solutions of Integral

equations are important for applied science for example, mechanics or physics. The numerical methods are used
widely in recent years. Many Integral equations have fuzzy parameters and a few method expanded to fuzzy
integral equations.
The concepts of fuzzy numbers were first introduced by Zadeh, [10] but Friedman et.al introduced the numerical
solution of fuzzy integral equation by embeddingmethod. Sufficient conditions for convergence of their proposed
method was given, [13]. There are some research over existence and unique of integral equations, [14],[15],[17]
and [25]. Special Park and Jeong search exist and uniqueness of Fredholm-Volterra integral equation (F-VIE),
[19]. Abbasbandyet. al, used a parametric fuzzy number to convert a linear fuzzy Fredholm integral equation of
second kind such as the Nystrom approximation, [20]. Molabahrami et.al, by using the parametric form of fuzzy
number converted a linear fuzzy F-VIE to two linear system of the second kind of integral equation in crisp case.
They used the homotopy analysis method to find the approximate solution of these systems, [17]. Ghanbari et.al,
used the Block-pulse functions to approximate the numerical solution of fuzzy F-IE, [23]. Sadeghi goghari et.
al, present two method which exploit hybrid Legendre and Block Pulse functions and Legendre wavelets to find
the approximate solution for a system of linear fuzzy F-IE of the second kind with two variables, [21]. Babolian
et.al converted a linear fuzzy F-VIE of the second kind to a linear system of integral equation in the crisp case by
Adomian method, [24].
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In this paper the numerical method for solving the F-VIE2 equations in the form

ũ(x) +

∫ x

a
K(x, s)ũ(s)ds = g̃(x), x ∈ [a, b] (1.1)

are discussed. ũ is a notation for the fuzzy set of u. This numerical method is restricted to spectral method.
In section 2, we review briefly some needed concepts. In section 3, we proposed our method to find solution by
spectral method. In section 4, we classify the F-VIE2, we consider four cases in behavior of F-VIE2. Finally we
get two example to illustrate more our method. In whole of paper ã is a notation for the fuzzy set of a.

2 Basic concepts
The basic definitions of a fuzzy number are given in [15, 25, 26, 11] as follows:

Definition 2.1. A fuzzy number is a fuzzy set like u : R→ [0, 1]which satisfies:

1. u is an upper semi-continuous function,

2. u(x) = 0 outside some interval [a,d],

3. There are real numbers b, c such as a ≤ b ≤ c ≤ d and

3.1 u(x) is a monotonic increasing function on [a, b],

3.2 u(x) is a monotonic decreasing function on [c, d],

3.3 u(x) = 1 for all x ∈ [b, c].

Definition 2.2. A fuzzy number u in parametric form is a pair (u, u) of functions u(r), u(r), 0 ≤ r ≤ 1, which
satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right continuous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0, 1], and right continuous at 0,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

Definition 2.3. For arbitrary ũ = (u(r), u(r)) and ṽ = (v(r), v(r)) , 0 ≤ r ≤ 1, and scalar k, we define addition,
subtraction, scalar product by k and multiplication are respectively as following:
addition : u+ v(r) = u(r) + v(r), u+ v(r) = u(r) + v(r)

subtraction : u− v(r) = u(r)− v(r), u− v(r) = u(r)− v(r)

scalar product: kũ =

{
(ku(r), ku(r)), k ≥ 0

(ku(r), ku(r)), k < 0
multiplication : uv(r) = max{u(r)v(r), u(r)v(r), u(r)v(r)u(r)v(r)}

uv(r) = min{u(r)v(r), u(r)v(r), u(r)v(r)u(r)v(r)}

Definition 2.4. The metric structure is given by Hausdorff distance
D : RF × RF −→ R+ ∪ 0

D(u(r), v(r)) = Max{sup|u− v|, sup|u− v|}
(RF , D) is a complete metric space and following properties are well known:

2020, Volume 14, No.1 98 Theory of Approximation and Applications



Spectral Method for Solving Fuzzy Volterra Integral Equations of Second kind Laleh Hooshangian

D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ RF

D(ku, kv) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R
D(u+ v, w + e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ RF

If the fuzzy function f(x) is continuous in the metricD, its definite integral exists. Furthermore

(

∫ b

a
f(x)dx) = (

∫ b

a
f(x)dx)

(

∫ b

a
f(x)dx) = (

∫ b

a
f(x)dx)

For arithmetic in overall s ∈ [a, b] for the following equation

ũ(x) = f̃(x) +

∫ x

a
K(x, s)ũ(s)ds,

can be transform to two equations:

u(x) = f(x) +

∫ x

a
v1(x, s, u(s), u(s))ds

u(x) = f(x) +

∫ x

a
v2(x, s, u(s), u(s))ds

which

v1(s, t, u(s, r), u(s, r)) =

{
k(x, s)u(s), k(x, s) ≥ 0

k(x, s)u(s), k(x, s) < 0

and

v2(s, t, u(s, r), u(s, r)) =

{
k(x, s)u(s), k(x, s) ≥ 0

k(x, s)u(s), k(x, s) < 0

Definition 2.5. For simplify in arithmetics over parametric form of fuzzy number we define: Let u(r) =

[u(r), u(r)], 0 ≤ r ≤ 1 be a fuzzy number we take

uc =
u(r) + u(r)

2

ud =
u(r)− u(r)

2

It is clear that ud(r) ≥ 0 and u(r) = uc(r)− ud(r) and u(r) = uc(r) + ud(r)

Definition 2.6. Let u(r) = [u(r), u(r)], v(r) = [v(r), v(r)], 0 ≤ r ≤ 1 are two fuzzy numbers and also k, s are
two arbitrary real numbers. If w = ku+ sv then by using definition (2.5)

wc(r) = kuc(r) + svc(r)

wd(r) = |k|ud(r) + |s|vd(r)
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3 Fuzzy Legendre-collocation method
We consider the second-kindVolterra fuzzy integral equation is of the form (1). If the collocation points are chosen
as the the set of (N + 1) Gauss-Legendre {xi}Ni=0. Then Eq. (1) holds that

ũ(xi) +

∫ xi

−1
K(xi, s)ũ(s)ds = g̃(xi), 0 ≤ i ≤ N (3.1)

If we apply the following linear transformation

s(x, θ) =
x+ 1

2
θ +

x− 1

2
, −1 ≤ θ ≤ 1 (3.2)

then Eq. (3) becomes

ũ(xi) +
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))ũ(s(xi, θ))dθ = g̃(xi), 0 ≤ i ≤ N (3.3)

Using (N + 1)−point Gauss-Legendre quadrature formula relative to the Legendre weights {ωk} gives

ũ(xi) +
1 + xi

2

N∑
j=0

K(xi, s(xi, θ))ũ(s(xi, θ))ωj = g̃(xi), 0 ≤ i ≤ N (3.4)

we estimate ũ using Lagrange interpolation polynomials

ũ(σ) ≈
N∑
j=0

ũjlj(σ) (3.5)

where the lj is j-th Lagrange basic function. Combination Eqs. (6) and (7) yields

ũi +
1 + xi

2

N∑
j=0

ũj(
N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp) = g̃(xi), 0 ≤ i ≤ N (3.6)

IfK(x, s) is continuous over [−1, 1] respect to the sign ofK(x, s) -that is positive or negative over [−1, 1] -we have
three cases, that we peruse them in the next section .

4 The classification of F-VIE2
By using sign of K(x, s) over [−1, 1] we have three cases, that we peruse them. The parametric form of equation
(1) can be write in following:

[u(x), u(x)] +

∫ x

−1
K(x, s)[u(x), u(s)]ds = [g(x), g(x)], x ∈ [−1, 1] (4.1)
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u(r) and u(r) for all 0 ≤ r ≤ 1 and for x ∈ [−1, 1] by Lagrange polynomials can be consider in following terms:

u(x) ≈
N∑
j=0

uj(r)lj(x)

u(x) ≈
N∑
j=0

uj(r)lj(x)

4.1 Case (1)

IfK(x, s) is positive over [−1, 1] Eq. (1) is transformed to

u(x) +

∫ x

−1
K(x, s)u(s)ds = g(x), x ∈ [−1, 1] (4.2)

and
u(x) +

∫ x

−1
K(x, s)u(s)ds = g(x), x ∈ [−1, 1] (4.3)

Now by using Eq. (4) we can consider Eqs. (9) and (10) in following respectively:

u(xi)(r) +
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ = g(xi)(r), 0 ≤ i ≤ N (4.4)

u(xi)(r) +
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ = g(xi)(r), 0 ≤ i ≤ N (4.5)

by using set of (N + 1) Gauss-Legendre {xi}Ni=0, the Eqs. (11) and (12) transform to the following equations re-
spectively:

ui(r) +
1 + xi

2

N∑
j=0

uj(r)(

N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp) = g(xi)(r), 0 ≤ i ≤ N (4.6)

ui(r) +
1 + xi

2

N∑
j=0

uj(r)(

N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp) = g(xi)(r), 0 ≤ i ≤ N (4.7)

Now we must solve two crisp equations of the matrix form (13) and (14) and we can obtain u(r) and u(r) for
all 0 ≤ r ≤ 1 and for x ∈ [−1, 1].

4.2 Case (2)

In this case we hypothesisK(x, s) be negative over [−1, 1]. Then Eq. (5) is transformed to two following equations:

u(xi)(r) +
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ = g(xi)(r), 0 ≤ i ≤ N (4.8)

u(xi)(r) +
1 + xi

2

∫ 1

−1
K(xi, s(xi, θ))u(s(xi, θ))(r)dθ = g(xi)(r), 0 ≤ i ≤ N (4.9)
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then if we use (4) in (15) and (16) we holds:

ui(r) +
1 + xi

2

N∑
j=0

uj(r)(

N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp) = g(xi)(r), 0 ≤ i ≤ N (4.10)

ui(r) +
1 + xi

2

N∑
j=0

uj(r)(

N∑
p=0

K(xi, s(xi, θ))lp(s(xi, θ))ωp) = g(xi)(r), 0 ≤ i ≤ N (4.11)

Now if we get

Ai,j =
1 + xi

2

N∑
j=0

K(xi, s(xi, θ))lj(s(xi, θ))ωj , 0 ≤ i ≤ N (4.12)

then to find solution in (17) and (18) and by using definitions (2.5) and (2.6) for all 0 ≤ i ≤ N we have

uci (r) +Aij

N∑
p=0

ucp(r) = gc(xi) (4.13)

udi (r) +Aij

N∑
p=0

udp(r) = gd(xi) (4.14)

Now we must solve two crisp equations of the matrix form (20) and (21). Eq. (20) and (21) can be solved by
some suitable method for solving the linear systems. By using definition (2.6) we can obtain ũi = [ui, ui] for
i = 0, 1, ..., N . When the values of ũi = [ui, ui] for i = 0, 1, ..., N , are resulted the numerical solution for x ∈ [−1, 1]

can be obtained by Lagrange polynomials.

4.3 Case (3)

In case (3) we considerK(x, s) be continuous in −1 ≤ s ≤ 1 and for fix x,K(x, s) changes its sign in finite points
as ti, for example without loss generalityK(x, s) is positive over [−1, t] and negative over [t, x], we have

ũ+

∫ t

−1
K(x, s)ũ(s)ds+

∫ x

t
K(x, s)ũ(s)ds = g̃(x) (4.15)

then by (N+1) Gauss-Legendre points we can write:

ũ(xi) +

∫ t

−1
K(t, s)ũ(s)ds+

∫ xi

t
K(xi, s)ũ(s)ds = g̃(xi) (4.16)

Now we can transform interval [t, 1] to [−1, 1] by

s =
xi + t

1− t
η +

x− 1

1− t
,−1 ≤ η ≤ 1 (4.17)
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by (4) and (24) we have

ũ(xi) +
1 + t

2

∫ 1

−1
K(t, s(t, θ))ũ(s)dθ +

xi + t

1− t

∫ 1

−1
K(xi, s(t, η))ũ(s)dη = g̃(xi) (4.18)

Now by using Legendre weights, the Eq. (25) is transformed to

ũi +
1 + t

2

N∑
j=0

(ũj

N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj) +
xi + t

1− t

N∑
j=0

(ũj

N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj) = g̃(xi) (4.19)

then with using the sign ofK on the intervals we have

ui(r) +
1 + t

2

N∑
j=0

(uj(r)

N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj) +
xi + t

1− t

N∑
j=0

(uj(r)
N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj) = g(xi)(r)

(4.20)

ui(r) +
1 + t

2

N∑
j=0

(uj(r)
N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj) +
xi + t

1− t

N∑
j=0

(uj(r)
N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj) = g(xi)(r)

(4.21)
then we can write following matrices:

uci (r) + (Bj + Cij)
N∑
p=0

ucp(r) = gci , 0 ≤ i ≤ N (4.22)

udi (r) + (Bj − Cij)
N∑
p=0

udp(r) = gdi , 0 ≤ i ≤ N (4.23)

which

Bj =
1 + t

2

N∑
j=0

K(t, s(t, θ))lj(s(t, θ))ωj

Cij =
xi + t

1− t

N∑
j=0

K(xi, s(t, η))lj(s(xi, η))ωj

Eq. (29) and (30) can be solved by some suitable method for solving the linear systems. By using definition (2.5)
we can obtain ũi = [ui, ui] for i = 0, 1, ..., N . When the values of ũi = [ui, ui] for i = 0, 1, ..., N , are the numerical
solution for x ∈ [−1, 1] can be obtained by Lagrange polynomials.

Denoting UN = {u0, u1, ..., uN}t and gN = {g(x0), g(x1), ..., g(xN )}t we can obtain an equation of the matrix
form:

UN +AUN = gN (4.24)

where matrix A is given by

Ai,j =
1 + xi

2

N∑
p=0

K(xi, s(xi, θ))lj(s(xi, θ))ωp (4.25)
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we express Lj(s) in Legendre functions

lj(s) =

N∑
p=0

αp,jLp(s) (4.26)

where αp,j is discrete polynomial coefficients. The inverse relation

αp,j(s) =
1

γp

N∑
i=0

lj(xi)Lp(xi)ωi =
Lp(xj)ωj

γp
(4.27)

where

γp =

N∑
i=0

L2
p(xi)ωi = (p+

1

2
)−1, p < N (4.28)

and γN = (N + 1
2)

−1 for the Gauss formulas.

lj(s) =
N∑
p=0

Lp(xj)Lp(s)ωj

γp
(4.29)

This equations in this section be spoken for crisp equations. We can use them for UN = {u1, u2, ...uN} and
UN = {u1, u2, ...uN} instead of UN and g

N
= {g(x1), g(x2), ...g(xN )} and gN = {g(x1), g(x2), ...g(xN )} instead

of gN .

5 Numerical Example
In this section two examples are presented and solved by Legendre-spectral method and tables and figures are
presented that numerical and exact solutions are compared in those. Without lose of generality, we will only
use the Legendre-Gauss-Lobatto points (i.e., the zeros of L(N + 1)(x)) as the collocation points. Our numerical
evidences show that the other two kinds of Legendre-Gauss points produce results with similar accuracy. For the
Legendre- Gauss-Lobatto points, the corresponding weights are

wj =
2

(1− x2j )[L
′
N+1(xj)]

2
, 0 ≤ j ≤ N.

The example (5.1) is solved by Homotopy perturbation method in [18] and a comparison between HPM and
Legendre-spectral method is obtained.

Example 5.1. Consider the following fuzzy integral equation:

u(t) +

∫ t

0
sinht.u(s)ds = [(cosht+ 1− cosh2t)(r2 + r), (cosht+ 1− cosh2t)(4− r3 − r)]

The exact solution is u(t) = [cosht(r2+r), cosht(4−r3−r)]. Spectral scheme is used for it. The absolute errors for
u(t) and u(t) are shown in Table (1.5) and figure (1.5). These results indicate that the desired spectral accuracy
is obtained.
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r |Error(u)|, N =
4

|Error(u)|, N =
8

|Error(u)|, N =
12

|Error(u)|, N =
20

Error(u)(HPM)|Error(u)|, N =
4

|Error(u)|, N =
8

|Error(u)|, N =
12

|Error(u)|, N =
20

Error(u)(HPM)

0 0 0 0 5.233E(-11) 0 3.2E(-3) 1.3E(-5) 3.199E(-7) 3.128E(-11) 0.00016
0.1 2E(-3) 3.903E(-5) 4.302E(-7) 4.809E(-11) 0.000005 2.9E(-3) 3.323E(-5) 4.1E(-7) 2.158E(-11) 0.00016
0.2 2.1E(-2) 3.032E(-5) 1.981E(-7) 4.013E(-11) 0.000010 2.5E(-3) 3.763E(-5) 4.3E(-7) 2.299E(-11) 0.00016
0.3 2.2E(-2) 3.103E(-5) 4.433E(-7) 3.857E(-11) 0.000016 3.5E(-3) 4.332E(-5) 3.3E(-7) 3.802E(-11) 0.00015
0.4 2.3E(-2) 3.325E(-5) 1.176E(-7) 3.409E(-11) 0.000024 4.2E(-3) 3.913E(-5) 1.9E(-7) 4.192E(-11) 0.00015
0.5 1.3E(-2) 2.333E(-5) 2.23E(-7) 3.109E(-12) 0.000031 3.5E(-3) 3.673E(-5) 3.1E(-7) 3.918E(-11) 0.00014
0.6 2.45E(-2) 3.311E(-5) 3.0454E(-7) 2.347E(-12) 0.000040 4.1E(-3) 3.763E(-5) 4.2E(-7) 4.681E(-11) 0.00013
0.7 2.5E(-2) 4.223E(-5) 5.423E(-7) 2.653E(-12) 0.000050 3.1E(-3) 3.671E(-5) 3.4E(-7) 3.018E(-11) 0.00012
0.8 2.65E(-2) 3.235E(-5) 8.423E(-7) 2.143E(-12) 0.000060 3.3E(-3) 3.319E(-5) 2.3E(-7) 3.100E(-11) 0.00011
0.9 2.7E(-2) 3.2E(-5) 1.134E(-7) 1.834E(-12) 0.000070 2.4E(-3) 3.304E(-5) 3.3E(-7) 2.018E(-11) 0.0001
1 1.9E(-2) 2.9E(-5) 1.681E(-8) 1.634E(-12) 0.000080 1.7E(-3) 3.103E(-5) 1.75E(-7) 4.008E(-11) 0.00008

Table 5.1: Error results for x = 0.2 andN = 4, 8, 12 andN = 20 for u and u in Example (5.1)

r |Error(u)|, N =
4

|Error(u)|, N =
8

|Error(u)|, N =
12

|Error(u)|, N =
20

|Error(u)|, N =
4

|Error(u)|, N =
8

|Error(u)|, N =
12

|Error(u)|, N =
20

0 2.245E(-3) 2.375E(-6) 0 5.3E(-11) 3.232E(-3) 1.3E(-6) 4.001E(-8) 3.438E(-14)
0.1 3.278E(-3) 1.163E(-6) 4.334E(-7) 4.812E(-13) 1.239E(-3) 5.345E(-6) 4.102E(-8) 2.348E(-14)
0.2 2.756E(-2) 1.263E(-6) 3.198E(-7) 4.543E(-14) 2.335E(-3) 5.123E(-6) 4.033E(-8) 2.945E(-14)
0.3 2.275E(-3) 1.327E(-6) 4.543E(-7) 3.876E(-14) 1.543E(-3) 5.373E(-6) 3.343E(-8) 3.128E(-14)
0.4 2.187E(-2) 1.735E(-6) 1.213E(-8) 3.344E(-14) 4.232E(-3) 5.233E(-6) 1.449E(-8) 4.218E(-14)
0.5 3.983E(-2) 1.318E(-6) 2.543E(-7) 3.1981E(-13) 3.523E(-3) 6.343E(-6) 3.761E(-8) 3.832E(-14)
0.6 3.345E(-2) 1.316E(-6) 3.543E(-7) 2.743E(-14) 4.221E(-3) 6.343E(-6) 4.262E(-8) 4.346E(-14)
0.7 3.185E(-3) 1.443E(-6) 5.129E(-7) 2.343E(-14) 3.271E(-3) 5.334E(-5) 3.465E(-8) 3.898E(-14)
0.8 2.551E(-3) 1.322E(-6) 8.324E(-7) 2.119E(-14) 3.193E(-3) 5.713E(-6) 2.334E(-8) 3.343E(-14)
0.9 2.347E(-2) 1.543E(-6) 2.154E(-7) 1.833E(-14) 2.443E(-3) 5.633E(-6) 3.233E(-8) 2.878E(-14)
1 3.342E(-3) 1.319E(-6) 1.643E(-8) 1.622E(-13) 1.287E(-3) 5.233E(-6) 1.751E(-8) 1.867E(-14)

Table 5.2: Error results for x = 0.2 andN = 4, 8, 12 andN = 20 for u and u in Example (5.2)

Example 5.2. Consider the following fuzzy two-dimensional volterra integral equation:

u(x)−
∫ x

0
3xs2u(s)ds = [(x− x2s3)(r − 1), (x− x2s3)(1− r)]

The exact solution is u(x, y) = [x(r− 1), x(1− r)]. Spectral scheme is used for it. The absolute errors for u(t) and
u(t) are shown in Table (5.2). These results indicate that the desired spectral accuracy is obtained.

6 Conclusion
In this work, one and two dimensional nonlinear fuzzy Volterra integral equations of second kind were studied.
The Legendre-spectral scheme was successfully employed for solving them. This numerical method was based
on the Legendre points and using Lagrange interpolation polynomials. The obtained results by this method was
illustrated very near to exact solutions. Obtained data evince that the convergence rate is very fast, and lower
approximations can accede high accuracy. A comparison between spectral method and Homotopy perturbation
method is obtained in a example that is shown that the spectral method is more accurate. The computations in
this paper were performed by using Maple 18.
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