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ABSTRACT

Ranking DMUs based on individual preferences is an interesting and useful part of decision-

making problems. Comparing the weighted sum of the selected number of rank votes, after

determining theweights in a selected rank, canbe regarded as a commonapproach to compute

the total ranking of alternatives. In actual applications, making the weight of a certain rank

zero means that we throw away the corresponding part of the obtained rank voting data. This

paper proposes a new model to assess the non-zero weights for each position.

1 Introduction
In preferential voting systems, each voter selectsm candidates from among n candidates (n ≥ m) and ranks them
from the most to the least preferred. Each candidate may receive some votes in different ranking places. The total
score of each candidate is the weighted sum of the votes he/she receives in different places. The winner is the one
with the biggest total score. So, the key issue of the preference aggregation in a preferential voting system is how
to determine the weights associated with different ranking places [6-13,16]. Borda’s method is perhaps the most
widely used procedure for determining theweights. By theBorda’smethod, the first place is given aweight ormark
ofm, the second place is given a weight ormark ofm−1, followed bym−2, ..., 2 and the last place is given a weight
ormark of one. Because of its computational simplicity, theBorda’smethod is very popular. But the determination
of theweights is somewhat subjective. It is worth noting that theBorda rule has interesting properties in relation to
other scoring rules. According to Brams and Fishburn [1]: “Among ranked positional scoring procedures to elect
one candidate, Borda’s method is superior in many respects, including susceptibility to strategic manipulation,
propensity to elect Condorcet candidates, and ability to minimize paradoxical possibilities”.

To avoid the subjectivity in determining the weights, Cook and Kress [2] suggest using data envelopment
analysis (DEA) to determine themost favourable weights for each candidate. Different candidates utilize different
sets of weights to calculate their total scores, which are referred to as the best relative total scores and are all
restricted to be less than or equal to one. The candidate with the biggest relative total score of one is said to be
DEA efficient and may be considered as a winner. This approach proves to be effective, but very often leads to
more than one candidate to be DEA efficient. To choose a winner from among the DEA-efficient candidates, Cook
and Kress [2] suggest maximizing the gap between the weights so that only one candidate is left DEA efficient.
This has been found equivalent to imposing a common set of weights on all the candidates and equivalent to the
Borda’s method in a specific discrimination intensity function.
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Green et al. [3] suggest using the cross-efficiency evaluation technique in DEA to choose the winner. Noguchi
et al. [14] also utilize cross-efficiency evaluation technique to select the winner, but present a strong ordering
constraint condition on the weights. Hashimoto [6] proposes the use of the DEA exclusion model (i.e. super-
efficiency model) to identify the winner. Obata and Ishii [8] suggest excluding non-DEA-efficient candidates and
using normalized weights to discriminate the DEA-efficient candidates. Theirmethod is subsequently extended to
rank non-DEA-efficient candidates by Foroughi and Tamiz [4] (see also Foroughi et al [5]). More recently Wang
et al [10] proposed three models for preference voting and aggregation. Two of them are linear programming
models which determine a common set of weights for all the candidates considered and the other is a nonlinear
programming model that determines the most favourable weights for each candidate. But, Wang et al. [10] have
not taken care of aboutmaking the weight of a certain rank zeromeans that we throw away the corresponding part
of the obtained data. In actual applications, making the weight of a certain rank zero means that we throw away
the corresponding part of the obtained rank voting data. Their incorrect model also used in [9]. To avoid possible
more misapplications or spread in the future, we present in this paper an improved DEA-model to determine the
weights of ranking places. The proposedmodel is simple and can lead to a stable full ranking for all the candidates
considered. This will be illustrated with two numerical examples.

The rest of the paper is organized as follows. In the next section, we develop the model for preference aggre-
gation to assess the weights associated with different ranking places. We then examine two numerical examples
using the proposed model to illustrate its applications and show their capabilities of identifying the winner and
producing a stable full ranking for all the candidates considered. Finally, we conclude the paper.

2 Model
Let wj be the relative importance weight attached to the jth ranking place (j = 1, · · · ,m) and vij be the vote of
candidate i being ranked in the jth place. The total score of each candidate is defined as

Zi =
m∑
j=1

vijwj , i = 1, 2, ..., n (2.1)

which is a linear function of the relative importanceweights. Once theweights are given or determined, candidates
can be ranked in terms of their total scores.
To determine the score of each candidate, Wang et al [10] suggest the following DEA model, which maximize the
minimum of the total scores of the n candidates and determine a common set of weights for all the candidates:

max α

s.t. α ≤ Zi =
m∑
j=1

vijwj ≤ 1, i = 1, · · · , n

w1 ≥ 2w2 ≥ · · · ≥ mwm ≥ 0,

(2.2)

where w1 ≥ 2w2 ≥ · · · ≥ mwm ≥ 0 is the strong ordering constraint on decision variables.
But, Wang et al [10] have not taken care of about making the weight of a certain rank zero. In actual applications,
making the weight of a certain rank zero means that we throw away the corresponding part of the obtained rank
voting data. Here, using an example we show this assertion. Consider the example in which 20 voters are asked
to rank two out of four candidates A-D on a ballot. The votes each candidate receives are shown in Table 1.
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Table 1. Votes received by four candidates.
Candidate First place Second place

A 7 7
B 7 8
C 3 3
D 3 2

If the model (2.2) is employed to solve the example then we get α∗ = 0.4286, w∗
1 = 0.1429 and w2 = 0.0000

(this is the unique solution of the model). As we see the weight of second place is zero, which means that the
second place vote does not have any meaning. In actual applications, making the weight of a certain place vote
zero means that we throw away the corresponding part of the obtained data.

In what follows, we present ourmodels, which avoid producing a zero weight for a certain place vote andmake
full use of all the data. Consider the following model

max α

s.t. α ≤ Zi =

m∑
j=1

vijwj ≤ 1, i = 1, ..., n

w1 ≥ 2w2 ≥ · · · ≥ mwm,

wm ≥ ε

(2.3)

As a theoretical construct, ε provides a lower bound for scoring of grades to keep them away from zero. Hence,
the following LP is proposed to determine the ε.

ε∗ = max ε

s.t.

m∑
j=1

vijwj ≤ 1, i = 1, ..., n

w1 ≥ 2w2 ≥ · · · ≥ mwm,

wm − ε ≥ 0

(2.4)

It is clear that ε = 0, ∀j : wj = 0 is a feasible solution to the model (2.4). The optimal value of model (2.4) is
greater than zero, that is ε∗ > 0.

Proof. The dual of model (2.4) is as follows:

min
n∑

i=1

θi

s.t.
n∑

i=1

vi1θi − δ1 = 0

n∑
i=1

vijθi + jδj−1 − jδj = 0, j = 2, ...,m− 1

n∑
i=1

vimθi +mδm−1 − δm = 0

δm = 1

θi, δj ≥ 0, i = 1, ..., n; j = 1, ...,m

(2.5)
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By contradiction assume that ε∗ = 0. Hence, θ∗ =

n∑
i=1

θ∗i = 0. Therefore according to the constraints of model

(2.5), for all j = 1, ...,m, we have δj = 0which contradicts to the last constraint of Model (2.5), So ε∗ = θ∗ > 0.

ε∗ ≤ min
1≤i≤n


1

m
m∑
j=1

vij
j


.

Proof. From w1 ≥ 2w2 ≥ · · · ≥ mwm, we have wj ≥ mwm
j . Thus

Zi =
m∑
j=1

vijwj ≥
m∑
j=1

mwm

j
vij = mwm

m∑
j=1

vij
j

But according to the constraints of model (2.3) for each i = 1, ..., n we have Zi ≤ 1. Therefore mwm

m∑
j=1

vij
j

≤ 1,

or wm ≤ 1

m

m∑
j=1

vij
j

, i = 1, ..., n. On the other hand according to the last constraint of model (2.3), wm ≥ ε. Hence

ε ≤ 1

m

m∑
j=1

vij
j

, i = 1, ..., n. So, ε∗ ≤ min
1≤i≤n


1

m
m∑
j=1

vij
j


.

The optimal value of model (2.4) is greater than zero and bounded.

Proof. The proof is clear using the above lemmas.

The model (2.4) and the following model are equivalent:

max wm

s.t.
m∑
j=1

vijwj ≤ 1, i = 1, ..., n

w1 ≥ 2w2 ≥ · · · ≥ mwm ≥ 0

(2.6)
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Proof. From the last constraint of model (2.5) we have δm = 1. Hence we can write the model (2.5) as follows

min
n∑

i=1

θi

s.t.
n∑

i=1

vi1θi − δ1 = 0

n∑
i=1

vijθi + jδj−1 − jδj = 0, j = 2, ...,m− 1

n∑
i=1

vimθi +mδm−1 = 1

θi, δj ≥ 0, i = 1, ..., n; j = 1, ...,m− 1

(2.7)

Now the dual of model (2.7) is as follow

max wm

s.t.

m∑
j=1

vijwj ≤ 1, i = 1, ..., n

w1 ≥ 2w2 ≥ · · · ≥ mwm ≥ 0

(2.8)

But we now that the dual of the dual is primal, thus the above model is the same as model (2.4).

By solving model (2.4) for data of Table 1 we have ε∗ = 0.04545. If this ε∗ is employed to solve the model (2.3)
for example 1 we get α∗ = 0.36364, w∗

1 = 0.9091 and w∗
2 = 0.04545. Hence the ranking of the four candidates is as:

B ≻ A ≻ C ≻ D. So, candidate B is the winner.

3 Numerical examples
In this section, we examine two numerical examples using the proposed model to illustrate their applications and
show its capabilities of choosing the winner and ranking candidates.
Consider the example investigated by Cook and Kress [2] andWang et al [10] in which 20 voters are asked to rank
four out of six candidates A-F on a ballot. The votes each candidate receives are shown in Table 2.

Table 2. Votes received by six candidates.
Candidate First place Second place Third place Fourth place

A 3 3 4 3
B 4 5 5 2
C 6 2 3 2
D 6 2 2 6
E 0 4 3 4
F 1 4 3 3

By solving (2.4), we get ε∗ = 0.02727. Now the model (2.3) yields α∗ = 0.43636, w∗
1 = 0.10909, w∗

2 =

0.05455, w∗
3 = 0.03636 and w∗

4 = 0.02727. Solving the model (2.8), we have: α∗ = 1.0000, w∗
1 = 0.4800, w∗

2 =

0.2400, w∗
3 = 0.1600 andw∗

4 = 0.1200. The rankings of the six candidates produced by ourmodel is shown in Table
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3, from which it is clear that the model leads to the ranking: D ≻ B ≻ C ≻ A ≻ F ≻ E. So, candidate D is the
winner.

Table 3. Scores and rankings of the six candidates by proposed model.
Candidate Score Rank

A 0.71818 4
B 0.94546 2
C 0.92727 3
D 1.00000 1
E 0.43636 6
F 0.51818 5

Consider the example investigated by Obata and Ishii [14] and Foroughi and Tamiz [4], in which seven candi-
dates A-G are ranked. Table 4 shows the votes each candidate receives in the first two places.

Table 4. Votes received by seven candidates.
Candidate First place Second place

A 32 10
B 28 20
C 13 36
D 20 27
E 27 19
F 30 8
G 0 30

Using the model (2.4), we have ε∗ = 0.01316. Now by solving model (2.3) we get α∗ = 0.39474, w∗
1 = 0.02632

andw∗
2 = 0.01316. Table 5 shows the ranking of each candidate obtained by our model. As can be seen from Table

5, our model leads to the ranking: B ≻ A ≻ E ≻ F ≻ D ≻ C ≻ G. So, candidate B is the winner.

Table 5. Scores and rankings of the seven candidates by our model.
Candidate Score Rank

A 0.97369 2
B 1.00000 1
C 0.81579 6
D 0.88158 5
E 0.96053 3
F 0.89474 4
G 0.39474 7

4 Conclusion
We discussed applicability of the ranking method proposed by Wang et al. [10], and by using DEA, we determine
the weights from rank voting data. Their model, gives rise to the case such that the data of some rank is ignored.
Thus, we analyze the procedure to determine weights, and proposed an extended model for preference voting
and aggregation. The contribution of this paper is to maintains the effects of all data in the final solution, an
improvement over the model proposed by Wang et al. [10].
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