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Wang et al. (2005) proposed a pair of data envelopment analysis (DEA) models 

to deal with the efficiency assessment of decision-making units (DMU) in the 

presence of interval input/output data. Their approach was developed with 

reference to an earlier approach proposed by Despotis and Smirlis (2002) for 

the same problem. Given that the input/output data are given as interval 

numbers, the efficiency scores are interval measures as well.  In such a setting, 

both approaches provide lower and upper bounds for the efficiency scores. 

Wang et al. (2005) claim that the lower and upper bounds calculated in 

Despotis and Smirlis (2002) are incorrect. Then, they present different models 

to calculate the true bounds.  In this paper, we counter-argue their claim and 

we show that the Despotis and Smirlis bounds are correct and those provided 

in Wang et al. are estimated in a manner that they fail to satisfy an obvious 

property that they should possess. We illustrate our arguments with a 

counterexample that was originally used in Wang et. al (2005). 

 

1. Introduction 

Data envelopment analysis (DEA) (Charnes et al, 1978) is a non-parametric method to measure 

the efficiency of decision-making units (DMUs) in the presence of multiple inputs and outputs. 

Standard DEA assumes that all inputs and outputs are exact non-negative ratio estimates. An 

extension of standard DEA that has gained attention in the literature is the Imprecise DEA 

(Cooper et al. 1999), where the input/output data are assumed to be mixtures of exact, interval 

and ordinal data (imprecise data). In the case of the interval data particularly, it is assumed that, 

due to uncertainty, the true input/output data are only known to lie within bounded intervals.  In 
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such a data setting, the efficiency scores assessed are interval measures as well. Despotis and 

Smirlis (2002) and then Wang et al. (2005) presented two different pair of models to estimate the 

upper and the lower bounds of the efficiency scores. Wang et al. (2005) claim that the lower and 

upper bounds calculated in Despotis and Smirlis (2002) are incorrect. In this paper, we argue and 

prove that the bounds provided in Wang et al. (2005) are incorrect as they fail to satisfy an obvious 

property that they should possess. 

 

The note is organized as follows: In Section 2, we present the Despotis and Smirlis (2002) and 

Wang et al (2005) models for DEA with interval data. In Section 3, we underline the rationale of 

the two approaches, and we use a simple numerical example to show that the approach of Wang 

et al. suffers from a serious drawback. Concluding remarks are presented in Section 4. 

 

2. Background 

Assume n DMUs, each of which uses m inputs to produce s outputs. We denote by 𝑦𝑟𝑗 the level of 

output r (𝑟 = 1, … , 𝑠) from DMU j (𝑗 = 1, … , 𝑛) and by 𝑥𝑖𝑗 the level of input i (𝑖 = 1, … , 𝑚) used by 

the DMU j. The standard DEA model for evaluating the efficiency of 𝐷𝑀𝑈𝑝 is as follows (input 

orientation and constant returns-to-scale are assumed): 

𝑒𝑝 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑝

𝑠

𝑟=1
 

s.t. 

∑ 𝑣𝑖𝑥𝑖𝑝

𝑚

𝑖=1
= 1 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1
≤ 0, 𝑗 = 1, … , 𝑛; 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑖 

(1) 

Unlike the standard DEA model, it is further assumed that the levels of inputs and outputs are 

only known to lie within bounded intervals, i.e. 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈] and  𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ], where the upper 
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and lower bounds of the intervals are strictly positive constants. In such a setting, the efficiencies 

of the DMUs are interval measures as well. Despotis and Smirlis (2002) and Wang et al. (2005), 

whose models are outlined below, provide in their works DEA models to assess upper and lower 

bounds for the efficiencies of the DMUs.  

The rationale of the interval data in DEA is that, due to uncertainty at the time of assessment, 

there is lack of knowledge of the exact values of the inputs consumed and the outputs produced 

but it is possible to provide lower and upper bounds for these values. In that sense, every 

combination of exact data drawn from within the respective intervals can be assumed as a possible 

realization of the input/output measures. Let us call such a combination of exact input/output 

data for any DMU an “occurrence” of that DMU. Obviously, applying standard DEA on a set of 

occurrences of the DMUs, the exact efficiency scores assessed must lie within the respective 

efficiency intervals. 

 

2.1 The Despotis and Smirlis (2002) models for DEA with interval data 

Despotis and Smirlis (2002) proposed the following pair of DEA models to assess the upper and 

lower bounds of the evaluated DMU p (the linear forms are given): 

𝐸𝑝
𝑈 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑝

𝑈
𝑠

𝑟=1
 

s.t. 

∑ 𝑣𝑖𝑥𝑖𝑝
𝐿

𝑚

𝑖=1
= 1 

∑ 𝑢𝑟𝑦𝑟𝑝
𝑈

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑝

𝐿
𝑚

𝑖=1
≤ 0 

∑ 𝑢𝑟𝑦𝑟𝑗
𝐿

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑈
𝑚

𝑖=1
≤ 0,

𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑝 

(2) 

𝐸𝑝
𝐿 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑝

𝐿
𝑠

𝑟=1
 

s.t. 

∑ 𝑣𝑖𝑥𝑖𝑝
𝑈

𝑚

𝑖=1
= 1 

∑ 𝑢𝑟𝑦𝑟𝑝
𝐿

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑝

𝑈
𝑚

𝑖=1
≤ 0 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗

𝐿
𝑚

𝑖=1
≤ 0,

𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑝 

(3) 
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𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑖 

 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑖 

 

Model (2) provides the upper bound of efficiency 𝐸𝑝
𝑈 for the evaluated DMU p, by assessing the 

efficiency of the best occurrence (𝑥𝑖𝑝
𝐿 , 𝑦𝑟𝑝

𝑈 ) of DMU p against the worst occurrences of all the other 

DMUs (𝑥𝑖𝑗
𝑈 , 𝑦𝑟𝑗

𝐿 ), 𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑝. Model (3), on the other hand, provides the lower bound of 

efficiency 𝐸𝑝
𝐿 for DMU p, by assessing the efficiency of its worst occurrence (𝑥𝑖𝑝

𝑈 , 𝑦𝑟𝑝
𝐿 ) against the 

best occurrences of all the other DMUs (𝑥𝑖𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ), 𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑝. 

We recall here that, applying the standard DEA model (1) on a set of occurrences of the DMUs, 

the exact efficiency scores assessed must lie within the respective efficiency intervals. The 

following theorem secures that the bounds estimated by the models (2) and (3) satisfy this 

property.  

Theorem 1: For the efficiency score 𝑒𝑝 obtained by assessing any occurrence of DMU p: (𝑥𝑖𝑝 ∈

[𝑥𝑖𝑝
𝐿 , 𝑥𝑖𝑝

𝑈 ],  𝑦𝑟𝑝 ∈ [𝑦𝑟𝑝
𝐿 , 𝑦𝑟𝑝

𝑈 ]) against any occurrence of the other DMUs:  (𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈],  𝑦𝑟𝑗 ∈

[𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ]) holds that 𝑒𝑝 ∈ [𝐸𝑝
𝐿 , 𝐸𝑝

𝑈]. 

Proof. 

Firstly, we prove 𝐸𝑝
𝐿 ≤ 𝑒𝑝. Let (𝑢′, 𝑣′) be the optimal solution of model (3) and (𝑢∗, 𝑣∗) an optimal 

solution of model (1). From the first two constraints of model (3) we get ∑ 𝑢𝑟
′ 𝑦𝑟𝑝

𝐿𝑠
𝑟=1 ≤ 1 and, thus, 

at optimality we have 

∑ 𝑢𝑟
′ 𝑦𝑟𝑝

𝐿
𝑠

𝑟=1
≤ 1;

∑ 𝑢𝑟
′ 𝑦𝑟𝑗

𝑈
𝑠

𝑟=1
− ∑ 𝑣𝑖

′𝑥𝑖𝑗
𝐿

𝑚

𝑖=1
≤ 0; ∀𝑗, 𝑗 ≠ 𝑝

 

According to the following relation 

∑ 𝑢𝑟
′ 𝑦𝑟𝑗

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

′ 𝑦𝑟𝑗
𝑈

𝑠

𝑟=1
≤ ∑ 𝑣𝑖

′𝑥𝑖𝑗
𝐿

𝑚

𝑖=1
≤ ∑ 𝑣𝑖

′𝑥𝑟𝑗

𝑚

𝑖=1
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We have ∑ 𝑢𝑟
′ 𝑦𝑟𝑗

𝑠
𝑟=1 − ∑ 𝑣𝑖

′𝑥𝑟𝑗
𝑚
𝑖=1 ≤ 0, (𝑗 ≠ 𝑝).  

Also, from the constraint ∑ 𝑣𝑖
′𝑥𝑖𝑝

𝑈𝑚
𝑖=1 = 1, we conclude that ∑ 𝑣𝑖

′𝑥𝑖𝑝
𝑚
𝑖=1 ≤ ∑ 𝑣𝑖

′𝑥𝑖𝑝
𝑈𝑚

𝑖=1 = 1. Now, for the 

constraint ∑ 𝑣𝑖𝑥𝑖𝑝
𝑚
𝑖=1 = 1 of Model (1), we consider two cases: 

Case 1: ∑ 𝑣𝑖
′𝑥𝑖𝑝

𝑚
𝑖=1 = 1. 

In this case, ∑ 𝑢𝑟
′ 𝑦𝑟𝑝

𝑠
𝑟=1 ≤ 1, and hence1 we have ∑ 𝑢𝑟

′ 𝑦𝑟𝑝
𝑠
𝑟=1 − ∑ 𝑣𝑖

′𝑥𝑟𝑝
𝑚
𝑖=1 ≤ 0. Therefore, the vector 

(𝒖′, 𝒗′) is a feasible solution for model (1) and we have 

𝐸𝑝
𝐿 = ∑ 𝑢𝑟

′ 𝑦𝑟𝑝
𝐿

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

′ 𝑦𝑟𝑝

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

∗𝑦𝑟𝑝

𝑠

𝑟=1
= 𝑒𝑝 

Case 2: ∑ 𝑣𝑖
′𝑥𝑖𝑝

𝑚
𝑖=1 ≠ 1. 

Let ∑ 𝑣𝑖
′𝑥𝑖𝑝

𝑚
𝑖=1 = 𝑞 < 1. We define 𝒖′′ =

𝒖′

𝑞
 and 𝒗′′ =

𝒗′

𝑞
. Hence, we have ∑ 𝑢𝑟

′ 𝑦𝑟𝑝
𝑠
𝑟=1 ≤ ∑ 𝑢𝑟

′′𝑦𝑟𝑝
𝑠
𝑟=1 , 

and also 

∑ 𝑣𝑖
′′𝑥𝑖𝑝

𝑚

𝑖=1
= 1

∑ 𝑢𝑟
′′𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖

′′𝑥𝑖𝑗

𝑚

𝑖=1
≤ 0, (𝑗 ≠ 𝑝)

 

And similar to the case 1, we have ∑ 𝑢𝑟
′′𝑦𝑟𝑝

𝑠
𝑟=1 − ∑ 𝑣𝑖

′′𝑥𝑖𝑝
𝑚
𝑖=1 ≤ 0. Then, (𝒖′′, 𝒗′′) is a feasible solution 

for model (1), and so, in this case we also have 

𝐸𝑝
𝐿 = ∑ 𝑢𝑟

′ 𝑦𝑟𝑝
𝐿

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

′′𝑦𝑟𝑝

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

∗𝑦𝑟𝑝

𝑠

𝑟=1
= 𝑒𝑝 

Now, we prove 𝑒𝑝 ≤ 𝐸𝑝
𝑈. Let (�̅�, �̅�) be the optimal solution of model (2) and (𝑢∗, 𝑣∗) an optimal 

solution of model (1). In optimality of model (1) we have 

                                                           
1 Otherwise, if ∑ 𝑢𝑟

′ 𝑦𝑟𝑝
𝑠
𝑟=1 > 1, we can set �̂� = 𝒖′ − 𝛁, where 𝛁 ∈ ℝ𝐬 is a vector such that ∑ �̂�𝑟𝑦𝑟𝑝

𝑠
𝑟=1 ≤ 1. So, we also have ∑ �̂�𝑟𝑦𝑟𝑝

𝑠
𝑟=1 −

∑ 𝑣𝑖
′𝑥𝑟𝑝

𝑚
𝑖=1 ≤ 0. Hence, the feasibility still remains. 
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∑ 𝑣𝑖
∗𝑥𝑖𝑝

𝑚

𝑖=1
= 1;

∑ 𝑢𝑟
∗𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖

∗𝑥𝑖𝑗

𝑚

𝑖=1
≤ 0; ∀𝑗

 

According to the following relation 

∑ 𝑢𝑟
∗𝑦𝑟𝑗

𝐿
𝑠

𝑟=1
≤ ∑ 𝑢𝑟

∗𝑦𝑟𝑗

𝑠

𝑟=1
≤ ∑ 𝑣𝑖

∗𝑥𝑖𝑗

𝑚

𝑖=1
≤ ∑ 𝑣𝑖

∗𝑥𝑖𝑗
𝑈

𝑚

𝑖=1
 

We have ∑ 𝑢𝑟
∗𝑦𝑟𝑗

𝐿𝑠
𝑟=1 − ∑ 𝑣𝑖

∗𝑥𝑖𝑗
𝑈𝑚

𝑖=1 ≤ 0 (𝑗 ≠ 𝑝). Now, for the constraint ∑ 𝑣𝑖𝑥𝑖𝑝
𝐿𝑚

𝑖=1 = 1 of Model (2), 

we consider two cases: 

Case 1: ∑ 𝑣𝑖
∗𝑥𝑖𝑝

𝐿𝑚
𝑖=1 = 1 . 

Then, since we have ∑ 𝑢𝑟
∗𝑦𝑟𝑝

𝑈𝑠
𝑟=1 ≤ 21 = ∑ 𝑣𝑖

∗𝑥𝑖𝑝
𝐿𝑚

𝑖=1 , then clearly we have ∑ 𝑢𝑟
∗𝑦𝑟𝑝

𝑈𝑠
𝑟=1 − ∑ 𝑣𝑖

∗𝑥𝑖𝑝
𝐿𝑚

𝑖=1 ≤

0, that shows the vector (𝒖∗, 𝒗∗) is a feasible solution for model (2) and we have 

𝑒𝑝 = ∑ 𝑢𝑟
∗𝑦𝑟𝑝

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

∗𝑦𝑟𝑝
𝑈

𝑠

𝑟=1
≤ ∑ �̅�𝑟𝑦𝑟𝑝

𝑈
𝑠

𝑟=1
= 𝐸𝑝

𝑈 

Where “_” stands for optimality in model (2).  

Case 2: ∑ 𝑣𝑖
∗𝑥𝑖𝑝

𝐿𝑚
𝑖=1 < 1 . 

Let ∑ 𝑣𝑖
∗𝑥𝑖𝑝

𝐿𝑚
𝑖=1 = ℎ < 1 . We define �̿� =

𝒖∗

ℎ
 and �̿� =

𝒗∗

ℎ
. Considering case 1, again we have  

∑ �̿�𝑖𝑥𝑖𝑝
𝐿

𝑚

𝑖=1
= 1,

∑ �̿�𝑟𝑦𝑟𝑝
𝑈

𝑠

𝑟=1
− ∑ �̿�𝑖𝑥𝑖𝑝

𝐿
𝑚

𝑖=1
≤ 0,

∑ �̿�𝑟𝑦𝑟𝑗
𝐿

𝑠

𝑟=1
− ∑ �̿�𝑖𝑥𝑖𝑗

𝑈
𝑚

𝑖=1
≤ 0,

 

That indicate (�̿�, �̿�) is a feasible solution for model (2). Hence, we have  

                                                           
2 In the case ∑ 𝑢𝑟

∗𝑦𝑟𝑝
𝑈𝑠

𝑟=1 > 1, we simply set �̃� = 𝒖∗ − 𝚫, where 𝚫 ∈ ℝ𝐬 is a vector such that ∑ �̃�𝑟𝑦𝑟𝑝
𝑈𝑠

𝑟=1 ≤ 1. So, we also have ∑ �̃�𝑟𝑦𝑟𝑗
𝐿𝑠

𝑟=1 −

∑ 𝑣𝑖
∗𝑥𝑖𝑗

𝑈𝑚
𝑖=1 ≤ 0. Hence, the feasibility still remains.  
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𝑒𝑝 = ∑ 𝑢𝑟
∗𝑦𝑟𝑝

𝑠

𝑟=1
≤ ∑ 𝑢𝑟

∗𝑦𝑟𝑝
𝑈

𝑠

𝑟=1
≤ ∑ �̿�𝑟𝑦𝑟𝑝

𝑈
𝑠

𝑟=1
≤ ∑ �̅�𝑟𝑦𝑟𝑝

𝑈
𝑠

𝑟=1
= 𝐸𝑝

𝑈 

Therefore, for each occurrence of DMU p assessed against any occurrence of the other DMUs 

holds that 𝑒𝑝 ∈ [𝐸𝑝
𝐿 , 𝐸𝑝

𝑈]. This completes the proof.    ⧠ 

 

2.2 The Wang et al. (2005) models for DEA with interval data 

Wang et al. (2005) proposed the following pair of DEA models to assess the upper and lower 

bounds of the evaluated DMU p: 

𝜃𝑝
𝑈 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑝

𝑈
𝑠

𝑟=1
 

s.t. 

∑ 𝑣𝑖𝑥𝑖𝑝
𝐿

𝑚

𝑖=1
= 1 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗

𝐿
𝑚

𝑖=1
≤ 0,

𝑗 = 1, … , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑖 

(4) 

𝜃𝑝
𝐿 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑝

𝐿
𝑠

𝑟=1
 

s.t. 

∑ 𝑣𝑖𝑥𝑖𝑝
𝑈

𝑚

𝑖=1
= 1 

∑ 𝑢𝑟𝑦𝑟𝑝
𝐿

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑝

𝑈
𝑚

𝑖=1
≤ 0 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗

𝐿
𝑚

𝑖=1
≤ 0,

𝑗 = 1, … , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑖 

(5) 

Model (4) is a standard DEA model applied on input/output bundle represented by the best 

occurrences of all the DMUs. That is, to obtain the upper bound of efficiency 𝜃𝑝
𝑈,  the best 

occurrence (𝑥𝑖𝑝
𝐿 , 𝑦𝑟𝑝

𝑈 ) of DMU p is assessed against the best occurrences of all the other DMUs 

(𝑥𝑖𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ), 𝑗 = 1, … , 𝑛. Model (5), on the other hand, provides the lower bound of efficiency 𝜃𝑝
𝐿 for 

DMU p, by assessing the efficiency of its worst occurrence (𝑥𝑖𝑝
𝑈 , 𝑦𝑟𝑝

𝐿 ), again against the best 

occurrences of all the other DMUs, i.e. with respect to the efficiency frontier obtained in model 

(4). The reader is resorted to Wang et al. (2005), p.p. 354, for the interpretation and the 
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argumentation in favor of these efficiency bounds. The structural difference between models (2)-

(3) and (4)-(5) is that the latter use a common efficiency frontier to assess the upper and lower 

bounds for all the DMUs whereas in the former, different frontiers are used, as illustrated in Fig.1. 

This is the point criticized in Wang et al. and presented as a drawback of Despotis and Smirlis 

(2002) formulations. 

Although the second constraint in (5) is redundant, and therefore correctly is omitted in Wang et 

al (2005), we keep it to emphasize that the worst occurrence of DMU p, is assessed, among others, 

against the best occurrence of itself. It is not easily understood how two different realizations of 

the same DMU can be incorporated simultaneously in the same assessment exercise.  

A serious drawback in models (4)-(5) is that for the efficiency interval [𝜃𝑝
𝐿 , 𝜃𝑝

𝑈] they provide, the 

theorem 1 does not hold. That is, there might be occurrences of the DMUs for which the exact 

efficiency score falls outside of the interval [𝜃𝑝
𝐿 , 𝜃𝑝

𝑈]. This is shown with the following 

counterexample, which is taken from Wang et al. (2005).  

 

Example: Table 1 exhibits three DMUs, A, B and C using one input to produce one output. The 

input and the output are given as interval numbers. The fourth and the fifth columns present the 

lower and upper bounds (interval efficiencies) of the three DMUs derived by the models (4)-(5) 

and (2)-(3) respectively.  

Table 3: Interval data and interval efficiencies 

DMU Input [𝑥𝑝
𝐿 , 𝑥𝑝

𝑈] Output [𝑦𝑝
𝐿 , 𝑦𝑝

𝑈] [𝜃𝑝
𝐿 , 𝜃𝑝

𝑈] [𝐸𝑝
𝐿 , 𝐸𝑝

𝑈] 

A [1,2] [1,2] [0.25,1.00] [0.30, 1.00] 

B [3,4] [4,5] [0.50, 0.83] [0.50, 1.00] 

C [5,6] [6,7] [0.50, 0.70] [0.50, 1.00] 
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a) Wang et al. efficiency frontier b) Despotis and Smirlis efficiency frontiers 

Fig. 1: Illustration of interval DMUs (source: Wang et al., 2005) 

Consider now an occurrence of the DMUs with exact data drawn from within the interval inputs 

and outputs as shown in Table 2. The last column of Table 4 shows the efficiency scores derived 

by applying the standard input-oriented DEA model with constant returns-to-scale (CRS). The 

efficiency score of DMU C lies outside the interval efficiency [0.50, 0.70], as calculated by models 

(4)-(5).  

Table 2: First occurrence of the DMUs with exact data and efficiency scores 

DMU Input Output Efficiency 

A 1.00 1.50 1.00 

B 3.00 4.50 1.00 

C 5.50 6.50 0.79 

 

Moreover, according to Theorem 1, there is not any occurrence of the DMUs that gives to DMU A 

an efficiency score less than the lower bound 0.30 obtained from model (3). Notice, however, that 

model (5) set the lower bound for DMU A to 0.25, a value which is unattainable. Thus, an effortless 

conclusion is that the models (4)-(5) fail to assess the correct bounds. Now, we examine another 

case that emphasizes the wrong lower bound efficiency score of Wang (2005) model for DMU A 

(see Table 3).   
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Table 3: Second occurrence of the DMUs with exact data and efficiency scores 

DMU Input Output Efficiency 

A 2.00 1.00 0.30 

B 3.00 5.00 1.00 

C 5.00 7.00 0.84 

 

The case that is reported in Table 3 is the worst case for DMU A and best cases for other DMUs. 

The result of conventional CCR model shows that its efficiency score is 0.30 and not 0.25. So, 

there isn’t any occurrences related to DMU A with efficiency score lower than 0.30.   

3. Conclusion 

We presented in this note a theorem and counterexample to prove that, unlike the approach of 

Despotis and Smirlis (2002), the approach of Wang et al. (2005) to the problem of measuring the 

performance of DMUs in the presence of interval data fails to estimate the correct efficiency lower 

and upper bounds of the efficiency scores. 
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